| /* |
| * Helpers for loads and stores |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "cpu.h" |
| #include "helper.h" |
| |
| //#define DEBUG_MMU |
| //#define DEBUG_MXCC |
| //#define DEBUG_UNALIGNED |
| //#define DEBUG_UNASSIGNED |
| //#define DEBUG_ASI |
| //#define DEBUG_CACHE_CONTROL |
| |
| #ifdef DEBUG_MMU |
| #define DPRINTF_MMU(fmt, ...) \ |
| do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_MMU(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef DEBUG_MXCC |
| #define DPRINTF_MXCC(fmt, ...) \ |
| do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_MXCC(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef DEBUG_ASI |
| #define DPRINTF_ASI(fmt, ...) \ |
| do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) |
| #endif |
| |
| #ifdef DEBUG_CACHE_CONTROL |
| #define DPRINTF_CACHE_CONTROL(fmt, ...) \ |
| do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef TARGET_SPARC64 |
| #ifndef TARGET_ABI32 |
| #define AM_CHECK(env1) ((env1)->pstate & PS_AM) |
| #else |
| #define AM_CHECK(env1) (1) |
| #endif |
| #endif |
| |
| #define QT0 (env->qt0) |
| #define QT1 (env->qt1) |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #include "softmmu_exec.h" |
| #define MMUSUFFIX _mmu |
| #define ALIGNED_ONLY |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| #endif |
| |
| #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) |
| /* Calculates TSB pointer value for fault page size 8k or 64k */ |
| static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, |
| uint64_t tag_access_register, |
| int page_size) |
| { |
| uint64_t tsb_base = tsb_register & ~0x1fffULL; |
| int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; |
| int tsb_size = tsb_register & 0xf; |
| |
| /* discard lower 13 bits which hold tag access context */ |
| uint64_t tag_access_va = tag_access_register & ~0x1fffULL; |
| |
| /* now reorder bits */ |
| uint64_t tsb_base_mask = ~0x1fffULL; |
| uint64_t va = tag_access_va; |
| |
| /* move va bits to correct position */ |
| if (page_size == 8*1024) { |
| va >>= 9; |
| } else if (page_size == 64*1024) { |
| va >>= 12; |
| } |
| |
| if (tsb_size) { |
| tsb_base_mask <<= tsb_size; |
| } |
| |
| /* calculate tsb_base mask and adjust va if split is in use */ |
| if (tsb_split) { |
| if (page_size == 8*1024) { |
| va &= ~(1ULL << (13 + tsb_size)); |
| } else if (page_size == 64*1024) { |
| va |= (1ULL << (13 + tsb_size)); |
| } |
| tsb_base_mask <<= 1; |
| } |
| |
| return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; |
| } |
| |
| /* Calculates tag target register value by reordering bits |
| in tag access register */ |
| static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) |
| { |
| return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); |
| } |
| |
| static void replace_tlb_entry(SparcTLBEntry *tlb, |
| uint64_t tlb_tag, uint64_t tlb_tte, |
| CPUSPARCState *env1) |
| { |
| target_ulong mask, size, va, offset; |
| |
| /* flush page range if translation is valid */ |
| if (TTE_IS_VALID(tlb->tte)) { |
| |
| mask = 0xffffffffffffe000ULL; |
| mask <<= 3 * ((tlb->tte >> 61) & 3); |
| size = ~mask + 1; |
| |
| va = tlb->tag & mask; |
| |
| for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { |
| tlb_flush_page(env1, va + offset); |
| } |
| } |
| |
| tlb->tag = tlb_tag; |
| tlb->tte = tlb_tte; |
| } |
| |
| static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, |
| const char *strmmu, CPUSPARCState *env1) |
| { |
| unsigned int i; |
| target_ulong mask; |
| uint64_t context; |
| |
| int is_demap_context = (demap_addr >> 6) & 1; |
| |
| /* demap context */ |
| switch ((demap_addr >> 4) & 3) { |
| case 0: /* primary */ |
| context = env1->dmmu.mmu_primary_context; |
| break; |
| case 1: /* secondary */ |
| context = env1->dmmu.mmu_secondary_context; |
| break; |
| case 2: /* nucleus */ |
| context = 0; |
| break; |
| case 3: /* reserved */ |
| default: |
| return; |
| } |
| |
| for (i = 0; i < 64; i++) { |
| if (TTE_IS_VALID(tlb[i].tte)) { |
| |
| if (is_demap_context) { |
| /* will remove non-global entries matching context value */ |
| if (TTE_IS_GLOBAL(tlb[i].tte) || |
| !tlb_compare_context(&tlb[i], context)) { |
| continue; |
| } |
| } else { |
| /* demap page |
| will remove any entry matching VA */ |
| mask = 0xffffffffffffe000ULL; |
| mask <<= 3 * ((tlb[i].tte >> 61) & 3); |
| |
| if (!compare_masked(demap_addr, tlb[i].tag, mask)) { |
| continue; |
| } |
| |
| /* entry should be global or matching context value */ |
| if (!TTE_IS_GLOBAL(tlb[i].tte) && |
| !tlb_compare_context(&tlb[i], context)) { |
| continue; |
| } |
| } |
| |
| replace_tlb_entry(&tlb[i], 0, 0, env1); |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); |
