| /* |
| * block_copy API |
| * |
| * Copyright (C) 2013 Proxmox Server Solutions |
| * Copyright (c) 2019 Virtuozzo International GmbH. |
| * |
| * Authors: |
| * Dietmar Maurer (dietmar@proxmox.com) |
| * Vladimir Sementsov-Ogievskiy <vsementsov@virtuozzo.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| |
| #include "trace.h" |
| #include "qapi/error.h" |
| #include "block/block-copy.h" |
| #include "sysemu/block-backend.h" |
| #include "qemu/units.h" |
| #include "qemu/coroutine.h" |
| #include "block/aio_task.h" |
| |
| #define BLOCK_COPY_MAX_COPY_RANGE (16 * MiB) |
| #define BLOCK_COPY_MAX_BUFFER (1 * MiB) |
| #define BLOCK_COPY_MAX_MEM (128 * MiB) |
| #define BLOCK_COPY_MAX_WORKERS 64 |
| |
| static coroutine_fn int block_copy_task_entry(AioTask *task); |
| |
| typedef struct BlockCopyCallState { |
| bool failed; |
| bool error_is_read; |
| } BlockCopyCallState; |
| |
| typedef struct BlockCopyTask { |
| AioTask task; |
| |
| BlockCopyState *s; |
| BlockCopyCallState *call_state; |
| int64_t offset; |
| int64_t bytes; |
| bool zeroes; |
| QLIST_ENTRY(BlockCopyTask) list; |
| CoQueue wait_queue; /* coroutines blocked on this task */ |
| } BlockCopyTask; |
| |
| static int64_t task_end(BlockCopyTask *task) |
| { |
| return task->offset + task->bytes; |
| } |
| |
| typedef struct BlockCopyState { |
| /* |
| * BdrvChild objects are not owned or managed by block-copy. They are |
| * provided by block-copy user and user is responsible for appropriate |
| * permissions on these children. |
| */ |
| BdrvChild *source; |
| BdrvChild *target; |
| BdrvDirtyBitmap *copy_bitmap; |
| int64_t in_flight_bytes; |
| int64_t cluster_size; |
| bool use_copy_range; |
| int64_t copy_size; |
| uint64_t len; |
| QLIST_HEAD(, BlockCopyTask) tasks; |
| |
| BdrvRequestFlags write_flags; |
| |
| /* |
| * skip_unallocated: |
| * |
| * Used by sync=top jobs, which first scan the source node for unallocated |
| * areas and clear them in the copy_bitmap. During this process, the bitmap |
| * is thus not fully initialized: It may still have bits set for areas that |
| * are unallocated and should actually not be copied. |
| * |
| * This is indicated by skip_unallocated. |
| * |
| * In this case, block_copy() will query the source’s allocation status, |
| * skip unallocated regions, clear them in the copy_bitmap, and invoke |
| * block_copy_reset_unallocated() every time it does. |
| */ |
| bool skip_unallocated; |
| |
| ProgressMeter *progress; |
| /* progress_bytes_callback: called when some copying progress is done. */ |
| ProgressBytesCallbackFunc progress_bytes_callback; |
| void *progress_opaque; |
| |
| SharedResource *mem; |
| } BlockCopyState; |
| |
| static BlockCopyTask *find_conflicting_task(BlockCopyState *s, |
| int64_t offset, int64_t bytes) |
| { |
| BlockCopyTask *t; |
| |
| QLIST_FOREACH(t, &s->tasks, list) { |
| if (offset + bytes > t->offset && offset < t->offset + t->bytes) { |
| return t; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| /* |
| * If there are no intersecting tasks return false. Otherwise, wait for the |
| * first found intersecting tasks to finish and return true. |
| */ |
| static bool coroutine_fn block_copy_wait_one(BlockCopyState *s, int64_t offset, |
