blob: bb8ed1ed0e2f3f9bad2b4f1af083e604e976f14a [file] [log] [blame]
/*
* ARM SME Operations
*
* Copyright (c) 2022 Linaro, Ltd.
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "internals.h"
#include "tcg/tcg-gvec-desc.h"
#include "exec/helper-proto.h"
#include "accel/tcg/cpu-ldst.h"
#include "accel/tcg/helper-retaddr.h"
#include "qemu/int128.h"
#include "fpu/softfloat.h"
#include "vec_internal.h"
#include "sve_ldst_internal.h"
static bool vectors_overlap(ARMVectorReg *x, unsigned nx,
ARMVectorReg *y, unsigned ny)
{
return !(x + nx <= y || y + ny <= x);
}
void helper_set_svcr(CPUARMState *env, uint32_t val, uint32_t mask)
{
aarch64_set_svcr(env, val, mask);
}
void helper_sme_zero(CPUARMState *env, uint32_t imm, uint32_t svl)
{
uint32_t i;
/*
* Special case clearing the entire ZArray.
* This falls into the CONSTRAINED UNPREDICTABLE zeroing of any
* parts of the ZA storage outside of SVL.
*/
if (imm == 0xff) {
memset(env->za_state.za, 0, sizeof(env->za_state.za));
return;
}
/*
* Recall that ZAnH.D[m] is spread across ZA[n+8*m],
* so each row is discontiguous within ZA[].
*/
for (i = 0; i < svl; i++) {
if (imm & (1 << (i % 8))) {
memset(&env->za_state.za[i], 0, svl);
}
}
}
/*
* When considering the ZA storage as an array of elements of
* type T, the index within that array of the Nth element of
* a vertical slice of a tile can be calculated like this,
* regardless of the size of type T. This is because the tiles
* are interleaved, so if type T is size N bytes then row 1 of
* the tile is N rows away from row 0. The division by N to
* convert a byte offset into an array index and the multiplication
* by N to convert from vslice-index-within-the-tile to
* the index within the ZA storage cancel out.
*/
#define tile_vslice_index(i) ((i) * sizeof(ARMVectorReg))
/*
* When doing byte arithmetic on the ZA storage, the element
* byteoff bytes away in a tile vertical slice is always this
* many bytes away in the ZA storage, regardless of the
* size of the tile element, assuming that byteoff is a multiple
* of the element size. Again this is because of the interleaving
* of the tiles. For instance if we have 1 byte per element then
* each row of the ZA storage has one byte of the vslice data,
* and (counting from 0) byte 8 goes in row 8 of the storage
* at offset (8 * row-size-in-bytes).
* If we have 8 bytes per element then each row of the ZA storage
* has 8 bytes of the data, but there are 8 interleaved tiles and
* so byte 8 of the data goes into row 1 of the tile,
* which is again row 8 of the storage, so the offset is still
* (8 * row-size-in-bytes). Similarly for other element sizes.
*/
#define tile_vslice_offset(byteoff) ((byteoff) * sizeof(ARMVectorReg))
/*
* Move Zreg vector to ZArray column.
*/
#define DO_MOVA_C(NAME, TYPE, H) \
void HELPER(NAME)(void *za, void *vn, void *vg, uint32_t desc) \
{ \
int i, oprsz = simd_oprsz(desc); \
for (i = 0; i < oprsz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
*(TYPE *)(za + tile_vslice_offset(i)) = *(TYPE *)(vn + H(i)); \
} \
i += sizeof(TYPE); \
pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
DO_MOVA_C(sme_mova_cz_b, uint8_t, H1)
DO_MOVA_C(sme_mova_cz_h, uint16_t, H1_2)
DO_MOVA_C(sme_mova_cz_s, uint32_t, H1_4)
void HELPER(sme_mova_cz_d)(void *za, void *vn, void *vg, uint32_t desc)
{
int i, oprsz = simd_oprsz(desc) / 8;
uint8_t *pg = vg;
uint64_t *n = vn;
uint64_t *a = za;
for (i = 0; i < oprsz; i++) {
if (pg[H1(i)] & 1) {
a[tile_vslice_index(i)] = n[i];
}
}
}
void HELPER(sme_mova_cz_q)(void *za, void *vn, void *vg, uint32_t desc)
{
int i, oprsz = simd_oprsz(desc) / 16;
uint16_t *pg = vg;
Int128 *n = vn;
Int128 *a = za;
/*
* Int128 is used here simply to copy 16 bytes, and to simplify
* the address arithmetic.
*/
for (i = 0; i < oprsz; i++) {
if (pg[H2(i)] & 1) {
a[tile_vslice_index(i)] = n[i];
}
}
}
#undef DO_MOVA_C
/*
* Move ZArray column to Zreg vector.
*/
#define DO_MOVA_Z(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *za, void *vg, uint32_t desc) \
{ \
int i, oprsz = simd_oprsz(desc); \
for (i = 0; i < oprsz; ) { \
uint16_t pg = *(uint16_t *)(vg + H1_2(i >> 3)); \
do { \
if (pg & 1) { \
*(TYPE *)(vd + H(i)) = *(TYPE *)(za + tile_vslice_offset(i)); \
} \
i += sizeof(TYPE); \
pg >>= sizeof(TYPE); \
} while (i & 15); \
} \
}
DO_MOVA_Z(sme_mova_zc_b, uint8_t, H1)
DO_MOVA_Z(sme_mova_zc_h, uint16_t, H1_2)
DO_MOVA_Z(sme_mova_zc_s, uint32_t, H1_4)
void HELPER(sme_mova_zc_d)(void *vd, void *za, void *vg, uint32_t desc)
{
int i, oprsz = simd_oprsz(desc) / 8;
uint8_t *pg = vg;
uint64_t *d = vd;
uint64_t *a = za;
for (i = 0; i < oprsz; i++) {
if (pg[H1(i)] & 1) {
d[i] = a[tile_vslice_index(i)];
}
}
}
void HELPER(sme_mova_zc_q)(void *vd, void *za, void *vg, uint32_t desc)
{
int i, oprsz = simd_oprsz(desc) / 16;
uint16_t *pg = vg;
Int128 *d = vd;
Int128 *a = za;
/*
* Int128 is used here simply to copy 16 bytes, and to simplify
* the address arithmetic.
*/
for (i = 0; i < oprsz; i++, za += sizeof(ARMVectorReg)) {
if (pg[H2(i)] & 1) {
d[i] = a[tile_vslice_index(i)];
}
}
}
#undef DO_MOVA_Z
void HELPER(sme2_mova_zc_b)(void *vdst, void *vsrc, uint32_t desc)
{
const uint8_t *src = vsrc;
uint8_t *dst = vdst;
size_t i, n = simd_oprsz(desc);
for (i = 0; i < n; ++i) {
dst[i] = src[tile_vslice_index(i)];
}
}
void HELPER(sme2_mova_zc_h)(void *vdst, void *vsrc, uint32_t desc)
{
const uint16_t *src = vsrc;
uint16_t *dst = vdst;
size_t i, n = simd_oprsz(desc) / 2;
for (i = 0; i < n; ++i) {
dst[i] = src[tile_vslice_index(i)];
}
}
void HELPER(sme2_mova_zc_s)(void *vdst, void *vsrc, uint32_t desc)
{
const uint32_t *src = vsrc;
uint32_t *dst = vdst;
size_t i, n = simd_oprsz(desc) / 4;
for (i = 0; i < n; ++i) {
dst[i] = src[tile_vslice_index(i)];
}
}
void HELPER(sme2_mova_zc_d)(void *vdst, void *vsrc, uint32_t desc)
{
const uint64_t *src = vsrc;
uint64_t *dst = vdst;
size_t i, n = simd_oprsz(desc) / 8;
for (i = 0; i < n; ++i) {
dst[i] = src[tile_vslice_index(i)];
}
}
void HELPER(sme2p1_movaz_zc_b)(void *vdst, void *vsrc, uint32_t desc)
{
uint8_t *src = vsrc;
uint8_t *dst = vdst;
size_t i, n = simd_oprsz(desc);
for (i = 0; i < n; ++i) {
dst[i] = src[tile_vslice_index(i)];
src[tile_vslice_index(i)] = 0;
}
}
void HELPER(sme2p1_movaz_zc_h)(void *vdst, void *vsrc, uint32_t desc)
{
uint16_t *src = vsrc;
uint16_t *dst = vdst;
size_t i, n = simd_oprsz(desc) / 2;
for (i = 0; i < n; ++i) {
dst[i] = src[tile_vslice_index(i)];
src[tile_vslice_index(i)] = 0;
}
}
void HELPER(sme2p1_movaz_zc_s)(void *vdst, void *vsrc, uint32_t desc)
{
uint32_t *src = vsrc;
uint32_t *dst = vdst;
size_t i, n = simd_oprsz(desc) / 4;
for (i = 0; i < n; ++i) {
dst[i] = src[tile_vslice_index(i)];
src[tile_vslice_index(i)] = 0;
}
}
void HELPER(sme2p1_movaz_zc_d)(void *vdst, void *vsrc, uint32_t desc)
{
uint64_t *src = vsrc;
uint64_t *dst = vdst;
size_t i, n = simd_oprsz(desc) / 8;
for (i = 0; i < n; ++i) {
dst[i] = src[tile_vslice_index(i)];
src[tile_vslice_index(i)] = 0;
}
}
void HELPER(sme2p1_movaz_zc_q)(void *vdst, void *vsrc, uint32_t desc)
{
Int128 *src = vsrc;
Int128 *dst = vdst;
size_t i, n = simd_oprsz(desc) / 16;
for (i = 0; i < n; ++i) {
dst[i] = src[tile_vslice_index(i)];
memset(&src[tile_vslice_index(i)], 0, 16);
}
}
/*
* Clear elements in a tile slice comprising len bytes.
*/
typedef void ClearFn(void *ptr, size_t off, size_t len);
static void clear_horizontal(void *ptr, size_t off, size_t len)
{
memset(ptr + off, 0, len);
}
static void clear_vertical_b(void *vptr, size_t off, size_t len)
{
for (size_t i = 0; i < len; ++i) {
*(uint8_t *)(vptr + tile_vslice_offset(i + off)) = 0;
}
}
static void clear_vertical_h(void *vptr, size_t off, size_t len)
{
for (size_t i = 0; i < len; i += 2) {
*(uint16_t *)(vptr + tile_vslice_offset(i + off)) = 0;
}
}
static void clear_vertical_s(void *vptr, size_t off, size_t len)
{
for (size_t i = 0; i < len; i += 4) {
*(uint32_t *)(vptr + tile_vslice_offset(i + off)) = 0;
}
}
static void clear_vertical_d(void *vptr, size_t off, size_t len)
{
for (size_t i = 0; i < len; i += 8) {
*(uint64_t *)(vptr + tile_vslice_offset(i + off)) = 0;
}
}
static void clear_vertical_q(void *vptr, size_t off, size_t len)
{
for (size_t i = 0; i < len; i += 16) {
memset(vptr + tile_vslice_offset(i + off), 0, 16);
}
}
/*
* Copy elements from an array into a tile slice comprising len bytes.