| dump_mmu(stdout, fprintf, env1); |
| #endif |
| } |
| } |
| } |
| |
| static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, |
| uint64_t tlb_tag, uint64_t tlb_tte, |
| const char *strmmu, CPUSPARCState *env1) |
| { |
| unsigned int i, replace_used; |
| |
| /* Try replacing invalid entry */ |
| for (i = 0; i < 64; i++) { |
| if (!TTE_IS_VALID(tlb[i].tte)) { |
| replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); |
| dump_mmu(stdout, fprintf, env1); |
| #endif |
| return; |
| } |
| } |
| |
| /* All entries are valid, try replacing unlocked entry */ |
| |
| for (replace_used = 0; replace_used < 2; ++replace_used) { |
| |
| /* Used entries are not replaced on first pass */ |
| |
| for (i = 0; i < 64; i++) { |
| if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { |
| |
| replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", |
| strmmu, (replace_used ? "used" : "unused"), i); |
| dump_mmu(stdout, fprintf, env1); |
| #endif |
| return; |
| } |
| } |
| |
| /* Now reset used bit and search for unused entries again */ |
| |
| for (i = 0; i < 64; i++) { |
| TTE_SET_UNUSED(tlb[i].tte); |
| } |
| } |
| |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu); |
| #endif |
| /* error state? */ |
| } |
| |
| #endif |
| |
| static inline target_ulong address_mask(CPUSPARCState *env1, target_ulong addr) |
| { |
| #ifdef TARGET_SPARC64 |
| if (AM_CHECK(env1)) { |
| addr &= 0xffffffffULL; |
| } |
| #endif |
| return addr; |
| } |
| |
| /* returns true if access using this ASI is to have address translated by MMU |
| otherwise access is to raw physical address */ |
| static inline int is_translating_asi(int asi) |
| { |
| #ifdef TARGET_SPARC64 |
| /* Ultrasparc IIi translating asi |
| - note this list is defined by cpu implementation |
| */ |
| switch (asi) { |
| case 0x04 ... 0x11: |
| case 0x16 ... 0x19: |
| case 0x1E ... 0x1F: |
| case 0x24 ... 0x2C: |
| case 0x70 ... 0x73: |
| case 0x78 ... 0x79: |
| case 0x80 ... 0xFF: |
| return 1; |
| |
| default: |
| return 0; |
| } |
| #else |
| /* TODO: check sparc32 bits */ |
| return 0; |
| #endif |
| } |
| |
| static inline target_ulong asi_address_mask(CPUSPARCState *env, |
| int asi, target_ulong addr) |
| { |
| if (is_translating_asi(asi)) { |
| return address_mask(env, addr); |
| } else { |
| return addr; |
| } |
| } |
| |
| void helper_check_align(CPUSPARCState *env, target_ulong addr, uint32_t align) |
| { |
| if (addr & align) { |
| #ifdef DEBUG_UNALIGNED |
| printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| helper_raise_exception(env, TT_UNALIGNED); |
| } |
| } |
| |
| #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ |
| defined(DEBUG_MXCC) |
| static void dump_mxcc(CPUSPARCState *env) |
| { |
| printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 |
| "\n", |
| env->mxccdata[0], env->mxccdata[1], |
| env->mxccdata[2], env->mxccdata[3]); |
| printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 |
| "\n" |
| " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 |
| "\n", |
| env->mxccregs[0], env->mxccregs[1], |
| env->mxccregs[2], env->mxccregs[3], |
| env->mxccregs[4], env->mxccregs[5], |
| env->mxccregs[6], env->mxccregs[7]); |
| } |
| #endif |
| |
| #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ |
| && defined(DEBUG_ASI) |
| static void dump_asi(const char *txt, target_ulong addr, int asi, int size, |
| uint64_t r1) |
| { |
| switch (size) { |
| case 1: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xff); |
| break; |
| case 2: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xffff); |
| break; |
| case 4: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xffffffff); |
| break; |
| case 8: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, |
| addr, asi, r1); |
| break; |
| } |
| } |
| #endif |
| |
| #ifndef TARGET_SPARC64 |
| #ifndef CONFIG_USER_ONLY |
| |
| |
| /* Leon3 cache control */ |
| |
| static void leon3_cache_control_st(CPUSPARCState *env, target_ulong addr, |
| uint64_t val, int size) |
| { |
| DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n", |
| addr, val, size); |
| |
| if (size != 4) { |
| DPRINTF_CACHE_CONTROL("32bits only\n"); |
| return; |
| } |
| |
| switch (addr) { |
| case 0x00: /* Cache control */ |
| |
| /* These values must always be read as zeros */ |
| val &= ~CACHE_CTRL_FD; |
| val &= ~CACHE_CTRL_FI; |
| val &= ~CACHE_CTRL_IB; |
| val &= ~CACHE_CTRL_IP; |
| val &= ~CACHE_CTRL_DP; |
| |
| env->cache_control = val; |
| break; |
| case 0x04: /* Instruction cache configuration */ |
| case 0x08: /* Data cache configuration */ |
| /* Read Only */ |
| break; |
| default: |
| DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr); |
| break; |
| }; |