| int64_t bytes) |
| { |
| BlockCopyTask *task = find_conflicting_task(s, offset, bytes); |
| |
| if (!task) { |
| return false; |
| } |
| |
| qemu_co_queue_wait(&task->wait_queue, NULL); |
| |
| return true; |
| } |
| |
| /* |
| * Search for the first dirty area in offset/bytes range and create task at |
| * the beginning of it. |
| */ |
| static BlockCopyTask *block_copy_task_create(BlockCopyState *s, |
| BlockCopyCallState *call_state, |
| int64_t offset, int64_t bytes) |
| { |
| BlockCopyTask *task; |
| |
| if (!bdrv_dirty_bitmap_next_dirty_area(s->copy_bitmap, |
| offset, offset + bytes, |
| s->copy_size, &offset, &bytes)) |
| { |
| return NULL; |
| } |
| |
| /* region is dirty, so no existent tasks possible in it */ |
| assert(!find_conflicting_task(s, offset, bytes)); |
| |
| bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); |
| s->in_flight_bytes += bytes; |
| |
| task = g_new(BlockCopyTask, 1); |
| *task = (BlockCopyTask) { |
| .task.func = block_copy_task_entry, |
| .s = s, |
| .call_state = call_state, |
| .offset = offset, |
| .bytes = bytes, |
| }; |
| qemu_co_queue_init(&task->wait_queue); |
| QLIST_INSERT_HEAD(&s->tasks, task, list); |
| |
| return task; |
| } |
| |
| /* |
| * block_copy_task_shrink |
| * |
| * Drop the tail of the task to be handled later. Set dirty bits back and |
| * wake up all tasks waiting for us (may be some of them are not intersecting |
| * with shrunk task) |
| */ |
| static void coroutine_fn block_copy_task_shrink(BlockCopyTask *task, |
| int64_t new_bytes) |
| { |
| if (new_bytes == task->bytes) { |
| return; |
| } |
| |
| assert(new_bytes > 0 && new_bytes < task->bytes); |
| |
| task->s->in_flight_bytes -= task->bytes - new_bytes; |
| bdrv_set_dirty_bitmap(task->s->copy_bitmap, |
| task->offset + new_bytes, task->bytes - new_bytes); |
| |
| task->bytes = new_bytes; |
| qemu_co_queue_restart_all(&task->wait_queue); |
| } |
| |
| static void coroutine_fn block_copy_task_end(BlockCopyTask *task, int ret) |
| { |
| task->s->in_flight_bytes -= task->bytes; |
| if (ret < 0) { |
| bdrv_set_dirty_bitmap(task->s->copy_bitmap, task->offset, task->bytes); |
| } |
| QLIST_REMOVE(task, list); |
| qemu_co_queue_restart_all(&task->wait_queue); |
| } |
| |
| void block_copy_state_free(BlockCopyState *s) |
| { |
| if (!s) { |
| return; |
| } |
| |
| bdrv_release_dirty_bitmap(s->copy_bitmap); |
| shres_destroy(s->mem); |
| g_free(s); |
| } |
| |
| static uint32_t block_copy_max_transfer(BdrvChild *source, BdrvChild *target) |
| { |
| return MIN_NON_ZERO(INT_MAX, |
| MIN_NON_ZERO(source->bs->bl.max_transfer, |
| target->bs->bl.max_transfer)); |
| } |
| |
| BlockCopyState *block_copy_state_new(BdrvChild *source, BdrvChild *target, |
| int64_t cluster_size, |
| BdrvRequestFlags write_flags, Error **errp) |
| { |
| BlockCopyState *s; |
| BdrvDirtyBitmap *copy_bitmap; |
| |
| copy_bitmap = bdrv_create_dirty_bitmap(source->bs, cluster_size, NULL, |
| errp); |
| if (!copy_bitmap) { |
| return NULL; |
| } |
| bdrv_disable_dirty_bitmap(copy_bitmap); |
| |
| s = g_new(BlockCopyState, 1); |
| *s = (BlockCopyState) { |
| .source = source, |
| .target = target, |
| .copy_bitmap = copy_bitmap, |
| .cluster_size = cluster_size, |