*/
typedef void CopyFn(void *dst, const void *src, size_t len);
static void copy_horizontal(void *dst, const void *src, size_t len)
{
memcpy(dst, src, len);
}
static void copy_vertical_b(void *vdst, const void *vsrc, size_t len)
{
const uint8_t *src = vsrc;
uint8_t *dst = vdst;
size_t i;
for (i = 0; i < len; ++i) {
dst[tile_vslice_index(i)] = src[i];
}
}
static void copy_vertical_h(void *vdst, const void *vsrc, size_t len)
{
const uint16_t *src = vsrc;
uint16_t *dst = vdst;
size_t i;
for (i = 0; i < len / 2; ++i) {
dst[tile_vslice_index(i)] = src[i];
}
}
static void copy_vertical_s(void *vdst, const void *vsrc, size_t len)
{
const uint32_t *src = vsrc;
uint32_t *dst = vdst;
size_t i;
for (i = 0; i < len / 4; ++i) {
dst[tile_vslice_index(i)] = src[i];
}
}
static void copy_vertical_d(void *vdst, const void *vsrc, size_t len)
{
const uint64_t *src = vsrc;
uint64_t *dst = vdst;
size_t i;
for (i = 0; i < len / 8; ++i) {
dst[tile_vslice_index(i)] = src[i];
}
}
static void copy_vertical_q(void *vdst, const void *vsrc, size_t len)
{
for (size_t i = 0; i < len; i += 16) {
memcpy(vdst + tile_vslice_offset(i), vsrc + i, 16);
}
}
void HELPER(sme2_mova_cz_b)(void *vdst, void *vsrc, uint32_t desc)
{
copy_vertical_b(vdst, vsrc, simd_oprsz(desc));
}
void HELPER(sme2_mova_cz_h)(void *vdst, void *vsrc, uint32_t desc)
{
copy_vertical_h(vdst, vsrc, simd_oprsz(desc));
}
void HELPER(sme2_mova_cz_s)(void *vdst, void *vsrc, uint32_t desc)
{
copy_vertical_s(vdst, vsrc, simd_oprsz(desc));
}
void HELPER(sme2_mova_cz_d)(void *vdst, void *vsrc, uint32_t desc)
{
copy_vertical_d(vdst, vsrc, simd_oprsz(desc));
}
/*
* Host and TLB primitives for vertical tile slice addressing.
*/
#define DO_LD(NAME, TYPE, HOST, TLB) \
static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \
{ \
TYPE val = HOST(host); \
*(TYPE *)(za + tile_vslice_offset(off)) = val; \
} \
static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \
intptr_t off, target_ulong addr, uintptr_t ra) \
{ \
TYPE val = TLB(env, useronly_clean_ptr(addr), ra); \
*(TYPE *)(za + tile_vslice_offset(off)) = val; \
}
#define DO_ST(NAME, TYPE, HOST, TLB) \
static inline void sme_##NAME##_v_host(void *za, intptr_t off, void *host) \
{ \
TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \
HOST(host, val); \
} \
static inline void sme_##NAME##_v_tlb(CPUARMState *env, void *za, \
intptr_t off, target_ulong addr, uintptr_t ra) \
{ \
TYPE val = *(TYPE *)(za + tile_vslice_offset(off)); \
TLB(env, useronly_clean_ptr(addr), val, ra); \
}
#define DO_LDQ(HNAME, VNAME) \
static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \
{ \
HNAME##_host(za, tile_vslice_offset(off), host); \
} \
static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \
target_ulong addr, uintptr_t ra) \
{ \
HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \
}
#define DO_STQ(HNAME, VNAME) \
static inline void VNAME##_v_host(void *za, intptr_t off, void *host) \
{ \
HNAME##_host(za, tile_vslice_offset(off), host); \
} \
static inline void VNAME##_v_tlb(CPUARMState *env, void *za, intptr_t off, \
target_ulong addr, uintptr_t ra) \
{ \
HNAME##_tlb(env, za, tile_vslice_offset(off), addr, ra); \
}
DO_LD(ld1b, uint8_t, ldub_p, cpu_ldub_data_ra)
DO_LD(ld1h_be, uint16_t, lduw_be_p, cpu_lduw_be_data_ra)
DO_LD(ld1h_le, uint16_t, lduw_le_p, cpu_lduw_le_data_ra)
DO_LD(ld1s_be, uint32_t, ldl_be_p, cpu_ldl_be_data_ra)
DO_LD(ld1s_le, uint32_t, ldl_le_p, cpu_ldl_le_data_ra)
DO_LD(ld1d_be, uint64_t, ldq_be_p, cpu_ldq_be_data_ra)
DO_LD(ld1d_le, uint64_t, ldq_le_p, cpu_ldq_le_data_ra)
DO_LDQ(sve_ld1qq_be, sme_ld1q_be)
DO_LDQ(sve_ld1qq_le, sme_ld1q_le)
DO_ST(st1b, uint8_t, stb_p, cpu_stb_data_ra)
DO_ST(st1h_be, uint16_t, stw_be_p, cpu_stw_be_data_ra)
DO_ST(st1h_le, uint16_t, stw_le_p, cpu_stw_le_data_ra)
DO_ST(st1s_be, uint32_t, stl_be_p, cpu_stl_be_data_ra)
DO_ST(st1s_le, uint32_t, stl_le_p, cpu_stl_le_data_ra)
DO_ST(st1d_be, uint64_t, stq_be_p, cpu_stq_be_data_ra)
DO_ST(st1d_le, uint64_t, stq_le_p, cpu_stq_le_data_ra)
DO_STQ(sve_st1qq_be, sme_st1q_be)
DO_STQ(sve_st1qq_le, sme_st1q_le)
#undef DO_LD
#undef DO_ST
#undef DO_LDQ
#undef DO_STQ
/*
* Common helper for all contiguous predicated loads.
*/
static inline QEMU_ALWAYS_INLINE
void sme_ld1(CPUARMState *env, void *za, uint64_t *vg,
const target_ulong addr, uint32_t desc, const uintptr_t ra,
const int esz, uint32_t mtedesc, bool vertical,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn,
ClearFn *clr_fn,
CopyFn *cpy_fn)
{
const intptr_t reg_max = simd_oprsz(desc);
const intptr_t esize = 1 << esz;
intptr_t reg_off, reg_last;
SVEContLdSt info;
void *host;
int flags;
/* Find the active elements. */
if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) {
/* The entire predicate was false; no load occurs. */
clr_fn(za, 0, reg_max);
return;
}
/* Probe the page(s). Exit with exception for any invalid page. */
sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_LOAD, ra);
/* Handle watchpoints for all active elements. */
sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize,
BP_MEM_READ, ra);
/*
* Handle mte checks for all active elements.
* Since TBI must be set for MTE, !mtedesc => !mte_active.
*/
if (mtedesc) {
sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize,
mtedesc, ra);
}
flags = info.page[0].flags | info.page[1].flags;
if (unlikely(flags != 0)) {
#ifdef CONFIG_USER_ONLY
g_assert_not_reached();
#else
/*
* At least one page includes MMIO.
* Any bus operation can fail with cpu_transaction_failed,
* which for ARM will raise SyncExternal. Perform the load
* into scratch memory to preserve register state until the end.
*/
ARMVectorReg scratch = { };
reg_off = info.reg_off_first[0];
reg_last = info.reg_off_last[1];
if (reg_last < 0) {
reg_last = info.reg_off_split;
if (reg_last < 0) {
reg_last = info.reg_off_last[0];
}
}
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
tlb_fn(env, &scratch, reg_off, addr + reg_off, ra);
}
reg_off += esize;
} while (reg_off & 63);
} while (reg_off <= reg_last);
cpy_fn(za, &scratch, reg_max);
return;
#endif
}
/* The entire operation is in RAM, on valid pages. */
reg_off = info.reg_off_first[0];
reg_last = info.reg_off_last[0];
host = info.page[0].host;
if (!vertical) {
memset(za, 0, reg_max);
} else if (reg_off) {
clr_fn(za, 0, reg_off);
}
set_helper_retaddr(ra);
while (reg_off <= reg_last) {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
host_fn(za, reg_off, host + reg_off);
} else if (vertical) {
clr_fn(za, reg_off, esize);
}
reg_off += esize;
} while (reg_off <= reg_last && (reg_off & 63));
}
clear_helper_retaddr();
/*
* Use the slow path to manage the cross-page misalignment.
* But we know this is RAM and cannot trap.
*/
reg_off = info.reg_off_split;
if (unlikely(reg_off >= 0)) {
tlb_fn(env, za, reg_off, addr + reg_off, ra);
}
reg_off = info.reg_off_first[1];
if (unlikely(reg_off >= 0)) {
reg_last = info.reg_off_last[1];
host = info.page[1].host;
set_helper_retaddr(ra);
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
host_fn(za, reg_off, host + reg_off);
} else if (vertical) {
clr_fn(za, reg_off, esize);
}
reg_off += esize;
} while (reg_off & 63);
} while (reg_off <= reg_last);
clear_helper_retaddr();
}
}
static inline QEMU_ALWAYS_INLINE
void sme_ld1_mte(CPUARMState *env, void *za, uint64_t *vg,
target_ulong addr, uint32_t desc, uintptr_t ra,
const int esz, bool vertical,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn,
ClearFn *clr_fn,
CopyFn *cpy_fn)
{
uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
int bit55 = extract64(addr, 55, 1);
/* Remove mtedesc from the normal sve descriptor. */
desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/* Perform gross MTE suppression early. */
if (!tbi_check(mtedesc, bit55) ||
tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) {
mtedesc = 0;
}
sme_ld1(env, za, vg, addr, desc, ra, esz, mtedesc, vertical,
host_fn, tlb_fn, clr_fn, cpy_fn);
}
#define DO_LD(L, END, ESZ) \
void HELPER(sme_ld1##L##END##_h)(CPUARMState *env, void *za, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \
sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \
clear_horizontal, copy_horizontal); \
} \
void HELPER(sme_ld1##L##END##_v)(CPUARMState *env, void *za, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sme_ld1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \
sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \
clear_vertical_##L, copy_vertical_##L); \
} \
void HELPER(sme_ld1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \
sve_ld1##L##L##END##_host, sve_ld1##L##L##END##_tlb, \
clear_horizontal, copy_horizontal); \
} \
void HELPER(sme_ld1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sme_ld1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \
sme_ld1##L##END##_v_host, sme_ld1##L##END##_v_tlb, \
clear_vertical_##L, copy_vertical_##L); \
}
DO_LD(b, , MO_8)
DO_LD(h, _be, MO_16)
DO_LD(h, _le, MO_16)
DO_LD(s, _be, MO_32)
DO_LD(s, _le, MO_32)
DO_LD(d, _be, MO_64)
DO_LD(d, _le, MO_64)
DO_LD(q, _be, MO_128)
DO_LD(q, _le, MO_128)
#undef DO_LD
/*
* Common helper for all contiguous predicated stores.
*/
static inline QEMU_ALWAYS_INLINE
void sme_st1(CPUARMState *env, void *za, uint64_t *vg,
const target_ulong addr, uint32_t desc, const uintptr_t ra,
const int esz, uint32_t mtedesc, bool vertical,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
const intptr_t reg_max = simd_oprsz(desc);
const intptr_t esize = 1 << esz;
intptr_t reg_off, reg_last;
SVEContLdSt info;
void *host;
int flags;
/* Find the active elements. */
if (!sve_cont_ldst_elements(&info, addr, vg, reg_max, esz, esize)) {
/* The entire predicate was false; no store occurs. */
return;
}
/* Probe the page(s). Exit with exception for any invalid page. */
sve_cont_ldst_pages(&info, FAULT_ALL, env, addr, MMU_DATA_STORE, ra);
/* Handle watchpoints for all active elements. */
sve_cont_ldst_watchpoints(&info, env, vg, addr, esize, esize,
BP_MEM_WRITE, ra);
/*
* Handle mte checks for all active elements.
* Since TBI must be set for MTE, !mtedesc => !mte_active.
*/
if (mtedesc) {
sve_cont_ldst_mte_check(&info, env, vg, addr, esize, esize,
mtedesc, ra);
}
flags = info.page[0].flags | info.page[1].flags;
if (unlikely(flags != 0)) {
#ifdef CONFIG_USER_ONLY
g_assert_not_reached();
#else
/*
* At least one page includes MMIO.