| } |
| |
| static uint64_t leon3_cache_control_ld(CPUSPARCState *env, target_ulong addr, |
| int size) |
| { |
| uint64_t ret = 0; |
| |
| if (size != 4) { |
| DPRINTF_CACHE_CONTROL("32bits only\n"); |
| return 0; |
| } |
| |
| switch (addr) { |
| case 0x00: /* Cache control */ |
| ret = env->cache_control; |
| break; |
| |
| /* Configuration registers are read and only always keep those |
| predefined values */ |
| |
| case 0x04: /* Instruction cache configuration */ |
| ret = 0x10220000; |
| break; |
| case 0x08: /* Data cache configuration */ |
| ret = 0x18220000; |
| break; |
| default: |
| DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr); |
| break; |
| }; |
| DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n", |
| addr, ret, size); |
| return ret; |
| } |
| |
| uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, |
| int sign) |
| { |
| uint64_t ret = 0; |
| #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) |
| uint32_t last_addr = addr; |
| #endif |
| |
| helper_check_align(env, addr, size - 1); |
| switch (asi) { |
| case 2: /* SuperSparc MXCC registers and Leon3 cache control */ |
| switch (addr) { |
| case 0x00: /* Leon3 Cache Control */ |
| case 0x08: /* Leon3 Instruction Cache config */ |
| case 0x0C: /* Leon3 Date Cache config */ |
| if (env->def->features & CPU_FEATURE_CACHE_CTRL) { |
| ret = leon3_cache_control_ld(env, addr, size); |
| } |
| break; |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) { |
| ret = env->mxccregs[3]; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) { |
| ret = env->mxccregs[3]; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00c00: /* Module reset register */ |
| if (size == 8) { |
| ret = env->mxccregs[5]; |
| /* should we do something here? */ |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) { |
| ret = env->mxccregs[7]; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented address, size: %d\n", addr, |
| size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " |
| "addr = %08x -> ret = %" PRIx64 "," |
| "addr = %08x\n", asi, size, sign, last_addr, ret, addr); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case 3: /* MMU probe */ |
| { |
| int mmulev; |
| |
| mmulev = (addr >> 8) & 15; |
| if (mmulev > 4) { |
| ret = 0; |
| } else { |
| ret = mmu_probe(env, addr, mmulev); |
| } |
| DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", |
| addr, mmulev, ret); |
| } |
| break; |
| case 4: /* read MMU regs */ |
| { |
| int reg = (addr >> 8) & 0x1f; |
| |
| ret = env->mmuregs[reg]; |
| if (reg == 3) { /* Fault status cleared on read */ |
| env->mmuregs[3] = 0; |
| } else if (reg == 0x13) { /* Fault status read */ |
| ret = env->mmuregs[3]; |
| } else if (reg == 0x14) { /* Fault address read */ |
| ret = env->mmuregs[4]; |
| } |
| DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); |
| } |
| break; |
| case 5: /* Turbosparc ITLB Diagnostic */ |
| case 6: /* Turbosparc DTLB Diagnostic */ |
| case 7: /* Turbosparc IOTLB Diagnostic */ |
| break; |
| case 9: /* Supervisor code access */ |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_code(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_code(env, addr); |
| break; |
| default: |
| case 4: |
| ret = cpu_ldl_code(env, addr); |
| break; |
| case 8: |
| ret = cpu_ldq_code(env, addr); |
| break; |
| } |
| break; |
| case 0xa: /* User data access */ |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_user(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_user(env, addr); |
| break; |
| default: |
| case 4: |
| ret = cpu_ldl_user(env, addr); |
| break; |
| case 8: |
| ret = cpu_ldq_user(env, addr); |
| break; |
| } |
| break; |
| case 0xb: /* Supervisor data access */ |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_kernel(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_kernel(env, addr); |
| break; |
| default: |
| case 4: |
| ret = cpu_ldl_kernel(env, addr); |
| break; |
| case 8: |
| ret = cpu_ldq_kernel(env, addr); |
| break; |
| } |
| break; |
| case 0xc: /* I-cache tag */ |
| case 0xd: /* I-cache data */ |
| case 0xe: /* D-cache tag */ |
| case 0xf: /* D-cache data */ |
| break; |
| case 0x20: /* MMU passthrough */ |
| switch (size) { |
| case 1: |
| ret = ldub_phys(addr); |
| break; |
| case 2: |
| ret = lduw_phys(addr); |
| break; |
| default: |
| case 4: |
| ret = ldl_phys(addr); |
| break; |
| case 8: |
| ret = ldq_phys(addr); |
| break; |
| } |
| break; |
| case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ |
| switch (size) { |
| case 1: |
| ret = ldub_phys((hwaddr)addr |
| | ((hwaddr)(asi & 0xf) << 32)); |
| break; |
| case 2: |
| ret = lduw_phys((hwaddr)addr |
| | ((hwaddr)(asi & 0xf) << 32)); |
| break; |