| .len = bdrv_dirty_bitmap_size(copy_bitmap), |
| .write_flags = write_flags, |
| .mem = shres_create(BLOCK_COPY_MAX_MEM), |
| }; |
| |
| if (block_copy_max_transfer(source, target) < cluster_size) { |
| /* |
| * copy_range does not respect max_transfer. We don't want to bother |
| * with requests smaller than block-copy cluster size, so fallback to |
| * buffered copying (read and write respect max_transfer on their |
| * behalf). |
| */ |
| s->use_copy_range = false; |
| s->copy_size = cluster_size; |
| } else if (write_flags & BDRV_REQ_WRITE_COMPRESSED) { |
| /* Compression supports only cluster-size writes and no copy-range. */ |
| s->use_copy_range = false; |
| s->copy_size = cluster_size; |
| } else { |
| /* |
| * We enable copy-range, but keep small copy_size, until first |
| * successful copy_range (look at block_copy_do_copy). |
| */ |
| s->use_copy_range = true; |
| s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER); |
| } |
| |
| QLIST_INIT(&s->tasks); |
| |
| return s; |
| } |
| |
| void block_copy_set_progress_callback( |
| BlockCopyState *s, |
| ProgressBytesCallbackFunc progress_bytes_callback, |
| void *progress_opaque) |
| { |
| s->progress_bytes_callback = progress_bytes_callback; |
| s->progress_opaque = progress_opaque; |
| } |
| |
| void block_copy_set_progress_meter(BlockCopyState *s, ProgressMeter *pm) |
| { |
| s->progress = pm; |
| } |
| |
| /* |
| * Takes ownership of @task |
| * |
| * If pool is NULL directly run the task, otherwise schedule it into the pool. |
| * |
| * Returns: task.func return code if pool is NULL |
| * otherwise -ECANCELED if pool status is bad |
| * otherwise 0 (successfully scheduled) |
| */ |
| static coroutine_fn int block_copy_task_run(AioTaskPool *pool, |
| BlockCopyTask *task) |
| { |
| if (!pool) { |
| int ret = task->task.func(&task->task); |
| |
| g_free(task); |
| return ret; |
| } |
| |
| aio_task_pool_wait_slot(pool); |
| if (aio_task_pool_status(pool) < 0) { |
| co_put_to_shres(task->s->mem, task->bytes); |
| block_copy_task_end(task, -ECANCELED); |
| g_free(task); |
| return -ECANCELED; |
| } |
| |
| aio_task_pool_start_task(pool, &task->task); |
| |
| return 0; |
| } |
| |
| /* |
| * block_copy_do_copy |
| * |
| * Do copy of cluster-aligned chunk. Requested region is allowed to exceed |
| * s->len only to cover last cluster when s->len is not aligned to clusters. |
| * |
| * No sync here: nor bitmap neighter intersecting requests handling, only copy. |
| * |
| * Returns 0 on success. |
| */ |
| static int coroutine_fn block_copy_do_copy(BlockCopyState *s, |
| int64_t offset, int64_t bytes, |
| bool zeroes, bool *error_is_read) |
| { |
| int ret; |
| int64_t nbytes = MIN(offset + bytes, s->len) - offset; |
| void *bounce_buffer = NULL; |
| |
| assert(offset >= 0 && bytes > 0 && INT64_MAX - offset >= bytes); |
| assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); |
| assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); |
| assert(offset < s->len); |
| assert(offset + bytes <= s->len || |
| offset + bytes == QEMU_ALIGN_UP(s->len, s->cluster_size)); |
| assert(nbytes < INT_MAX); |
| |
| if (zeroes) { |
| ret = bdrv_co_pwrite_zeroes(s->target, offset, nbytes, s->write_flags & |
| ~BDRV_REQ_WRITE_COMPRESSED); |