* Any bus operation can fail with cpu_transaction_failed,
* which for ARM will raise SyncExternal. We cannot avoid
* this fault and will leave with the store incomplete.
*/
reg_off = info.reg_off_first[0];
reg_last = info.reg_off_last[1];
if (reg_last < 0) {
reg_last = info.reg_off_split;
if (reg_last < 0) {
reg_last = info.reg_off_last[0];
}
}
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
tlb_fn(env, za, reg_off, addr + reg_off, ra);
}
reg_off += esize;
} while (reg_off & 63);
} while (reg_off <= reg_last);
return;
#endif
}
reg_off = info.reg_off_first[0];
reg_last = info.reg_off_last[0];
host = info.page[0].host;
set_helper_retaddr(ra);
while (reg_off <= reg_last) {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
host_fn(za, reg_off, host + reg_off);
}
reg_off += 1 << esz;
} while (reg_off <= reg_last && (reg_off & 63));
}
clear_helper_retaddr();
/*
* Use the slow path to manage the cross-page misalignment.
* But we know this is RAM and cannot trap.
*/
reg_off = info.reg_off_split;
if (unlikely(reg_off >= 0)) {
tlb_fn(env, za, reg_off, addr + reg_off, ra);
}
reg_off = info.reg_off_first[1];
if (unlikely(reg_off >= 0)) {
reg_last = info.reg_off_last[1];
host = info.page[1].host;
set_helper_retaddr(ra);
do {
uint64_t pg = vg[reg_off >> 6];
do {
if ((pg >> (reg_off & 63)) & 1) {
host_fn(za, reg_off, host + reg_off);
}
reg_off += 1 << esz;
} while (reg_off & 63);
} while (reg_off <= reg_last);
clear_helper_retaddr();
}
}
static inline QEMU_ALWAYS_INLINE
void sme_st1_mte(CPUARMState *env, void *za, uint64_t *vg, target_ulong addr,
uint32_t desc, uintptr_t ra, int esz, bool vertical,
sve_ldst1_host_fn *host_fn,
sve_ldst1_tlb_fn *tlb_fn)
{
uint32_t mtedesc = desc >> (SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
int bit55 = extract64(addr, 55, 1);
/* Remove mtedesc from the normal sve descriptor. */
desc = extract32(desc, 0, SIMD_DATA_SHIFT + SVE_MTEDESC_SHIFT);
/* Perform gross MTE suppression early. */
if (!tbi_check(mtedesc, bit55) ||
tcma_check(mtedesc, bit55, allocation_tag_from_addr(addr))) {
mtedesc = 0;
}
sme_st1(env, za, vg, addr, desc, ra, esz, mtedesc,
vertical, host_fn, tlb_fn);
}
#define DO_ST(L, END, ESZ) \
void HELPER(sme_st1##L##END##_h)(CPUARMState *env, void *za, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, false, \
sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \
} \
void HELPER(sme_st1##L##END##_v)(CPUARMState *env, void *za, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sme_st1(env, za, vg, addr, desc, GETPC(), ESZ, 0, true, \
sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \
} \
void HELPER(sme_st1##L##END##_h_mte)(CPUARMState *env, void *za, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, false, \
sve_st1##L##L##END##_host, sve_st1##L##L##END##_tlb); \
} \
void HELPER(sme_st1##L##END##_v_mte)(CPUARMState *env, void *za, void *vg, \
target_ulong addr, uint32_t desc) \
{ \
sme_st1_mte(env, za, vg, addr, desc, GETPC(), ESZ, true, \
sme_st1##L##END##_v_host, sme_st1##L##END##_v_tlb); \
}
DO_ST(b, , MO_8)
DO_ST(h, _be, MO_16)
DO_ST(h, _le, MO_16)
DO_ST(s, _be, MO_32)
DO_ST(s, _le, MO_32)
DO_ST(d, _be, MO_64)
DO_ST(d, _le, MO_64)
DO_ST(q, _be, MO_128)
DO_ST(q, _le, MO_128)
#undef DO_ST
void HELPER(sme_addha_s)(void *vzda, void *vzn, void *vpn,
void *vpm, uint32_t desc)
{
intptr_t row, col, oprsz = simd_oprsz(desc) / 4;
uint64_t *pn = vpn, *pm = vpm;
uint32_t *zda = vzda, *zn = vzn;
for (row = 0; row < oprsz; ) {
uint64_t pa = pn[row >> 4];
do {
if (pa & 1) {
for (col = 0; col < oprsz; ) {
uint64_t pb = pm[col >> 4];
do {
if (pb & 1) {
zda[tile_vslice_index(row) + H4(col)] += zn[H4(col)];
}
pb >>= 4;
} while (++col & 15);
}
}
pa >>= 4;
} while (++row & 15);
}
}
void HELPER(sme_addha_d)(void *vzda, void *vzn, void *vpn,
void *vpm, uint32_t desc)
{
intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
uint8_t *pn = vpn, *pm = vpm;
uint64_t *zda = vzda, *zn = vzn;
for (row = 0; row < oprsz; ++row) {
if (pn[H1(row)] & 1) {
for (col = 0; col < oprsz; ++col) {
if (pm[H1(col)] & 1) {
zda[tile_vslice_index(row) + col] += zn[col];
}
}
}
}
}
void HELPER(sme_addva_s)(void *vzda, void *vzn, void *vpn,
void *vpm, uint32_t desc)
{
intptr_t row, col, oprsz = simd_oprsz(desc) / 4;
uint64_t *pn = vpn, *pm = vpm;
uint32_t *zda = vzda, *zn = vzn;
for (row = 0; row < oprsz; ) {
uint64_t pa = pn[row >> 4];
do {
if (pa & 1) {
uint32_t zn_row = zn[H4(row)];
for (col = 0; col < oprsz; ) {
uint64_t pb = pm[col >> 4];
do {
if (pb & 1) {
zda[tile_vslice_index(row) + H4(col)] += zn_row;
}
pb >>= 4;
} while (++col & 15);
}
}
pa >>= 4;
} while (++row & 15);
}
}
void HELPER(sme_addva_d)(void *vzda, void *vzn, void *vpn,
void *vpm, uint32_t desc)
{
intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
uint8_t *pn = vpn, *pm = vpm;
uint64_t *zda = vzda, *zn = vzn;
for (row = 0; row < oprsz; ++row) {
if (pn[H1(row)] & 1) {
uint64_t zn_row = zn[row];
for (col = 0; col < oprsz; ++col) {
if (pm[H1(col)] & 1) {
zda[tile_vslice_index(row) + col] += zn_row;
}
}
}
}
}
static void do_fmopa_h(void *vza, void *vzn, void *vzm, uint16_t *pn,
uint16_t *pm, float_status *fpst, uint32_t desc,
uint16_t negx, int negf)
{
intptr_t row, col, oprsz = simd_maxsz(desc);
for (row = 0; row < oprsz; ) {
uint16_t pa = pn[H2(row >> 4)];
do {
if (pa & 1) {
void *vza_row = vza + tile_vslice_offset(row);
uint16_t n = *(uint32_t *)(vzn + H1_2(row)) ^ negx;
for (col = 0; col < oprsz; ) {
uint16_t pb = pm[H2(col >> 4)];
do {
if (pb & 1) {
uint16_t *a = vza_row + H1_2(col);
uint16_t *m = vzm + H1_2(col);
*a = float16_muladd(n, *m, *a, negf, fpst);
}
col += 2;
pb >>= 2;
} while (col & 15);
}
}
row += 2;
pa >>= 2;
} while (row & 15);
}
}
void HELPER(sme_fmopa_h)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_fmopa_h(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, 0);
}
void HELPER(sme_fmops_h)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_fmopa_h(vza, vzn, vzm, vpn, vpm, fpst, desc, 1u << 15, 0);
}
void HELPER(sme_ah_fmops_h)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_fmopa_h(vza, vzn, vzm, vpn, vpm, fpst, desc, 0,
float_muladd_negate_product);
}
static void do_fmopa_s(void *vza, void *vzn, void *vzm, uint16_t *pn,
uint16_t *pm, float_status *fpst, uint32_t desc,
uint32_t negx, int negf)
{
intptr_t row, col, oprsz = simd_maxsz(desc);
for (row = 0; row < oprsz; ) {
uint16_t pa = pn[H2(row >> 4)];
do {
if (pa & 1) {
void *vza_row = vza + tile_vslice_offset(row);
uint32_t n = *(uint32_t *)(vzn + H1_4(row)) ^ negx;
for (col = 0; col < oprsz; ) {
uint16_t pb = pm[H2(col >> 4)];
do {
if (pb & 1) {
uint32_t *a = vza_row + H1_4(col);
uint32_t *m = vzm + H1_4(col);
*a = float32_muladd(n, *m, *a, negf, fpst);
}
col += 4;
pb >>= 4;
} while (col & 15);
}
}
row += 4;
pa >>= 4;
} while (row & 15);
}
}
void HELPER(sme_fmopa_s)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_fmopa_s(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, 0);
}
void HELPER(sme_fmops_s)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_fmopa_s(vza, vzn, vzm, vpn, vpm, fpst, desc, 1u << 31, 0);
}
void HELPER(sme_ah_fmops_s)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_fmopa_s(vza, vzn, vzm, vpn, vpm, fpst, desc, 0,
float_muladd_negate_product);
}
static void do_fmopa_d(uint64_t *za, uint64_t *zn, uint64_t *zm, uint8_t *pn,
uint8_t *pm, float_status *fpst, uint32_t desc,
uint64_t negx, int negf)
{
intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
for (row = 0; row < oprsz; ++row) {
if (pn[H1(row)] & 1) {
uint64_t *za_row = &za[tile_vslice_index(row)];
uint64_t n = zn[row] ^ negx;
for (col = 0; col < oprsz; ++col) {
if (pm[H1(col)] & 1) {
uint64_t *a = &za_row[col];
*a = float64_muladd(n, zm[col], *a, negf, fpst);
}
}
}
}
}
void HELPER(sme_fmopa_d)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_fmopa_d(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, 0);
}
void HELPER(sme_fmops_d)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_fmopa_d(vza, vzn, vzm, vpn, vpm, fpst, desc, 1ull << 63, 0);
}
void HELPER(sme_ah_fmops_d)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_fmopa_d(vza, vzn, vzm, vpn, vpm, fpst, desc, 0,
float_muladd_negate_product);
}
static void do_bfmopa(void *vza, void *vzn, void *vzm, uint16_t *pn,
uint16_t *pm, float_status *fpst, uint32_t desc,
uint16_t negx, int negf)
{
intptr_t row, col, oprsz = simd_maxsz(desc);
for (row = 0; row < oprsz; ) {
uint16_t pa = pn[H2(row >> 4)];
do {
if (pa & 1) {
void *vza_row = vza + tile_vslice_offset(row);
uint16_t n = *(uint32_t *)(vzn + H1_2(row)) ^ negx;
for (col = 0; col < oprsz; ) {
uint16_t pb = pm[H2(col >> 4)];
do {
if (pb & 1) {
uint16_t *a = vza_row + H1_2(col);
uint16_t *m = vzm + H1_2(col);
*a = bfloat16_muladd(n, *m, *a, negf, fpst);
}
col += 2;
pb >>= 2;
} while (col & 15);
}
}
row += 2;
pa >>= 2;
} while (row & 15);
}
}
void HELPER(sme_bfmopa)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_bfmopa(vza, vzn, vzm, vpn, vpm, fpst, desc, 0, 0);
}
void HELPER(sme_bfmops)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_bfmopa(vza, vzn, vzm, vpn, vpm, fpst, desc, 1u << 15, 0);
}
void HELPER(sme_ah_bfmops)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, float_status *fpst, uint32_t desc)
{
do_bfmopa(vza, vzn, vzm, vpn, vpm, fpst, desc, 0,
float_muladd_negate_product);
}
/*
* Alter PAIR as needed for controlling predicates being false,
* and for NEG on an enabled row element.