| default: |
| case 4: |
| ret = ldl_phys((hwaddr)addr |
| | ((hwaddr)(asi & 0xf) << 32)); |
| break; |
| case 8: |
| ret = ldq_phys((hwaddr)addr |
| | ((hwaddr)(asi & 0xf) << 32)); |
| break; |
| } |
| break; |
| case 0x30: /* Turbosparc secondary cache diagnostic */ |
| case 0x31: /* Turbosparc RAM snoop */ |
| case 0x32: /* Turbosparc page table descriptor diagnostic */ |
| case 0x39: /* data cache diagnostic register */ |
| ret = 0; |
| break; |
| case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ |
| { |
| int reg = (addr >> 8) & 3; |
| |
| switch (reg) { |
| case 0: /* Breakpoint Value (Addr) */ |
| ret = env->mmubpregs[reg]; |
| break; |
| case 1: /* Breakpoint Mask */ |
| ret = env->mmubpregs[reg]; |
| break; |
| case 2: /* Breakpoint Control */ |
| ret = env->mmubpregs[reg]; |
| break; |
| case 3: /* Breakpoint Status */ |
| ret = env->mmubpregs[reg]; |
| env->mmubpregs[reg] = 0ULL; |
| break; |
| } |
| DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, |
| ret); |
| } |
| break; |
| case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ |
| ret = env->mmubpctrv; |
| break; |
| case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ |
| ret = env->mmubpctrc; |
| break; |
| case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ |
| ret = env->mmubpctrs; |
| break; |
| case 0x4c: /* SuperSPARC MMU Breakpoint Action */ |
| ret = env->mmubpaction; |
| break; |
| case 8: /* User code access, XXX */ |
| default: |
| cpu_unassigned_access(env, addr, 0, 0, asi, size); |
| ret = 0; |
| break; |
| } |
| if (sign) { |
| switch (size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(CPUSPARCState *env, target_ulong addr, uint64_t val, int asi, |
| int size) |
| { |
| helper_check_align(env, addr, size - 1); |
| switch (asi) { |
| case 2: /* SuperSparc MXCC registers and Leon3 cache control */ |
| switch (addr) { |
| case 0x00: /* Leon3 Cache Control */ |
| case 0x08: /* Leon3 Instruction Cache config */ |
| case 0x0C: /* Leon3 Date Cache config */ |
| if (env->def->features & CPU_FEATURE_CACHE_CTRL) { |
| leon3_cache_control_st(env, addr, val, size); |
| } |
| break; |
| |
| case 0x01c00000: /* MXCC stream data register 0 */ |
| if (size == 8) { |
| env->mxccdata[0] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00008: /* MXCC stream data register 1 */ |
| if (size == 8) { |
| env->mxccdata[1] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00010: /* MXCC stream data register 2 */ |
| if (size == 8) { |
| env->mxccdata[2] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00018: /* MXCC stream data register 3 */ |
| if (size == 8) { |
| env->mxccdata[3] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00100: /* MXCC stream source */ |
| if (size == 8) { |
| env->mxccregs[0] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + |
| 0); |
| env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + |
| 8); |
| env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + |
| 16); |
| env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + |
| 24); |
| break; |
| case 0x01c00200: /* MXCC stream destination */ |
| if (size == 8) { |
| env->mxccregs[1] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, |
| env->mxccdata[0]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, |
| env->mxccdata[1]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, |
| env->mxccdata[2]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, |
| env->mxccdata[3]); |
| break; |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) { |
| env->mxccregs[3] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) { |
| env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) |
| | val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00e00: /* MXCC error register */ |
| /* writing a 1 bit clears the error */ |
| if (size == 8) { |
| env->mxccregs[6] &= ~val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) { |
| env->mxccregs[7] = val; |
| } else { |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented access size: %d\n", addr, |
| size); |
| } |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, |
| "%08x: unimplemented address, size: %d\n", addr, |
| size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", |
| asi, size, addr, val); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case 3: /* MMU flush */ |
| { |
| int mmulev; |
| |
| mmulev = (addr >> 8) & 15; |
| DPRINTF_MMU("mmu flush level %d\n", mmulev); |
| switch (mmulev) { |
| case 0: /* flush page */ |
| tlb_flush_page(env, addr & 0xfffff000); |
| break; |
| case 1: /* flush segment (256k) */ |
| case 2: /* flush region (16M) */ |
| case 3: /* flush context (4G) */ |
| case 4: /* flush entire */ |
| tlb_flush(env, 1); |