| if (ret < 0) { |
| trace_block_copy_write_zeroes_fail(s, offset, ret); |
| if (error_is_read) { |
| *error_is_read = false; |
| } |
| } |
| return ret; |
| } |
| |
| if (s->use_copy_range) { |
| ret = bdrv_co_copy_range(s->source, offset, s->target, offset, nbytes, |
| 0, s->write_flags); |
| if (ret < 0) { |
| trace_block_copy_copy_range_fail(s, offset, ret); |
| s->use_copy_range = false; |
| s->copy_size = MAX(s->cluster_size, BLOCK_COPY_MAX_BUFFER); |
| /* Fallback to read+write with allocated buffer */ |
| } else { |
| if (s->use_copy_range) { |
| /* |
| * Successful copy-range. Now increase copy_size. copy_range |
| * does not respect max_transfer (it's a TODO), so we factor |
| * that in here. |
| * |
| * Note: we double-check s->use_copy_range for the case when |
| * parallel block-copy request unsets it during previous |
| * bdrv_co_copy_range call. |
| */ |
| s->copy_size = |
| MIN(MAX(s->cluster_size, BLOCK_COPY_MAX_COPY_RANGE), |
| QEMU_ALIGN_DOWN(block_copy_max_transfer(s->source, |
| s->target), |
| s->cluster_size)); |
| } |
| goto out; |
| } |
| } |
| |
| /* |
| * In case of failed copy_range request above, we may proceed with buffered |
| * request larger than BLOCK_COPY_MAX_BUFFER. Still, further requests will |
| * be properly limited, so don't care too much. Moreover the most likely |
| * case (copy_range is unsupported for the configuration, so the very first |
| * copy_range request fails) is handled by setting large copy_size only |
| * after first successful copy_range. |
| */ |
| |
| bounce_buffer = qemu_blockalign(s->source->bs, nbytes); |
| |
| ret = bdrv_co_pread(s->source, offset, nbytes, bounce_buffer, 0); |
| if (ret < 0) { |
| trace_block_copy_read_fail(s, offset, ret); |
| if (error_is_read) { |
| *error_is_read = true; |
| } |
| goto out; |
| } |
| |
| ret = bdrv_co_pwrite(s->target, offset, nbytes, bounce_buffer, |
| s->write_flags); |
| if (ret < 0) { |
| trace_block_copy_write_fail(s, offset, ret); |
| if (error_is_read) { |
| *error_is_read = false; |
| } |
| goto out; |
| } |
| |
| out: |
| qemu_vfree(bounce_buffer); |
| |
| return ret; |
| } |
| |
| static coroutine_fn int block_copy_task_entry(AioTask *task) |
| { |
| BlockCopyTask *t = container_of(task, BlockCopyTask, task); |
| bool error_is_read; |
| int ret; |
| |
| ret = block_copy_do_copy(t->s, t->offset, t->bytes, t->zeroes, |
| &error_is_read); |
| if (ret < 0 && !t->call_state->failed) { |
| t->call_state->failed = true; |
| t->call_state->error_is_read = error_is_read; |
| } else { |
| progress_work_done(t->s->progress, t->bytes); |
| t->s->progress_bytes_callback(t->bytes, t->s->progress_opaque); |
| } |
| co_put_to_shres(t->s->mem, t->bytes); |
| block_copy_task_end(t, ret); |
| |
| return ret; |
| } |
| |
| static int block_copy_block_status(BlockCopyState *s, int64_t offset, |
| int64_t bytes, int64_t *pnum) |
| { |
| int64_t num; |
| BlockDriverState *base; |
| int ret; |
| |
| if (s->skip_unallocated && s->source->bs->backing) { |
| base = s->source->bs->backing->bs; |
| } else { |
| base = NULL; |
| } |
| |
| ret = bdrv_block_status_above(s->source->bs, base, offset, bytes, &num, |
| NULL, NULL); |
| if (ret < 0 || num < s->cluster_size) { |