*/
static inline uint32_t f16mop_adj_pair(uint32_t pair, uint32_t pg, uint32_t neg)
{
/*
* The pseudocode uses a conditional negate after the conditional zero.
* It is simpler here to unconditionally negate before conditional zero.
*/
pair ^= neg;
if (!(pg & 1)) {
pair &= 0xffff0000u;
}
if (!(pg & 4)) {
pair &= 0x0000ffffu;
}
return pair;
}
static inline uint32_t f16mop_ah_neg_adj_pair(uint32_t pair, uint32_t pg)
{
uint32_t l = pg & 1 ? float16_ah_chs(pair) : 0;
uint32_t h = pg & 4 ? float16_ah_chs(pair >> 16) : 0;
return l | (h << 16);
}
static inline uint32_t bf16mop_ah_neg_adj_pair(uint32_t pair, uint32_t pg)
{
uint32_t l = pg & 1 ? bfloat16_ah_chs(pair) : 0;
uint32_t h = pg & 4 ? bfloat16_ah_chs(pair >> 16) : 0;
return l | (h << 16);
}
static float32 f16_dotadd(float32 sum, uint32_t e1, uint32_t e2,
float_status *s_f16, float_status *s_std,
float_status *s_odd)
{
/*
* We need three different float_status for different parts of this
* operation:
* - the input conversion of the float16 values must use the
* f16-specific float_status, so that the FPCR.FZ16 control is applied
* - operations on float32 including the final accumulation must use
* the normal float_status, so that FPCR.FZ is applied
* - we have pre-set-up copy of s_std which is set to round-to-odd,
* for the multiply (see below)
*/
float16 h1r = e1 & 0xffff;
float16 h1c = e1 >> 16;
float16 h2r = e2 & 0xffff;
float16 h2c = e2 >> 16;
float32 t32;
/* C.f. FPProcessNaNs4 */
if (float16_is_any_nan(h1r) || float16_is_any_nan(h1c) ||
float16_is_any_nan(h2r) || float16_is_any_nan(h2c)) {
float16 t16;
if (float16_is_signaling_nan(h1r, s_f16)) {
t16 = h1r;
} else if (float16_is_signaling_nan(h1c, s_f16)) {
t16 = h1c;
} else if (float16_is_signaling_nan(h2r, s_f16)) {
t16 = h2r;
} else if (float16_is_signaling_nan(h2c, s_f16)) {
t16 = h2c;
} else if (float16_is_any_nan(h1r)) {
t16 = h1r;
} else if (float16_is_any_nan(h1c)) {
t16 = h1c;
} else if (float16_is_any_nan(h2r)) {
t16 = h2r;
} else {
t16 = h2c;
}
t32 = float16_to_float32(t16, true, s_f16);
} else {
float64 e1r = float16_to_float64(h1r, true, s_f16);
float64 e1c = float16_to_float64(h1c, true, s_f16);
float64 e2r = float16_to_float64(h2r, true, s_f16);
float64 e2c = float16_to_float64(h2c, true, s_f16);
float64 t64;
/*
* The ARM pseudocode function FPDot performs both multiplies
* and the add with a single rounding operation. Emulate this
* by performing the first multiply in round-to-odd, then doing
* the second multiply as fused multiply-add, and rounding to
* float32 all in one step.
*/
t64 = float64_mul(e1r, e2r, s_odd);
t64 = float64r32_muladd(e1c, e2c, t64, 0, s_std);
/* This conversion is exact, because we've already rounded. */
t32 = float64_to_float32(t64, s_std);
}
/* The final accumulation step is not fused. */
return float32_add(sum, t32, s_std);
}
static void do_fmopa_w_h(void *vza, void *vzn, void *vzm, uint16_t *pn,
uint16_t *pm, CPUARMState *env, uint32_t desc,
uint32_t negx, bool ah_neg)
{
intptr_t row, col, oprsz = simd_maxsz(desc);
float_status fpst_odd = env->vfp.fp_status[FPST_ZA];
set_float_rounding_mode(float_round_to_odd, &fpst_odd);
for (row = 0; row < oprsz; ) {
uint16_t prow = pn[H2(row >> 4)];
do {
void *vza_row = vza + tile_vslice_offset(row);
uint32_t n = *(uint32_t *)(vzn + H1_4(row));
if (ah_neg) {
n = f16mop_ah_neg_adj_pair(n, prow);
} else {
n = f16mop_adj_pair(n, prow, negx);
}
for (col = 0; col < oprsz; ) {
uint16_t pcol = pm[H2(col >> 4)];
do {
if (prow & pcol & 0b0101) {
uint32_t *a = vza_row + H1_4(col);
uint32_t m = *(uint32_t *)(vzm + H1_4(col));
m = f16mop_adj_pair(m, pcol, 0);
*a = f16_dotadd(*a, n, m,
&env->vfp.fp_status[FPST_ZA_F16],
&env->vfp.fp_status[FPST_ZA],
&fpst_odd);
}
col += 4;
pcol >>= 4;
} while (col & 15);
}
row += 4;
prow >>= 4;
} while (row & 15);
}
}
void HELPER(sme_fmopa_w_h)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, CPUARMState *env, uint32_t desc)
{
do_fmopa_w_h(vza, vzn, vzm, vpn, vpm, env, desc, 0, false);
}
void HELPER(sme_fmops_w_h)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, CPUARMState *env, uint32_t desc)
{
do_fmopa_w_h(vza, vzn, vzm, vpn, vpm, env, desc, 0x80008000u, false);
}
void HELPER(sme_ah_fmops_w_h)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, CPUARMState *env, uint32_t desc)
{
do_fmopa_w_h(vza, vzn, vzm, vpn, vpm, env, desc, 0, true);
}
void HELPER(sme2_fdot_h)(void *vd, void *vn, void *vm, void *va,
CPUARMState *env, uint32_t desc)
{
intptr_t i, oprsz = simd_maxsz(desc);
bool za = extract32(desc, SIMD_DATA_SHIFT, 1);
float_status *fpst_std = &env->vfp.fp_status[za ? FPST_ZA : FPST_A64];
float_status *fpst_f16 = &env->vfp.fp_status[za ? FPST_ZA_F16 : FPST_A64_F16];
float_status fpst_odd = *fpst_std;
float32 *d = vd, *a = va;
uint32_t *n = vn, *m = vm;
set_float_rounding_mode(float_round_to_odd, &fpst_odd);
for (i = 0; i < oprsz / sizeof(float32); ++i) {
d[H4(i)] = f16_dotadd(a[H4(i)], n[H4(i)], m[H4(i)],
fpst_f16, fpst_std, &fpst_odd);
}
}
void HELPER(sme2_fdot_idx_h)(void *vd, void *vn, void *vm, void *va,
CPUARMState *env, uint32_t desc)
{
intptr_t i, j, oprsz = simd_maxsz(desc);
intptr_t elements = oprsz / sizeof(float32);
intptr_t eltspersegment = MIN(4, elements);
int idx = extract32(desc, SIMD_DATA_SHIFT, 2);
bool za = extract32(desc, SIMD_DATA_SHIFT + 2, 1);
float_status *fpst_std = &env->vfp.fp_status[za ? FPST_ZA : FPST_A64];
float_status *fpst_f16 = &env->vfp.fp_status[za ? FPST_ZA_F16 : FPST_A64_F16];
float_status fpst_odd = *fpst_std;
float32 *d = vd, *a = va;
uint32_t *n = vn, *m = (uint32_t *)vm + H4(idx);
set_float_rounding_mode(float_round_to_odd, &fpst_odd);
for (i = 0; i < elements; i += eltspersegment) {
uint32_t mm = m[i];
for (j = 0; j < eltspersegment; ++j) {
d[H4(i + j)] = f16_dotadd(a[H4(i + j)], n[H4(i + j)], mm,
fpst_f16, fpst_std, &fpst_odd);
}
}
}
void HELPER(sme2_fvdot_idx_h)(void *vd, void *vn, void *vm, void *va,
CPUARMState *env, uint32_t desc)
{
intptr_t i, j, oprsz = simd_maxsz(desc);
intptr_t elements = oprsz / sizeof(float32);
intptr_t eltspersegment = MIN(4, elements);
int idx = extract32(desc, SIMD_DATA_SHIFT, 2);
int sel = extract32(desc, SIMD_DATA_SHIFT + 2, 1);
float_status fpst_odd, *fpst_std, *fpst_f16;
float32 *d = vd, *a = va;
uint16_t *n0 = vn;
uint16_t *n1 = vn + sizeof(ARMVectorReg);
uint32_t *m = (uint32_t *)vm + H4(idx);
fpst_std = &env->vfp.fp_status[FPST_ZA];
fpst_f16 = &env->vfp.fp_status[FPST_ZA_F16];
fpst_odd = *fpst_std;
set_float_rounding_mode(float_round_to_odd, &fpst_odd);
for (i = 0; i < elements; i += eltspersegment) {
uint32_t mm = m[i];
for (j = 0; j < eltspersegment; ++j) {
uint32_t nn = (n0[H2(2 * (i + j) + sel)])
| (n1[H2(2 * (i + j) + sel)] << 16);
d[i + H4(j)] = f16_dotadd(a[i + H4(j)], nn, mm,
fpst_f16, fpst_std, &fpst_odd);
}
}
}
static void do_bfmopa_w(void *vza, void *vzn, void *vzm,
uint16_t *pn, uint16_t *pm, CPUARMState *env,
uint32_t desc, uint32_t negx, bool ah_neg)
{
intptr_t row, col, oprsz = simd_maxsz(desc);
float_status fpst, fpst_odd;
if (is_ebf(env, &fpst, &fpst_odd)) {
for (row = 0; row < oprsz; ) {
uint16_t prow = pn[H2(row >> 4)];
do {
void *vza_row = vza + tile_vslice_offset(row);
uint32_t n = *(uint32_t *)(vzn + H1_4(row));
if (ah_neg) {
n = bf16mop_ah_neg_adj_pair(n, prow);
} else {
n = f16mop_adj_pair(n, prow, negx);
}
for (col = 0; col < oprsz; ) {
uint16_t pcol = pm[H2(col >> 4)];
do {
if (prow & pcol & 0b0101) {
uint32_t *a = vza_row + H1_4(col);
uint32_t m = *(uint32_t *)(vzm + H1_4(col));
m = f16mop_adj_pair(m, pcol, 0);
*a = bfdotadd_ebf(*a, n, m, &fpst, &fpst_odd);
}
col += 4;
pcol >>= 4;
} while (col & 15);
}
row += 4;
prow >>= 4;
} while (row & 15);
}
} else {
for (row = 0; row < oprsz; ) {
uint16_t prow = pn[H2(row >> 4)];
do {
void *vza_row = vza + tile_vslice_offset(row);
uint32_t n = *(uint32_t *)(vzn + H1_4(row));
if (ah_neg) {
n = bf16mop_ah_neg_adj_pair(n, prow);
} else {
n = f16mop_adj_pair(n, prow, negx);