| break; |
| default: |
| break; |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| } |
| break; |
| case 4: /* write MMU regs */ |
| { |
| int reg = (addr >> 8) & 0x1f; |
| uint32_t oldreg; |
| |
| oldreg = env->mmuregs[reg]; |
| switch (reg) { |
| case 0: /* Control Register */ |
| env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | |
| (val & 0x00ffffff); |
| /* Mappings generated during no-fault mode or MMU |
| disabled mode are invalid in normal mode */ |
| if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) != |
| (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) { |
| tlb_flush(env, 1); |
| } |
| break; |
| case 1: /* Context Table Pointer Register */ |
| env->mmuregs[reg] = val & env->def->mmu_ctpr_mask; |
| break; |
| case 2: /* Context Register */ |
| env->mmuregs[reg] = val & env->def->mmu_cxr_mask; |
| if (oldreg != env->mmuregs[reg]) { |
| /* we flush when the MMU context changes because |
| QEMU has no MMU context support */ |
| tlb_flush(env, 1); |
| } |
| break; |
| case 3: /* Synchronous Fault Status Register with Clear */ |
| case 4: /* Synchronous Fault Address Register */ |
| break; |
| case 0x10: /* TLB Replacement Control Register */ |
| env->mmuregs[reg] = val & env->def->mmu_trcr_mask; |
| break; |
| case 0x13: /* Synchronous Fault Status Register with Read |
| and Clear */ |
| env->mmuregs[3] = val & env->def->mmu_sfsr_mask; |
| break; |
| case 0x14: /* Synchronous Fault Address Register */ |
| env->mmuregs[4] = val; |
| break; |
| default: |
| env->mmuregs[reg] = val; |
| break; |
| } |
| if (oldreg != env->mmuregs[reg]) { |
| DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", |
| reg, oldreg, env->mmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| } |
| break; |
| case 5: /* Turbosparc ITLB Diagnostic */ |
| case 6: /* Turbosparc DTLB Diagnostic */ |
| case 7: /* Turbosparc IOTLB Diagnostic */ |
| break; |
| case 0xa: /* User data access */ |
| switch (size) { |
| case 1: |
| cpu_stb_user(env, addr, val); |
| break; |
| case 2: |
| cpu_stw_user(env, addr, val); |
| break; |
| default: |
| case 4: |
| cpu_stl_user(env, addr, val); |
| break; |
| case 8: |
| cpu_stq_user(env, addr, val); |
| break; |
| } |
| break; |
| case 0xb: /* Supervisor data access */ |
| switch (size) { |
| case 1: |
| cpu_stb_kernel(env, addr, val); |
| break; |
| case 2: |
| cpu_stw_kernel(env, addr, val); |
| break; |
| default: |
| case 4: |
| cpu_stl_kernel(env, addr, val); |
| break; |
| case 8: |
| cpu_stq_kernel(env, addr, val); |
| break; |
| } |
| break; |
| case 0xc: /* I-cache tag */ |
| case 0xd: /* I-cache data */ |
| case 0xe: /* D-cache tag */ |
| case 0xf: /* D-cache data */ |
| case 0x10: /* I/D-cache flush page */ |
| case 0x11: /* I/D-cache flush segment */ |
| case 0x12: /* I/D-cache flush region */ |
| case 0x13: /* I/D-cache flush context */ |
| case 0x14: /* I/D-cache flush user */ |
| break; |
| case 0x17: /* Block copy, sta access */ |
| { |
| /* val = src |
| addr = dst |
| copy 32 bytes */ |
| unsigned int i; |
| uint32_t src = val & ~3, dst = addr & ~3, temp; |
| |
| for (i = 0; i < 32; i += 4, src += 4, dst += 4) { |
| temp = cpu_ldl_kernel(env, src); |
| cpu_stl_kernel(env, dst, temp); |
| } |
| } |
| break; |
| case 0x1f: /* Block fill, stda access */ |
| { |
| /* addr = dst |
| fill 32 bytes with val */ |
| unsigned int i; |
| uint32_t dst = addr & 7; |
| |
| for (i = 0; i < 32; i += 8, dst += 8) { |
| cpu_stq_kernel(env, dst, val); |
| } |
| } |
| break; |
| case 0x20: /* MMU passthrough */ |
| { |
| switch (size) { |
| case 1: |
| stb_phys(addr, val); |
| break; |
| case 2: |
| stw_phys(addr, val); |
| break; |
| case 4: |
| default: |
| stl_phys(addr, val); |
| break; |
| case 8: |
| stq_phys(addr, val); |
| break; |
| } |
| } |
| break; |
| case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ |
| { |
| switch (size) { |
| case 1: |
| stb_phys((hwaddr)addr |
| | ((hwaddr)(asi & 0xf) << 32), val); |
| break; |
| case 2: |
| stw_phys((hwaddr)addr |
| | ((hwaddr)(asi & 0xf) << 32), val); |
| break; |
| case 4: |
| default: |
| stl_phys((hwaddr)addr |
| | ((hwaddr)(asi & 0xf) << 32), val); |
| break; |
| case 8: |
| stq_phys((hwaddr)addr |
| | ((hwaddr)(asi & 0xf) << 32), val); |
| break; |
| } |
| } |
| break; |
| case 0x30: /* store buffer tags or Turbosparc secondary cache diagnostic */ |
| case 0x31: /* store buffer data, Ross RT620 I-cache flush or |
| Turbosparc snoop RAM */ |
| case 0x32: /* store buffer control or Turbosparc page table |
| descriptor diagnostic */ |
| case 0x36: /* I-cache flash clear */ |
| case 0x37: /* D-cache flash clear */ |
| break; |
| case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ |
| { |
| int reg = (addr >> 8) & 3; |
| |
| switch (reg) { |
| case 0: /* Breakpoint Value (Addr) */ |
| env->mmubpregs[reg] = (val & 0xfffffffffULL); |
| break; |
| case 1: /* Breakpoint Mask */ |
| env->mmubpregs[reg] = (val & 0xfffffffffULL); |
| break; |
| case 2: /* Breakpoint Control */ |
| env->mmubpregs[reg] = (val & 0x7fULL); |
| break; |
| case 3: /* Breakpoint Status */ |
| env->mmubpregs[reg] = (val & 0xfULL); |
| break; |
| } |
| DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, |
| env->mmuregs[reg]); |
| } |
| break; |
| case 0x49: /* SuperSPARC MMU Counter Breakpoint Value */ |
| env->mmubpctrv = val & 0xffffffff; |
| break; |
| case 0x4a: /* SuperSPARC MMU Counter Breakpoint Control */ |
| env->mmubpctrc = val & 0x3; |
| break; |
| case 0x4b: /* SuperSPARC MMU Counter Breakpoint Status */ |
| env->mmubpctrs = val & 0x3; |
| break; |
| case 0x4c: /* SuperSPARC MMU Breakpoint Action */ |
| env->mmubpaction = val & 0x1fff; |
| break; |
| case 8: /* User code access, XXX */ |
| case 9: /* Supervisor code access, XXX */ |
| default: |
| cpu_unassigned_access(env, addr, 1, 0, asi, size); |
| break; |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| } |
| |
| #endif /* CONFIG_USER_ONLY */ |
| #else /* TARGET_SPARC64 */ |
| |
| #ifdef CONFIG_USER_ONLY |
| uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, |
| int sign) |
| { |
| uint64_t ret = 0; |
| #if defined(DEBUG_ASI) |
| target_ulong last_addr = addr; |
| #endif |
| |
| if (asi < 0x80) { |
| helper_raise_exception(env, TT_PRIV_ACT); |
| } |
| |
| helper_check_align(env, addr, size - 1); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case 0x82: /* Primary no-fault */ |
| case 0x8a: /* Primary no-fault LE */ |
| if (page_check_range(addr, size, PAGE_READ) == -1) { |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return 0; |
| } |
| /* Fall through */ |
| case 0x80: /* Primary */ |
| case 0x88: /* Primary LE */ |
| { |
| switch (size) { |
| case 1: |
| ret = ldub_raw(addr); |
| break; |
| case 2: |
| ret = lduw_raw(addr); |
| break; |
| case 4: |
| ret = ldl_raw(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_raw(addr); |
| break; |
| } |
| } |
| break; |
| case 0x83: /* Secondary no-fault */ |
| case 0x8b: /* Secondary no-fault LE */ |
| if (page_check_range(addr, size, PAGE_READ) == -1) { |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return 0; |
| } |
| /* Fall through */ |
| case 0x81: /* Secondary */ |
| case 0x89: /* Secondary LE */ |
| /* XXX */ |
| break; |
| default: |
| break; |
| } |
| |
| /* Convert from little endian */ |
| switch (asi) { |
| case 0x88: /* Primary LE */ |
| case 0x89: /* Secondary LE */ |
| case 0x8a: /* Primary no-fault LE */ |
| case 0x8b: /* Secondary no-fault LE */ |
| switch (size) { |
| case 2: |
| ret = bswap16(ret); |
| break; |
| case 4: |
| ret = bswap32(ret); |
| break; |
| case 8: |
| ret = bswap64(ret); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch (size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, |
| int asi, int size) |
| { |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| if (asi < 0x80) { |
| helper_raise_exception(env, TT_PRIV_ACT); |
| } |
| |
| helper_check_align(env, addr, size - 1); |
| addr = asi_address_mask(env, asi, addr); |
| |
| /* Convert to little endian */ |
| switch (asi) { |
| case 0x88: /* Primary LE */ |
| case 0x89: /* Secondary LE */ |
| switch (size) { |
| case 2: |
| val = bswap16(val); |
| break; |
| case 4: |
| val = bswap32(val); |
| break; |
| case 8: |
| val = bswap64(val); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch (asi) { |
| case 0x80: /* Primary */ |
| case 0x88: /* Primary LE */ |
| { |
| switch (size) { |
| case 1: |
| stb_raw(addr, val); |
| break; |
| case 2: |
| stw_raw(addr, val); |
| break; |
| case 4: |
| stl_raw(addr, val); |
| break; |
| case 8: |
| default: |
| stq_raw(addr, val); |
| break; |
| } |
| } |
| break; |
| case 0x81: /* Secondary */ |
| case 0x89: /* Secondary LE */ |
| /* XXX */ |
| return; |
| |
| case 0x82: /* Primary no-fault, RO */ |
| case 0x83: /* Secondary no-fault, RO */ |
| case 0x8a: /* Primary no-fault LE, RO */ |
| case 0x8b: /* Secondary no-fault LE, RO */ |
| default: |
| helper_raise_exception(env, TT_DATA_ACCESS); |
| return; |
| } |
| } |
| |
| #else /* CONFIG_USER_ONLY */ |
| |
| uint64_t helper_ld_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, |
| int sign) |
| { |
| uint64_t ret = 0; |
| #if defined(DEBUG_ASI) |
| target_ulong last_addr = addr; |
| #endif |
| |
| asi &= 0xff; |
| |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (cpu_has_hypervisor(env) |
| && asi >= 0x30 && asi < 0x80 |
| && !(env->hpstate & HS_PRIV))) { |