| /* |
| * On error or if failed to obtain large enough chunk just fallback to |
| * copy one cluster. |
| */ |
| num = s->cluster_size; |
| ret = BDRV_BLOCK_ALLOCATED | BDRV_BLOCK_DATA; |
| } else if (offset + num == s->len) { |
| num = QEMU_ALIGN_UP(num, s->cluster_size); |
| } else { |
| num = QEMU_ALIGN_DOWN(num, s->cluster_size); |
| } |
| |
| *pnum = num; |
| return ret; |
| } |
| |
| /* |
| * Check if the cluster starting at offset is allocated or not. |
| * return via pnum the number of contiguous clusters sharing this allocation. |
| */ |
| static int block_copy_is_cluster_allocated(BlockCopyState *s, int64_t offset, |
| int64_t *pnum) |
| { |
| BlockDriverState *bs = s->source->bs; |
| int64_t count, total_count = 0; |
| int64_t bytes = s->len - offset; |
| int ret; |
| |
| assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); |
| |
| while (true) { |
| ret = bdrv_is_allocated(bs, offset, bytes, &count); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| total_count += count; |
| |
| if (ret || count == 0) { |
| /* |
| * ret: partial segment(s) are considered allocated. |
| * otherwise: unallocated tail is treated as an entire segment. |
| */ |
| *pnum = DIV_ROUND_UP(total_count, s->cluster_size); |
| return ret; |
| } |
| |
| /* Unallocated segment(s) with uncertain following segment(s) */ |
| if (total_count >= s->cluster_size) { |
| *pnum = total_count / s->cluster_size; |
| return 0; |
| } |
| |
| offset += count; |
| bytes -= count; |
| } |
| } |
| |
| /* |
| * Reset bits in copy_bitmap starting at offset if they represent unallocated |
| * data in the image. May reset subsequent contiguous bits. |
| * @return 0 when the cluster at @offset was unallocated, |
| * 1 otherwise, and -ret on error. |
| */ |
| int64_t block_copy_reset_unallocated(BlockCopyState *s, |
| int64_t offset, int64_t *count) |
| { |
| int ret; |
| int64_t clusters, bytes; |
| |
| ret = block_copy_is_cluster_allocated(s, offset, &clusters); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| bytes = clusters * s->cluster_size; |
| |
| if (!ret) { |
| bdrv_reset_dirty_bitmap(s->copy_bitmap, offset, bytes); |
| progress_set_remaining(s->progress, |
| bdrv_get_dirty_count(s->copy_bitmap) + |
| s->in_flight_bytes); |
| } |
| |
| *count = bytes; |
| return ret; |
| } |
| |
| /* |
| * block_copy_dirty_clusters |
| * |
| * Copy dirty clusters in @offset/@bytes range. |
| * Returns 1 if dirty clusters found and successfully copied, 0 if no dirty |
| * clusters found and -errno on failure. |
| */ |
| static int coroutine_fn block_copy_dirty_clusters(BlockCopyState *s, |
| int64_t offset, int64_t bytes, |
| bool *error_is_read) |
| { |
| int ret = 0; |
| bool found_dirty = false; |
| int64_t end = offset + bytes; |
| AioTaskPool *aio = NULL; |
| BlockCopyCallState call_state = {false, false}; |
| |
| /* |
| * block_copy() user is responsible for keeping source and target in same |
| * aio context |
| */ |
| assert(bdrv_get_aio_context(s->source->bs) == |
| bdrv_get_aio_context(s->target->bs)); |
| |
| assert(QEMU_IS_ALIGNED(offset, s->cluster_size)); |
| assert(QEMU_IS_ALIGNED(bytes, s->cluster_size)); |
| |
| while (bytes && aio_task_pool_status(aio) == 0) { |
| BlockCopyTask *task; |