}
for (col = 0; col < oprsz; ) {
uint16_t pcol = pm[H2(col >> 4)];
do {
if (prow & pcol & 0b0101) {
uint32_t *a = vza_row + H1_4(col);
uint32_t m = *(uint32_t *)(vzm + H1_4(col));
m = f16mop_adj_pair(m, pcol, 0);
*a = bfdotadd(*a, n, m, &fpst);
}
col += 4;
pcol >>= 4;
} while (col & 15);
}
row += 4;
prow >>= 4;
} while (row & 15);
}
}
}
void HELPER(sme_bfmopa_w)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, CPUARMState *env, uint32_t desc)
{
do_bfmopa_w(vza, vzn, vzm, vpn, vpm, env, desc, 0, false);
}
void HELPER(sme_bfmops_w)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, CPUARMState *env, uint32_t desc)
{
do_bfmopa_w(vza, vzn, vzm, vpn, vpm, env, desc, 0x80008000u, false);
}
void HELPER(sme_ah_bfmops_w)(void *vza, void *vzn, void *vzm, void *vpn,
void *vpm, CPUARMState *env, uint32_t desc)
{
do_bfmopa_w(vza, vzn, vzm, vpn, vpm, env, desc, 0, true);
}
typedef uint32_t IMOPFn32(uint32_t, uint32_t, uint32_t, uint8_t, bool);
static inline void do_imopa_s(uint32_t *za, uint32_t *zn, uint32_t *zm,
uint8_t *pn, uint8_t *pm,
uint32_t desc, IMOPFn32 *fn)
{
intptr_t row, col, oprsz = simd_oprsz(desc) / 4;
bool neg = simd_data(desc);
for (row = 0; row < oprsz; ++row) {
uint8_t pa = (pn[H1(row >> 1)] >> ((row & 1) * 4)) & 0xf;
uint32_t *za_row = &za[tile_vslice_index(row)];
uint32_t n = zn[H4(row)];
for (col = 0; col < oprsz; ++col) {
uint8_t pb = pm[H1(col >> 1)] >> ((col & 1) * 4);
uint32_t *a = &za_row[H4(col)];
*a = fn(n, zm[H4(col)], *a, pa & pb, neg);
}
}
}
typedef uint64_t IMOPFn64(uint64_t, uint64_t, uint64_t, uint8_t, bool);
static inline void do_imopa_d(uint64_t *za, uint64_t *zn, uint64_t *zm,
uint8_t *pn, uint8_t *pm,
uint32_t desc, IMOPFn64 *fn)
{
intptr_t row, col, oprsz = simd_oprsz(desc) / 8;
bool neg = simd_data(desc);
for (row = 0; row < oprsz; ++row) {
uint8_t pa = pn[H1(row)];
uint64_t *za_row = &za[tile_vslice_index(row)];
uint64_t n = zn[row];
for (col = 0; col < oprsz; ++col) {
uint8_t pb = pm[H1(col)];
uint64_t *a = &za_row[col];
*a = fn(n, zm[col], *a, pa & pb, neg);
}
}
}
#define DEF_IMOP_8x4_32(NAME, NTYPE, MTYPE) \
static uint32_t NAME(uint32_t n, uint32_t m, uint32_t a, uint8_t p, bool neg) \
{ \
uint32_t sum = 0; \
/* Apply P to N as a mask, making the inactive elements 0. */ \
n &= expand_pred_b(p); \
sum += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \
sum += (NTYPE)(n >> 8) * (MTYPE)(m >> 8); \
sum += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \
sum += (NTYPE)(n >> 24) * (MTYPE)(m >> 24); \
return neg ? a - sum : a + sum; \
}
#define DEF_IMOP_16x4_64(NAME, NTYPE, MTYPE) \
static uint64_t NAME(uint64_t n, uint64_t m, uint64_t a, uint8_t p, bool neg) \
{ \
uint64_t sum = 0; \
/* Apply P to N as a mask, making the inactive elements 0. */ \
n &= expand_pred_h(p); \
sum += (int64_t)(NTYPE)(n >> 0) * (MTYPE)(m >> 0); \
sum += (int64_t)(NTYPE)(n >> 16) * (MTYPE)(m >> 16); \
sum += (int64_t)(NTYPE)(n >> 32) * (MTYPE)(m >> 32); \
sum += (int64_t)(NTYPE)(n >> 48) * (MTYPE)(m >> 48); \
return neg ? a - sum : a + sum; \
}
DEF_IMOP_8x4_32(smopa_s, int8_t, int8_t)
DEF_IMOP_8x4_32(umopa_s, uint8_t, uint8_t)
DEF_IMOP_8x4_32(sumopa_s, int8_t, uint8_t)
DEF_IMOP_8x4_32(usmopa_s, uint8_t, int8_t)
DEF_IMOP_16x4_64(smopa_d, int16_t, int16_t)
DEF_IMOP_16x4_64(umopa_d, uint16_t, uint16_t)
DEF_IMOP_16x4_64(sumopa_d, int16_t, uint16_t)
DEF_IMOP_16x4_64(usmopa_d, uint16_t, int16_t)
#define DEF_IMOPH(P, NAME, S) \
void HELPER(P##_##NAME##_##S)(void *vza, void *vzn, void *vzm, \
void *vpn, void *vpm, uint32_t desc) \
{ do_imopa_##S(vza, vzn, vzm, vpn, vpm, desc, NAME##_##S); }
DEF_IMOPH(sme, smopa, s)
DEF_IMOPH(sme, umopa, s)
DEF_IMOPH(sme, sumopa, s)
DEF_IMOPH(sme, usmopa, s)
DEF_IMOPH(sme, smopa, d)
DEF_IMOPH(sme, umopa, d)
DEF_IMOPH(sme, sumopa, d)
DEF_IMOPH(sme, usmopa, d)
static uint32_t bmopa_s(uint32_t n, uint32_t m, uint32_t a, uint8_t p, bool neg)
{
uint32_t sum = ctpop32(~(n ^ m));
if (neg) {
sum = -sum;
}
if (!(p & 1)) {
sum = 0;
}
return a + sum;
}
DEF_IMOPH(sme2, bmopa, s)
#define DEF_IMOP_16x2_32(NAME, NTYPE, MTYPE) \
static uint32_t NAME(uint32_t n, uint32_t m, uint32_t a, uint8_t p, bool neg) \
{ \
uint32_t sum = 0; \
/* Apply P to N as a mask, making the inactive elements 0. */ \
n &= expand_pred_h(p); \
sum += (NTYPE)(n >> 0) * (MTYPE)(m >> 0); \
sum += (NTYPE)(n >> 16) * (MTYPE)(m >> 16); \
return neg ? a - sum : a + sum; \
}
DEF_IMOP_16x2_32(smopa2_s, int16_t, int16_t)
DEF_IMOP_16x2_32(umopa2_s, uint16_t, uint16_t)
DEF_IMOPH(sme2, smopa2, s)
DEF_IMOPH(sme2, umopa2, s)
#define DO_VDOT_IDX(NAME, TYPED, TYPEN, TYPEM, HD, HN) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
intptr_t svl = simd_oprsz(desc); \
intptr_t elements = svl / sizeof(TYPED); \
intptr_t eltperseg = 16 / sizeof(TYPED); \
intptr_t nreg = sizeof(TYPED) / sizeof(TYPEN); \
intptr_t vstride = (svl / nreg) * sizeof(ARMVectorReg); \
intptr_t zstride = sizeof(ARMVectorReg) / sizeof(TYPEN); \
intptr_t idx = extract32(desc, SIMD_DATA_SHIFT, 2); \
TYPEN *n = vn; \
TYPEM *m = vm; \
for (intptr_t r = 0; r < nreg; r++) { \
TYPED *d = vd + r * vstride; \
for (intptr_t seg = 0; seg < elements; seg += eltperseg) { \
intptr_t s = seg + idx; \
for (intptr_t e = seg; e < seg + eltperseg; e++) { \
TYPED sum = d[HD(e)]; \
for (intptr_t i = 0; i < nreg; i++) { \
TYPED nn = n[i * zstride + HN(nreg * e + r)]; \
TYPED mm = m[HN(nreg * s + i)]; \
sum += nn * mm; \
} \
d[HD(e)] = sum; \
} \
} \
} \
}
DO_VDOT_IDX(sme2_svdot_idx_4b, int32_t, int8_t, int8_t, H4, H1)
DO_VDOT_IDX(sme2_uvdot_idx_4b, uint32_t, uint8_t, uint8_t, H4, H1)
DO_VDOT_IDX(sme2_suvdot_idx_4b, int32_t, int8_t, uint8_t, H4, H1)
DO_VDOT_IDX(sme2_usvdot_idx_4b, int32_t, uint8_t, int8_t, H4, H1)
DO_VDOT_IDX(sme2_svdot_idx_4h, int64_t, int16_t, int16_t, H8, H2)
DO_VDOT_IDX(sme2_uvdot_idx_4h, uint64_t, uint16_t, uint16_t, H8, H2)
DO_VDOT_IDX(sme2_svdot_idx_2h, int32_t, int16_t, int16_t, H4, H2)
DO_VDOT_IDX(sme2_uvdot_idx_2h, uint32_t, uint16_t, uint16_t, H4, H2)
#undef DO_VDOT_IDX
#define DO_MLALL(NAME, TYPEW, TYPEN, TYPEM, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t elements = simd_oprsz(desc) / sizeof(TYPEW); \
intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 2); \
TYPEW *d = vd, *a = va; TYPEN *n = vn; TYPEM *m = vm; \
for (intptr_t i = 0; i < elements; ++i) { \
TYPEW nn = n[HN(i * 4 + sel)]; \
TYPEM mm = m[HN(i * 4 + sel)]; \
d[HW(i)] = a[HW(i)] OP (nn * mm); \
} \
}
DO_MLALL(sme2_smlall_s, int32_t, int8_t, int8_t, H4, H1, +)
DO_MLALL(sme2_smlall_d, int64_t, int16_t, int16_t, H8, H2, +)
DO_MLALL(sme2_smlsll_s, int32_t, int8_t, int8_t, H4, H1, -)
DO_MLALL(sme2_smlsll_d, int64_t, int16_t, int16_t, H8, H2, -)
DO_MLALL(sme2_umlall_s, uint32_t, uint8_t, uint8_t, H4, H1, +)
DO_MLALL(sme2_umlall_d, uint64_t, uint16_t, uint16_t, H8, H2, +)
DO_MLALL(sme2_umlsll_s, uint32_t, uint8_t, uint8_t, H4, H1, -)
DO_MLALL(sme2_umlsll_d, uint64_t, uint16_t, uint16_t, H8, H2, -)
DO_MLALL(sme2_usmlall_s, uint32_t, uint8_t, int8_t, H4, H1, +)
#undef DO_MLALL
#define DO_MLALL_IDX(NAME, TYPEW, TYPEN, TYPEM, HW, HN, OP) \
void HELPER(NAME)(void *vd, void *vn, void *vm, void *va, uint32_t desc) \
{ \
intptr_t elements = simd_oprsz(desc) / sizeof(TYPEW); \
intptr_t eltspersegment = 16 / sizeof(TYPEW); \
intptr_t sel = extract32(desc, SIMD_DATA_SHIFT, 2); \
intptr_t idx = extract32(desc, SIMD_DATA_SHIFT + 2, 4); \
TYPEW *d = vd, *a = va; TYPEN *n = vn; TYPEM *m = vm; \
for (intptr_t i = 0; i < elements; i += eltspersegment) { \
TYPEW mm = m[HN(i * 4 + idx)]; \
for (intptr_t j = 0; j < eltspersegment; ++j) { \
TYPEN nn = n[HN((i + j) * 4 + sel)]; \
d[HW(i + j)] = a[HW(i + j)] OP (nn * mm); \
} \
} \
}
DO_MLALL_IDX(sme2_smlall_idx_s, int32_t, int8_t, int8_t, H4, H1, +)
DO_MLALL_IDX(sme2_smlall_idx_d, int64_t, int16_t, int16_t, H8, H2, +)
DO_MLALL_IDX(sme2_smlsll_idx_s, int32_t, int8_t, int8_t, H4, H1, -)
DO_MLALL_IDX(sme2_smlsll_idx_d, int64_t, int16_t, int16_t, H8, H2, -)