| helper_raise_exception(env, TT_PRIV_ACT); |
| } |
| |
| helper_check_align(env, addr, size - 1); |
| addr = asi_address_mask(env, asi, addr); |
| |
| /* process nonfaulting loads first */ |
| if ((asi & 0xf6) == 0x82) { |
| int mmu_idx; |
| |
| /* secondary space access has lowest asi bit equal to 1 */ |
| if (env->pstate & PS_PRIV) { |
| mmu_idx = (asi & 1) ? MMU_KERNEL_SECONDARY_IDX : MMU_KERNEL_IDX; |
| } else { |
| mmu_idx = (asi & 1) ? MMU_USER_SECONDARY_IDX : MMU_USER_IDX; |
| } |
| |
| if (cpu_get_phys_page_nofault(env, addr, mmu_idx) == -1ULL) { |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| /* env->exception_index is set in get_physical_address_data(). */ |
| helper_raise_exception(env, env->exception_index); |
| } |
| |
| /* convert nonfaulting load ASIs to normal load ASIs */ |
| asi &= ~0x02; |
| } |
| |
| switch (asi) { |
| case 0x10: /* As if user primary */ |
| case 0x11: /* As if user secondary */ |
| case 0x18: /* As if user primary LE */ |
| case 0x19: /* As if user secondary LE */ |
| case 0x80: /* Primary */ |
| case 0x81: /* Secondary */ |
| case 0x88: /* Primary LE */ |
| case 0x89: /* Secondary LE */ |
| case 0xe2: /* UA2007 Primary block init */ |
| case 0xe3: /* UA2007 Secondary block init */ |
| if ((asi & 0x80) && (env->pstate & PS_PRIV)) { |
| if (cpu_hypervisor_mode(env)) { |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_hypv(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_hypv(env, addr); |
| break; |
| case 4: |
| ret = cpu_ldl_hypv(env, addr); |
| break; |
| default: |
| case 8: |
| ret = cpu_ldq_hypv(env, addr); |
| break; |
| } |
| } else { |
| /* secondary space access has lowest asi bit equal to 1 */ |
| if (asi & 1) { |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_kernel_secondary(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_kernel_secondary(env, addr); |
| break; |
| case 4: |
| ret = cpu_ldl_kernel_secondary(env, addr); |
| break; |
| default: |
| case 8: |
| ret = cpu_ldq_kernel_secondary(env, addr); |
| break; |
| } |
| } else { |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_kernel(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_kernel(env, addr); |
| break; |
| case 4: |
| ret = cpu_ldl_kernel(env, addr); |
| break; |
| default: |
| case 8: |
| ret = cpu_ldq_kernel(env, addr); |
| break; |
| } |
| } |
| } |
| } else { |
| /* secondary space access has lowest asi bit equal to 1 */ |
| if (asi & 1) { |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_user_secondary(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_user_secondary(env, addr); |
| break; |
| case 4: |
| ret = cpu_ldl_user_secondary(env, addr); |
| break; |
| default: |
| case 8: |
| ret = cpu_ldq_user_secondary(env, addr); |
| break; |
| } |
| } else { |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_user(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_user(env, addr); |
| break; |
| case 4: |
| ret = cpu_ldl_user(env, addr); |
| break; |
| default: |
| case 8: |
| ret = cpu_ldq_user(env, addr); |
| break; |
| } |
| } |
| } |
| break; |
| case 0x14: /* Bypass */ |
| case 0x15: /* Bypass, non-cacheable */ |
| case 0x1c: /* Bypass LE */ |
| case 0x1d: /* Bypass, non-cacheable LE */ |
| { |
| switch (size) { |
| case 1: |
| ret = ldub_phys(addr); |
| break; |
| case 2: |
| ret = lduw_phys(addr); |
| break; |
| case 4: |
| ret = ldl_phys(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_phys(addr); |
| break; |
| } |
| break; |
| } |
| case 0x24: /* Nucleus quad LDD 128 bit atomic */ |
| case 0x2c: /* Nucleus quad LDD 128 bit atomic LE |
| Only ldda allowed */ |
| helper_raise_exception(env, TT_ILL_INSN); |
| return 0; |
| case 0x04: /* Nucleus */ |
| case 0x0c: /* Nucleus Little Endian (LE) */ |
| { |
| switch (size) { |
| case 1: |
| ret = cpu_ldub_nucleus(env, addr); |
| break; |
| case 2: |
| ret = cpu_lduw_nucleus(env, addr); |
| break; |
| case 4: |
| ret = cpu_ldl_nucleus(env, addr); |
| break; |
| default: |
| case 8: |
| ret = cpu_ldq_nucleus(env, addr); |
| break; |
| } |
| break; |
| } |
| case 0x4a: /* UPA config */ |
| /* XXX */ |
| break; |
| case 0x45: /* LSU */ |
| ret = env->lsu; |
| break; |
| case 0x50: /* I-MMU regs */ |
| { |
| int reg = (addr >> 3) & 0xf; |
| |
| if (reg == 0) { |
| /* I-TSB Tag Target register */ |
| ret = ultrasparc_tag_target(env->immu.tag_access); |
| } else { |
| ret = env->immuregs[reg]; |
| } |
| |
| break; |
| } |
| case 0x51: /* I-MMU 8k TSB pointer */ |
| { |
| /* env->immuregs[5] holds I-MMU TSB register value |
| env->immuregs[6] holds I-MMU Tag Access register value */ |
| ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, |
| 8*1024); |
| break; |
| } |
| case 0x52: /* I-MMU 64k TSB pointer */ |