| int64_t status_bytes; |
| |
| task = block_copy_task_create(s, &call_state, offset, bytes); |
| if (!task) { |
| /* No more dirty bits in the bitmap */ |
| trace_block_copy_skip_range(s, offset, bytes); |
| break; |
| } |
| if (task->offset > offset) { |
| trace_block_copy_skip_range(s, offset, task->offset - offset); |
| } |
| |
| found_dirty = true; |
| |
| ret = block_copy_block_status(s, task->offset, task->bytes, |
| &status_bytes); |
| assert(ret >= 0); /* never fail */ |
| if (status_bytes < task->bytes) { |
| block_copy_task_shrink(task, status_bytes); |
| } |
| if (s->skip_unallocated && !(ret & BDRV_BLOCK_ALLOCATED)) { |
| block_copy_task_end(task, 0); |
| g_free(task); |
| progress_set_remaining(s->progress, |
| bdrv_get_dirty_count(s->copy_bitmap) + |
| s->in_flight_bytes); |
| trace_block_copy_skip_range(s, task->offset, task->bytes); |
| offset = task_end(task); |
| bytes = end - offset; |
| continue; |
| } |
| task->zeroes = ret & BDRV_BLOCK_ZERO; |
| |
| trace_block_copy_process(s, task->offset); |
| |
| co_get_from_shres(s->mem, task->bytes); |
| |
| offset = task_end(task); |
| bytes = end - offset; |
| |
| if (!aio && bytes) { |
| aio = aio_task_pool_new(BLOCK_COPY_MAX_WORKERS); |
| } |
| |
| ret = block_copy_task_run(aio, task); |
| if (ret < 0) { |
| goto out; |
| } |
| } |
| |
| out: |
| if (aio) { |
| aio_task_pool_wait_all(aio); |
| |
| /* |
| * We are not really interested in -ECANCELED returned from |
| * block_copy_task_run. If it fails, it means some task already failed |
| * for real reason, let's return first failure. |
| * Still, assert that we don't rewrite failure by success. |
| */ |
| assert(ret == 0 || aio_task_pool_status(aio) < 0); |
| ret = aio_task_pool_status(aio); |
| |
| aio_task_pool_free(aio); |
| } |
| if (error_is_read && ret < 0) { |
| *error_is_read = call_state.error_is_read; |
| } |
| |
| return ret < 0 ? ret : found_dirty; |
| } |
| |
| /* |
| * block_copy |
| * |
| * Copy requested region, accordingly to dirty bitmap. |
| * Collaborate with parallel block_copy requests: if they succeed it will help |
| * us. If they fail, we will retry not-copied regions. So, if we return error, |
| * it means that some I/O operation failed in context of _this_ block_copy call, |
| * not some parallel operation. |
| */ |
| int coroutine_fn block_copy(BlockCopyState *s, int64_t offset, int64_t bytes, |
| bool *error_is_read) |
| { |
| int ret; |
| |
| do { |
| ret = block_copy_dirty_clusters(s, offset, bytes, error_is_read); |
| |
| if (ret == 0) { |
| ret = block_copy_wait_one(s, offset, bytes); |
| } |
| |
| /* |
| * We retry in two cases: |
| * 1. Some progress done |
| * Something was copied, which means that there were yield points |
| * and some new dirty bits may have appeared (due to failed parallel |
| * block-copy requests). |
| * 2. We have waited for some intersecting block-copy request |
| * It may have failed and produced new dirty bits. |
| */ |
| } while (ret > 0); |
| |
| return ret; |
| } |
| |
| BdrvDirtyBitmap *block_copy_dirty_bitmap(BlockCopyState *s) |
| { |
| return s->copy_bitmap; |
| } |
| |
| void block_copy_set_skip_unallocated(BlockCopyState *s, bool skip) |
| { |
| s->skip_unallocated = skip; |
| } |