DO_MLALL_IDX(sme2_umlall_idx_s, uint32_t, uint8_t, uint8_t, H4, H1, +)
DO_MLALL_IDX(sme2_umlall_idx_d, uint64_t, uint16_t, uint16_t, H8, H2, +)
DO_MLALL_IDX(sme2_umlsll_idx_s, uint32_t, uint8_t, uint8_t, H4, H1, -)
DO_MLALL_IDX(sme2_umlsll_idx_d, uint64_t, uint16_t, uint16_t, H8, H2, -)
DO_MLALL_IDX(sme2_usmlall_idx_s, uint32_t, uint8_t, int8_t, H4, H1, +)
DO_MLALL_IDX(sme2_sumlall_idx_s, uint32_t, int8_t, uint8_t, H4, H1, +)
#undef DO_MLALL_IDX
/* Convert and compress */
void HELPER(sme2_bfcvt)(void *vd, void *vs, float_status *fpst, uint32_t desc)
{
ARMVectorReg scratch;
size_t oprsz = simd_oprsz(desc);
size_t i, n = oprsz / 4;
float32 *s0 = vs;
float32 *s1 = vs + sizeof(ARMVectorReg);
bfloat16 *d = vd;
if (vd == s1) {
s1 = memcpy(&scratch, s1, oprsz);
}
for (i = 0; i < n; ++i) {
d[H2(i)] = float32_to_bfloat16(s0[H4(i)], fpst);
}
for (i = 0; i < n; ++i) {
d[H2(i) + n] = float32_to_bfloat16(s1[H4(i)], fpst);
}
}
void HELPER(sme2_fcvt_n)(void *vd, void *vs, float_status *fpst, uint32_t desc)
{
ARMVectorReg scratch;
size_t oprsz = simd_oprsz(desc);
size_t i, n = oprsz / 4;
float32 *s0 = vs;
float32 *s1 = vs + sizeof(ARMVectorReg);
float16 *d = vd;
if (vd == s1) {
s1 = memcpy(&scratch, s1, oprsz);
}
for (i = 0; i < n; ++i) {
d[H2(i)] = sve_f32_to_f16(s0[H4(i)], fpst);
}
for (i = 0; i < n; ++i) {
d[H2(i) + n] = sve_f32_to_f16(s1[H4(i)], fpst);
}
}
#define SQCVT2(NAME, TW, TN, HW, HN, SAT) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch; \
size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \
TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \
TN *d = vd; \
if (vectors_overlap(vd, 1, vs, 2)) { \
d = (TN *)&scratch; \
} \
for (size_t i = 0; i < n; ++i) { \
d[HN(i)] = SAT(s0[HW(i)]); \
d[HN(i + n)] = SAT(s1[HW(i)]); \
} \
if (d != vd) { \
memcpy(vd, d, oprsz); \
} \
}
SQCVT2(sme2_sqcvt_sh, int32_t, int16_t, H4, H2, do_ssat_h)
SQCVT2(sme2_uqcvt_sh, uint32_t, uint16_t, H4, H2, do_usat_h)
SQCVT2(sme2_sqcvtu_sh, int32_t, uint16_t, H4, H2, do_usat_h)
#undef SQCVT2
#define SQCVT4(NAME, TW, TN, HW, HN, SAT) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch; \
size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \
TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \
TW *s2 = vs + 2 * sizeof(ARMVectorReg); \
TW *s3 = vs + 3 * sizeof(ARMVectorReg); \
TN *d = vd; \
if (vectors_overlap(vd, 1, vs, 4)) { \
d = (TN *)&scratch; \
} \
for (size_t i = 0; i < n; ++i) { \
d[HN(i)] = SAT(s0[HW(i)]); \
d[HN(i + n)] = SAT(s1[HW(i)]); \
d[HN(i + 2 * n)] = SAT(s2[HW(i)]); \
d[HN(i + 3 * n)] = SAT(s3[HW(i)]); \
} \
if (d != vd) { \
memcpy(vd, d, oprsz); \
} \
}
SQCVT4(sme2_sqcvt_sb, int32_t, int8_t, H4, H2, do_ssat_b)
SQCVT4(sme2_uqcvt_sb, uint32_t, uint8_t, H4, H2, do_usat_b)
SQCVT4(sme2_sqcvtu_sb, int32_t, uint8_t, H4, H2, do_usat_b)
SQCVT4(sme2_sqcvt_dh, int64_t, int16_t, H8, H2, do_ssat_h)
SQCVT4(sme2_uqcvt_dh, uint64_t, uint16_t, H8, H2, do_usat_h)
SQCVT4(sme2_sqcvtu_dh, int64_t, uint16_t, H8, H2, do_usat_h)
#undef SQCVT4
#define SQRSHR2(NAME, TW, TN, HW, HN, RSHR, SAT) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch; \
size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \
int shift = simd_data(desc); \
TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \
TN *d = vd; \
if (vectors_overlap(vd, 1, vs, 2)) { \
d = (TN *)&scratch; \
} \
for (size_t i = 0; i < n; ++i) { \
d[HN(i)] = SAT(RSHR(s0[HW(i)], shift)); \
d[HN(i + n)] = SAT(RSHR(s1[HW(i)], shift)); \
} \
if (d != vd) { \
memcpy(vd, d, oprsz); \
} \
}
SQRSHR2(sme2_sqrshr_sh, int32_t, int16_t, H4, H2, do_srshr, do_ssat_h)
SQRSHR2(sme2_uqrshr_sh, uint32_t, uint16_t, H4, H2, do_urshr, do_usat_h)
SQRSHR2(sme2_sqrshru_sh, int32_t, uint16_t, H4, H2, do_srshr, do_usat_h)
#undef SQRSHR2
#define SQRSHR4(NAME, TW, TN, HW, HN, RSHR, SAT) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch; \
size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \
int shift = simd_data(desc); \
TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \
TW *s2 = vs + 2 * sizeof(ARMVectorReg); \
TW *s3 = vs + 3 * sizeof(ARMVectorReg); \
TN *d = vd; \
if (vectors_overlap(vd, 1, vs, 4)) { \
d = (TN *)&scratch; \
} \
for (size_t i = 0; i < n; ++i) { \
d[HN(i)] = SAT(RSHR(s0[HW(i)], shift)); \
d[HN(i + n)] = SAT(RSHR(s1[HW(i)], shift)); \
d[HN(i + 2 * n)] = SAT(RSHR(s2[HW(i)], shift)); \
d[HN(i + 3 * n)] = SAT(RSHR(s3[HW(i)], shift)); \
} \
if (d != vd) { \
memcpy(vd, d, oprsz); \
} \
}
SQRSHR4(sme2_sqrshr_sb, int32_t, int8_t, H4, H2, do_srshr, do_ssat_b)
SQRSHR4(sme2_uqrshr_sb, uint32_t, uint8_t, H4, H2, do_urshr, do_usat_b)
SQRSHR4(sme2_sqrshru_sb, int32_t, uint8_t, H4, H2, do_srshr, do_usat_b)
SQRSHR4(sme2_sqrshr_dh, int64_t, int16_t, H8, H2, do_srshr, do_ssat_h)
SQRSHR4(sme2_uqrshr_dh, uint64_t, uint16_t, H8, H2, do_urshr, do_usat_h)
SQRSHR4(sme2_sqrshru_dh, int64_t, uint16_t, H8, H2, do_srshr, do_usat_h)
#undef SQRSHR4
/* Convert and interleave */
void HELPER(sme2_bfcvtn)(void *vd, void *vs, float_status *fpst, uint32_t desc)
{
size_t i, n = simd_oprsz(desc) / 4;
float32 *s0 = vs;
float32 *s1 = vs + sizeof(ARMVectorReg);
bfloat16 *d = vd;
for (i = 0; i < n; ++i) {
bfloat16 d0 = float32_to_bfloat16(s0[H4(i)], fpst);
bfloat16 d1 = float32_to_bfloat16(s1[H4(i)], fpst);
d[H2(i * 2 + 0)] = d0;
d[H2(i * 2 + 1)] = d1;
}
}
void HELPER(sme2_fcvtn)(void *vd, void *vs, float_status *fpst, uint32_t desc)
{
size_t i, n = simd_oprsz(desc) / 4;
float32 *s0 = vs;
float32 *s1 = vs + sizeof(ARMVectorReg);
bfloat16 *d = vd;
for (i = 0; i < n; ++i) {
bfloat16 d0 = sve_f32_to_f16(s0[H4(i)], fpst);
bfloat16 d1 = sve_f32_to_f16(s1[H4(i)], fpst);
d[H2(i * 2 + 0)] = d0;
d[H2(i * 2 + 1)] = d1;
}
}
#define SQCVTN2(NAME, TW, TN, HW, HN, SAT) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch; \
size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \
TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \
TN *d = vd; \
if (vectors_overlap(vd, 1, vs, 2)) { \
d = (TN *)&scratch; \
} \
for (size_t i = 0; i < n; ++i) { \
d[HN(2 * i + 0)] = SAT(s0[HW(i)]); \
d[HN(2 * i + 1)] = SAT(s1[HW(i)]); \
} \
if (d != vd) { \
memcpy(vd, d, oprsz); \
} \
}
SQCVTN2(sme2_sqcvtn_sh, int32_t, int16_t, H4, H2, do_ssat_h)
SQCVTN2(sme2_uqcvtn_sh, uint32_t, uint16_t, H4, H2, do_usat_h)
SQCVTN2(sme2_sqcvtun_sh, int32_t, uint16_t, H4, H2, do_usat_h)
#undef SQCVTN2
#define SQCVTN4(NAME, TW, TN, HW, HN, SAT) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch; \
size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \
TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \
TW *s2 = vs + 2 * sizeof(ARMVectorReg); \
TW *s3 = vs + 3 * sizeof(ARMVectorReg); \
TN *d = vd; \
if (vectors_overlap(vd, 1, vs, 4)) { \
d = (TN *)&scratch; \
} \
for (size_t i = 0; i < n; ++i) { \
d[HN(4 * i + 0)] = SAT(s0[HW(i)]); \
d[HN(4 * i + 1)] = SAT(s1[HW(i)]); \
d[HN(4 * i + 2)] = SAT(s2[HW(i)]); \
d[HN(4 * i + 3)] = SAT(s3[HW(i)]); \
} \
if (d != vd) { \
memcpy(vd, d, oprsz); \
} \
}
SQCVTN4(sme2_sqcvtn_sb, int32_t, int8_t, H4, H1, do_ssat_b)
SQCVTN4(sme2_uqcvtn_sb, uint32_t, uint8_t, H4, H1, do_usat_b)
SQCVTN4(sme2_sqcvtun_sb, int32_t, uint8_t, H4, H1, do_usat_b)
SQCVTN4(sme2_sqcvtn_dh, int64_t, int16_t, H8, H2, do_ssat_h)
SQCVTN4(sme2_uqcvtn_dh, uint64_t, uint16_t, H8, H2, do_usat_h)
SQCVTN4(sme2_sqcvtun_dh, int64_t, uint16_t, H8, H2, do_usat_h)
#undef SQCVTN4
#define SQRSHRN2(NAME, TW, TN, HW, HN, RSHR, SAT) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch; \
size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \
int shift = simd_data(desc); \
TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \
TN *d = vd; \
if (vectors_overlap(vd, 1, vs, 2)) { \
d = (TN *)&scratch; \
} \
for (size_t i = 0; i < n; ++i) { \
d[HN(2 * i + 0)] = SAT(RSHR(s0[HW(i)], shift)); \
d[HN(2 * i + 1)] = SAT(RSHR(s1[HW(i)], shift)); \
} \
if (d != vd) { \
memcpy(vd, d, oprsz); \
} \
}
SQRSHRN2(sme2_sqrshrn_sh, int32_t, int16_t, H4, H2, do_srshr, do_ssat_h)
SQRSHRN2(sme2_uqrshrn_sh, uint32_t, uint16_t, H4, H2, do_urshr, do_usat_h)
SQRSHRN2(sme2_sqrshrun_sh, int32_t, uint16_t, H4, H2, do_srshr, do_usat_h)
#undef SQRSHRN2
#define SQRSHRN4(NAME, TW, TN, HW, HN, RSHR, SAT) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch; \
size_t oprsz = simd_oprsz(desc), n = oprsz / sizeof(TW); \
int shift = simd_data(desc); \
TW *s0 = vs, *s1 = vs + sizeof(ARMVectorReg); \
TW *s2 = vs + 2 * sizeof(ARMVectorReg); \
TW *s3 = vs + 3 * sizeof(ARMVectorReg); \
TN *d = vd; \
if (vectors_overlap(vd, 1, vs, 4)) { \
d = (TN *)&scratch; \
} \
for (size_t i = 0; i < n; ++i) { \
d[HN(4 * i + 0)] = SAT(RSHR(s0[HW(i)], shift)); \
d[HN(4 * i + 1)] = SAT(RSHR(s1[HW(i)], shift)); \
d[HN(4 * i + 2)] = SAT(RSHR(s2[HW(i)], shift)); \
d[HN(4 * i + 3)] = SAT(RSHR(s3[HW(i)], shift)); \
} \
if (d != vd) { \
memcpy(vd, d, oprsz); \
} \
}
SQRSHRN4(sme2_sqrshrn_sb, int32_t, int8_t, H4, H1, do_srshr, do_ssat_b)
SQRSHRN4(sme2_uqrshrn_sb, uint32_t, uint8_t, H4, H1, do_urshr, do_usat_b)
SQRSHRN4(sme2_sqrshrun_sb, int32_t, uint8_t, H4, H1, do_srshr, do_usat_b)
SQRSHRN4(sme2_sqrshrn_dh, int64_t, int16_t, H8, H2, do_srshr, do_ssat_h)
SQRSHRN4(sme2_uqrshrn_dh, uint64_t, uint16_t, H8, H2, do_urshr, do_usat_h)
SQRSHRN4(sme2_sqrshrun_dh, int64_t, uint16_t, H8, H2, do_srshr, do_usat_h)
#undef SQRSHRN4
/* Expand and convert */
void HELPER(sme2_fcvt_w)(void *vd, void *vs, float_status *fpst, uint32_t desc)
{
ARMVectorReg scratch;
size_t oprsz = simd_oprsz(desc);
size_t i, n = oprsz / 4;
float16 *s = vs;
float32 *d0 = vd;
float32 *d1 = vd + sizeof(ARMVectorReg);
if (vectors_overlap(vd, 1, vs, 2)) {
s = memcpy(&scratch, s, oprsz);
}
for (i = 0; i < n; ++i) {
d0[H4(i)] = sve_f16_to_f32(s[H2(i)], fpst);
}
for (i = 0; i < n; ++i) {
d1[H4(i)] = sve_f16_to_f32(s[H2(n + i)], fpst);
}
}
#define UNPK(NAME, SREG, TW, TN, HW, HN) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch[SREG]; \
size_t oprsz = simd_oprsz(desc); \
size_t n = oprsz / sizeof(TW); \
if (vectors_overlap(vd, 2 * SREG, vs, SREG)) { \
vs = memcpy(scratch, vs, sizeof(scratch)); \
} \
for (size_t r = 0; r < SREG; ++r) { \
TN *s = vs + r * sizeof(ARMVectorReg); \
for (size_t i = 0; i < 2; ++i) { \
TW *d = vd + (2 * r + i) * sizeof(ARMVectorReg); \
for (size_t e = 0; e < n; ++e) { \
d[HW(e)] = s[HN(i * n + e)]; \
} \
} \
} \
}
UNPK(sme2_sunpk2_bh, 1, int16_t, int8_t, H2, H1)
UNPK(sme2_sunpk2_hs, 1, int32_t, int16_t, H4, H2)
UNPK(sme2_sunpk2_sd, 1, int64_t, int32_t, H8, H4)
UNPK(sme2_sunpk4_bh, 2, int16_t, int8_t, H2, H1)
UNPK(sme2_sunpk4_hs, 2, int32_t, int16_t, H4, H2)
UNPK(sme2_sunpk4_sd, 2, int64_t, int32_t, H8, H4)
UNPK(sme2_uunpk2_bh, 1, uint16_t, uint8_t, H2, H1)
UNPK(sme2_uunpk2_hs, 1, uint32_t, uint16_t, H4, H2)
UNPK(sme2_uunpk2_sd, 1, uint64_t, uint32_t, H8, H4)
UNPK(sme2_uunpk4_bh, 2, uint16_t, uint8_t, H2, H1)
UNPK(sme2_uunpk4_hs, 2, uint32_t, uint16_t, H4, H2)
UNPK(sme2_uunpk4_sd, 2, uint64_t, uint32_t, H8, H4)
#undef UNPK
/* Deinterleave and convert. */
void HELPER(sme2_fcvtl)(void *vd, void *vs, float_status *fpst, uint32_t desc)
{
size_t i, n = simd_oprsz(desc) / 4;
float16 *s = vs;
float32 *d0 = vd;
float32 *d1 = vd + sizeof(ARMVectorReg);
for (i = 0; i < n; ++i) {
float32 v0 = sve_f16_to_f32(s[H2(i * 2 + 0)], fpst);
float32 v1 = sve_f16_to_f32(s[H2(i * 2 + 1)], fpst);
d0[H4(i)] = v0;
d1[H4(i)] = v1;
}
}
void HELPER(sme2_scvtf)(void *vd, void *vs, float_status *fpst, uint32_t desc)
{
size_t i, n = simd_oprsz(desc) / 4;
int32_t *d = vd;
float32 *s = vs;
for (i = 0; i < n; ++i) {
d[i] = int32_to_float32(s[i], fpst);
}
}
void HELPER(sme2_ucvtf)(void *vd, void *vs, float_status *fpst, uint32_t desc)
{
size_t i, n = simd_oprsz(desc) / 4;
uint32_t *d = vd;
float32 *s = vs;
for (i = 0; i < n; ++i) {
d[i] = uint32_to_float32(s[i], fpst);
}
}
#define ZIP2(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
ARMVectorReg scratch[2]; \
size_t oprsz = simd_oprsz(desc); \
size_t pairs = oprsz / (sizeof(TYPE) * 2); \
TYPE *n = vn, *m = vm; \
if (vectors_overlap(vd, 2, vn, 1)) { \
n = memcpy(&scratch[0], vn, oprsz); \
} \
if (vectors_overlap(vd, 2, vm, 1)) { \
m = memcpy(&scratch[1], vm, oprsz); \
} \
for (size_t r = 0; r < 2; ++r) { \
TYPE *d = vd + r * sizeof(ARMVectorReg); \
size_t base = r * pairs; \
for (size_t p = 0; p < pairs; ++p) { \
d[H(2 * p + 0)] = n[base + H(p)]; \
d[H(2 * p + 1)] = m[base + H(p)]; \
} \
} \
}
ZIP2(sme2_zip2_b, uint8_t, H1)
ZIP2(sme2_zip2_h, uint16_t, H2)
ZIP2(sme2_zip2_s, uint32_t, H4)
ZIP2(sme2_zip2_d, uint64_t, )
ZIP2(sme2_zip2_q, Int128, )
#undef ZIP2
#define ZIP4(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch[4]; \
size_t oprsz = simd_oprsz(desc); \
size_t quads = oprsz / (sizeof(TYPE) * 4); \
TYPE *s0, *s1, *s2, *s3; \
if (vs == vd) { \
vs = memcpy(scratch, vs, sizeof(scratch)); \
} \
s0 = vs; \
s1 = vs + sizeof(ARMVectorReg); \
s2 = vs + 2 * sizeof(ARMVectorReg); \
s3 = vs + 3 * sizeof(ARMVectorReg); \
for (size_t r = 0; r < 4; ++r) { \
TYPE *d = vd + r * sizeof(ARMVectorReg); \
size_t base = r * quads; \
for (size_t q = 0; q < quads; ++q) { \
d[H(4 * q + 0)] = s0[base + H(q)]; \
d[H(4 * q + 1)] = s1[base + H(q)]; \
d[H(4 * q + 2)] = s2[base + H(q)]; \
d[H(4 * q + 3)] = s3[base + H(q)]; \
} \
} \
}
ZIP4(sme2_zip4_b, uint8_t, H1)
ZIP4(sme2_zip4_h, uint16_t, H2)
ZIP4(sme2_zip4_s, uint32_t, H4)
ZIP4(sme2_zip4_d, uint64_t, )
ZIP4(sme2_zip4_q, Int128, )
#undef ZIP4
#define UZP2(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
ARMVectorReg scratch[2]; \
size_t oprsz = simd_oprsz(desc); \
size_t pairs = oprsz / (sizeof(TYPE) * 2); \
TYPE *d0 = vd, *d1 = vd + sizeof(ARMVectorReg); \
if (vectors_overlap(vd, 2, vn, 1)) { \
vn = memcpy(&scratch[0], vn, oprsz); \
} \
if (vectors_overlap(vd, 2, vm, 1)) { \
vm = memcpy(&scratch[1], vm, oprsz); \
} \
for (size_t r = 0; r < 2; ++r) { \
TYPE *s = r ? vm : vn; \
size_t base = r * pairs; \
for (size_t p = 0; p < pairs; ++p) { \
d0[base + H(p)] = s[H(2 * p + 0)]; \
d1[base + H(p)] = s[H(2 * p + 1)]; \
} \
} \
}
UZP2(sme2_uzp2_b, uint8_t, H1)
UZP2(sme2_uzp2_h, uint16_t, H2)
UZP2(sme2_uzp2_s, uint32_t, H4)
UZP2(sme2_uzp2_d, uint64_t, )
UZP2(sme2_uzp2_q, Int128, )
#undef UZP2
#define UZP4(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vs, uint32_t desc) \
{ \
ARMVectorReg scratch[4]; \
size_t oprsz = simd_oprsz(desc); \
size_t quads = oprsz / (sizeof(TYPE) * 4); \
TYPE *d0, *d1, *d2, *d3; \
if (vs == vd) { \
vs = memcpy(scratch, vs, sizeof(scratch)); \
} \
d0 = vd; \
d1 = vd + sizeof(ARMVectorReg); \
d2 = vd + 2 * sizeof(ARMVectorReg); \
d3 = vd + 3 * sizeof(ARMVectorReg); \
for (size_t r = 0; r < 4; ++r) { \
TYPE *s = vs + r * sizeof(ARMVectorReg); \
size_t base = r * quads; \
for (size_t q = 0; q < quads; ++q) { \
d0[base + H(q)] = s[H(4 * q + 0)]; \
d1[base + H(q)] = s[H(4 * q + 1)]; \
d2[base + H(q)] = s[H(4 * q + 2)]; \
d3[base + H(q)] = s[H(4 * q + 3)]; \
} \
} \
}
UZP4(sme2_uzp4_b, uint8_t, H1)
UZP4(sme2_uzp4_h, uint16_t, H2)
UZP4(sme2_uzp4_s, uint32_t, H4)
UZP4(sme2_uzp4_d, uint64_t, )
UZP4(sme2_uzp4_q, Int128, )
#undef UZP4
#define ICLAMP(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, uint32_t desc) \
{ \
size_t stride = sizeof(ARMVectorReg) / sizeof(TYPE); \
size_t elements = simd_oprsz(desc) / sizeof(TYPE); \
size_t nreg = simd_data(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (size_t e = 0; e < elements; e++) { \
TYPE nn = n[H(e)], mm = m[H(e)]; \
for (size_t r = 0; r < nreg; r++) { \
TYPE *dd = &d[r * stride + H(e)]; \
*dd = MIN(MAX(*dd, nn), mm); \
} \
} \
}
ICLAMP(sme2_sclamp_b, int8_t, H1)
ICLAMP(sme2_sclamp_h, int16_t, H2)
ICLAMP(sme2_sclamp_s, int32_t, H4)
ICLAMP(sme2_sclamp_d, int64_t, H8)
ICLAMP(sme2_uclamp_b, uint8_t, H1)
ICLAMP(sme2_uclamp_h, uint16_t, H2)
ICLAMP(sme2_uclamp_s, uint32_t, H4)
ICLAMP(sme2_uclamp_d, uint64_t, H8)
#undef ICLAMP
/*
* Note the argument ordering to minnum and maxnum must match
* the ARM pseudocode so that NaNs are propagated properly.
*/
#define FCLAMP(NAME, TYPE, H) \
void HELPER(NAME)(void *vd, void *vn, void *vm, \
float_status *fpst, uint32_t desc) \
{ \
size_t stride = sizeof(ARMVectorReg) / sizeof(TYPE); \
size_t elements = simd_oprsz(desc) / sizeof(TYPE); \
size_t nreg = simd_data(desc); \
TYPE *d = vd, *n = vn, *m = vm; \
for (size_t e = 0; e < elements; e++) { \
TYPE nn = n[H(e)], mm = m[H(e)]; \
for (size_t r = 0; r < nreg; r++) { \
TYPE *dd = &d[r * stride + H(e)]; \
*dd = TYPE##_minnum(TYPE##_maxnum(nn, *dd, fpst), mm, fpst); \
} \
} \
}
FCLAMP(sme2_fclamp_h, float16, H2)
FCLAMP(sme2_fclamp_s, float32, H4)
FCLAMP(sme2_fclamp_d, float64, H8)
FCLAMP(sme2_bfclamp, bfloat16, H2)
#undef FCLAMP
void HELPER(sme2_sel_b)(void *vd, void *vn, void *vm,
uint32_t png, uint32_t desc)
{
int vl = simd_oprsz(desc);
int nreg = simd_data(desc);
int elements = vl / sizeof(uint8_t);
DecodeCounter p = decode_counter(png, vl, MO_8);
if (p.lg2_stride == 0) {
if (p.invert) {
for (int r = 0; r < nreg; r++) {
uint8_t *d = vd + r * sizeof(ARMVectorReg);
uint8_t *n = vn + r * sizeof(ARMVectorReg);
uint8_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
if (split <= 0) {
memcpy(d, n, vl); /* all true */
} else if (elements <= split) {
memcpy(d, m, vl); /* all false */
} else {
for (int e = 0; e < split; e++) {
d[H1(e)] = m[H1(e)];
}
for (int e = split; e < elements; e++) {
d[H1(e)] = n[H1(e)];
}
}
}
} else {
for (int r = 0; r < nreg; r++) {
uint8_t *d = vd + r * sizeof(ARMVectorReg);
uint8_t *n = vn + r * sizeof(ARMVectorReg);
uint8_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
if (split <= 0) {
memcpy(d, m, vl); /* all false */
} else if (elements <= split) {
memcpy(d, n, vl); /* all true */
} else {
for (int e = 0; e < split; e++) {
d[H1(e)] = n[H1(e)];
}
for (int e = split; e < elements; e++) {
d[H1(e)] = m[H1(e)];
}
}
}
}
} else {
int estride = 1 << p.lg2_stride;
if (p.invert) {
for (int r = 0; r < nreg; r++) {
uint8_t *d = vd + r * sizeof(ARMVectorReg);
uint8_t *n = vn + r * sizeof(ARMVectorReg);
uint8_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
int e = 0;
for (; e < MIN(split, elements); e++) {
d[H1(e)] = m[H1(e)];
}
for (; e < elements; e += estride) {
d[H1(e)] = n[H1(e)];
for (int i = 1; i < estride; i++) {
d[H1(e + i)] = m[H1(e + i)];
}
}
}
} else {
for (int r = 0; r < nreg; r++) {
uint8_t *d = vd + r * sizeof(ARMVectorReg);
uint8_t *n = vn + r * sizeof(ARMVectorReg);
uint8_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
int e = 0;
for (; e < MIN(split, elements); e += estride) {
d[H1(e)] = n[H1(e)];
for (int i = 1; i < estride; i++) {
d[H1(e + i)] = m[H1(e + i)];
}
}
for (; e < elements; e++) {
d[H1(e)] = m[H1(e)];
}
}
}
}
}
void HELPER(sme2_sel_h)(void *vd, void *vn, void *vm,
uint32_t png, uint32_t desc)
{
int vl = simd_oprsz(desc);
int nreg = simd_data(desc);
int elements = vl / sizeof(uint16_t);
DecodeCounter p = decode_counter(png, vl, MO_16);
if (p.lg2_stride == 0) {
if (p.invert) {
for (int r = 0; r < nreg; r++) {
uint16_t *d = vd + r * sizeof(ARMVectorReg);
uint16_t *n = vn + r * sizeof(ARMVectorReg);
uint16_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
if (split <= 0) {
memcpy(d, n, vl); /* all true */
} else if (elements <= split) {
memcpy(d, m, vl); /* all false */
} else {
for (int e = 0; e < split; e++) {
d[H2(e)] = m[H2(e)];
}
for (int e = split; e < elements; e++) {
d[H2(e)] = n[H2(e)];
}
}
}
} else {
for (int r = 0; r < nreg; r++) {
uint16_t *d = vd + r * sizeof(ARMVectorReg);
uint16_t *n = vn + r * sizeof(ARMVectorReg);
uint16_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
if (split <= 0) {
memcpy(d, m, vl); /* all false */
} else if (elements <= split) {
memcpy(d, n, vl); /* all true */
} else {
for (int e = 0; e < split; e++) {
d[H2(e)] = n[H2(e)];
}
for (int e = split; e < elements; e++) {
d[H2(e)] = m[H2(e)];
}
}
}
}
} else {
int estride = 1 << p.lg2_stride;
if (p.invert) {
for (int r = 0; r < nreg; r++) {
uint16_t *d = vd + r * sizeof(ARMVectorReg);
uint16_t *n = vn + r * sizeof(ARMVectorReg);
uint16_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
int e = 0;
for (; e < MIN(split, elements); e++) {
d[H2(e)] = m[H2(e)];
}
for (; e < elements; e += estride) {
d[H2(e)] = n[H2(e)];
for (int i = 1; i < estride; i++) {
d[H2(e + i)] = m[H2(e + i)];
}
}
}
} else {
for (int r = 0; r < nreg; r++) {
uint16_t *d = vd + r * sizeof(ARMVectorReg);
uint16_t *n = vn + r * sizeof(ARMVectorReg);
uint16_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
int e = 0;
for (; e < MIN(split, elements); e += estride) {
d[H2(e)] = n[H2(e)];
for (int i = 1; i < estride; i++) {
d[H2(e + i)] = m[H2(e + i)];
}
}
for (; e < elements; e++) {
d[H2(e)] = m[H2(e)];
}
}
}
}
}
void HELPER(sme2_sel_s)(void *vd, void *vn, void *vm,
uint32_t png, uint32_t desc)
{
int vl = simd_oprsz(desc);
int nreg = simd_data(desc);
int elements = vl / sizeof(uint32_t);
DecodeCounter p = decode_counter(png, vl, MO_32);
if (p.lg2_stride == 0) {
if (p.invert) {
for (int r = 0; r < nreg; r++) {
uint32_t *d = vd + r * sizeof(ARMVectorReg);
uint32_t *n = vn + r * sizeof(ARMVectorReg);
uint32_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
if (split <= 0) {
memcpy(d, n, vl); /* all true */
} else if (elements <= split) {
memcpy(d, m, vl); /* all false */
} else {
for (int e = 0; e < split; e++) {
d[H4(e)] = m[H4(e)];
}
for (int e = split; e < elements; e++) {
d[H4(e)] = n[H4(e)];
}
}
}
} else {
for (int r = 0; r < nreg; r++) {
uint32_t *d = vd + r * sizeof(ARMVectorReg);
uint32_t *n = vn + r * sizeof(ARMVectorReg);
uint32_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
if (split <= 0) {
memcpy(d, m, vl); /* all false */
} else if (elements <= split) {
memcpy(d, n, vl); /* all true */
} else {
for (int e = 0; e < split; e++) {
d[H4(e)] = n[H4(e)];
}
for (int e = split; e < elements; e++) {
d[H4(e)] = m[H4(e)];
}
}
}
}
} else {
/* p.esz must be MO_64, so stride must be 2. */
if (p.invert) {
for (int r = 0; r < nreg; r++) {
uint32_t *d = vd + r * sizeof(ARMVectorReg);
uint32_t *n = vn + r * sizeof(ARMVectorReg);
uint32_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
int e = 0;
for (; e < MIN(split, elements); e++) {
d[H4(e)] = m[H4(e)];
}
for (; e < elements; e += 2) {
d[H4(e)] = n[H4(e)];
d[H4(e + 1)] = m[H4(e + 1)];
}
}
} else {
for (int r = 0; r < nreg; r++) {
uint32_t *d = vd + r * sizeof(ARMVectorReg);
uint32_t *n = vn + r * sizeof(ARMVectorReg);
uint32_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
int e = 0;
for (; e < MIN(split, elements); e += 2) {
d[H4(e)] = n[H4(e)];
d[H4(e + 1)] = m[H4(e + 1)];
}
for (; e < elements; e++) {
d[H4(e)] = m[H4(e)];
}
}
}
}
}
void HELPER(sme2_sel_d)(void *vd, void *vn, void *vm,
uint32_t png, uint32_t desc)
{
int vl = simd_oprsz(desc);
int nreg = simd_data(desc);
int elements = vl / sizeof(uint64_t);
DecodeCounter p = decode_counter(png, vl, MO_64);
if (p.invert) {
for (int r = 0; r < nreg; r++) {
uint64_t *d = vd + r * sizeof(ARMVectorReg);
uint64_t *n = vn + r * sizeof(ARMVectorReg);
uint64_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
if (split <= 0) {
memcpy(d, n, vl); /* all true */
} else if (elements <= split) {
memcpy(d, m, vl); /* all false */
} else {
memcpy(d, m, split * sizeof(uint64_t));
memcpy(d + split, n + split,
(elements - split) * sizeof(uint64_t));
}
}
} else {
for (int r = 0; r < nreg; r++) {
uint64_t *d = vd + r * sizeof(ARMVectorReg);
uint64_t *n = vn + r * sizeof(ARMVectorReg);
uint64_t *m = vm + r * sizeof(ARMVectorReg);
int split = p.count - r * elements;
if (split <= 0) {
memcpy(d, m, vl); /* all false */
} else if (elements <= split) {
memcpy(d, n, vl); /* all true */
} else {
memcpy(d, n, split * sizeof(uint64_t));
memcpy(d + split, m + split,
(elements - split) * sizeof(uint64_t));
}
}
}
}