| { |
| /* env->immuregs[5] holds I-MMU TSB register value |
| env->immuregs[6] holds I-MMU Tag Access register value */ |
| ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, |
| 64*1024); |
| break; |
| } |
| case 0x55: /* I-MMU data access */ |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->itlb[reg].tte; |
| break; |
| } |
| case 0x56: /* I-MMU tag read */ |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->itlb[reg].tag; |
| break; |
| } |
| case 0x58: /* D-MMU regs */ |
| { |
| int reg = (addr >> 3) & 0xf; |
| |
| if (reg == 0) { |
| /* D-TSB Tag Target register */ |
| ret = ultrasparc_tag_target(env->dmmu.tag_access); |
| } else { |
| ret = env->dmmuregs[reg]; |
| } |
| break; |
| } |
| case 0x59: /* D-MMU 8k TSB pointer */ |
| { |
| /* env->dmmuregs[5] holds D-MMU TSB register value |
| env->dmmuregs[6] holds D-MMU Tag Access register value */ |
| ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, |
| 8*1024); |
| break; |
| } |
| case 0x5a: /* D-MMU 64k TSB pointer */ |
| { |
| /* env->dmmuregs[5] holds D-MMU TSB register value |
| env->dmmuregs[6] holds D-MMU Tag Access register value */ |
| ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, |
| 64*1024); |
| break; |
| } |
| case 0x5d: /* D-MMU data access */ |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->dtlb[reg].tte; |
| break; |
| } |
| case 0x5e: /* D-MMU tag read */ |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->dtlb[reg].tag; |
| break; |
| } |
| case 0x48: /* Interrupt dispatch, RO */ |
| break; |
| case 0x49: /* Interrupt data receive */ |
| ret = env->ivec_status; |
| break; |
| case 0x7f: /* Incoming interrupt vector, RO */ |
| { |
| int reg = (addr >> 4) & 0x3; |
| if (reg < 3) { |
| ret = env->ivec_data[reg]; |
| } |
| break; |
| } |
| case 0x46: /* D-cache data */ |
| case 0x47: /* D-cache tag access */ |
| case 0x4b: /* E-cache error enable */ |
| case 0x4c: /* E-cache asynchronous fault status */ |
| case 0x4d: /* E-cache asynchronous fault address */ |
| case 0x4e: /* E-cache tag data */ |
| case 0x66: /* I-cache instruction access */ |
| case 0x67: /* I-cache tag access */ |
| case 0x6e: /* I-cache predecode */ |
| case 0x6f: /* I-cache LRU etc. */ |
| case 0x76: /* E-cache tag */ |
| case 0x7e: /* E-cache tag */ |
| break; |
| case 0x5b: /* D-MMU data pointer */ |
| case 0x54: /* I-MMU data in, WO */ |
| case 0x57: /* I-MMU demap, WO */ |
| case 0x5c: /* D-MMU data in, WO */ |
| case 0x5f: /* D-MMU demap, WO */ |
| case 0x77: /* Interrupt vector, WO */ |
| default: |
| cpu_unassigned_access(env, addr, 0, 0, 1, size); |
| ret = 0; |
| break; |
| } |
| |
| /* Convert from little endian */ |
| switch (asi) { |
| case 0x0c: /* Nucleus Little Endian (LE) */ |
| case 0x18: /* As if user primary LE */ |
| case 0x19: /* As if user secondary LE */ |
| case 0x1c: /* Bypass LE */ |
| case 0x1d: /* Bypass, non-cacheable LE */ |
| case 0x88: /* Primary LE */ |
| case 0x89: /* Secondary LE */ |
| switch(size) { |
| case 2: |
| ret = bswap16(ret); |
| break; |
| case 4: |
| ret = bswap32(ret); |
| break; |
| case 8: |
| ret = bswap64(ret); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch (size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(CPUSPARCState *env, target_ulong addr, target_ulong val, |
| int asi, int size) |
| { |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| |
| asi &= 0xff; |
| |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (cpu_has_hypervisor(env) |
| && asi >= 0x30 && asi < 0x80 |
| && !(env->hpstate & HS_PRIV))) { |
| helper_raise_exception(env, TT_PRIV_ACT); |
| } |
| |
| helper_check_align(env, addr, size - 1); |
| addr = asi_address_mask(env, asi, addr); |
| |
| /* Convert to little endian */ |
| switch (asi) { |
| case 0x0c: /* Nucleus Little Endian (LE) */ |
| case 0x18: /* As if user primary LE */ |
| case 0x19: /* As if user secondary LE */ |
| case 0x1c: /* Bypass LE */ |
| case 0x1d: /* Bypass, non-cacheable LE */ |
| case 0x88: /* Primary LE */ |
| case 0x89: /* Secondary LE */ |
| switch (size) { |
| case 2: |
| val = bswap16(val); |
| break; |
| case 4: |
| val = bswap32(val); |
| break; |
| case 8: |
| val = bswap64(val); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch (asi) { |
| case 0x10: /* As if user primary */ |
| case 0x11: /* As if user secondary */ |
| case 0x18: /* As if user primary LE */ |
| case 0x19: /* As if user secondary LE */ |
| case 0x80: /* Primary */ |
| case 0x81: /* Secondary */ |
| case 0x88: /* Primary LE */ |
| case 0x89: /* Secondary LE */ |
| case 0xe2: /* UA2007 Primary block init */ |
| case 0xe3: /* UA2007 Secondary block init */ |
| if ((asi & 0x80) && (env->pstate & PS_PRIV)) { |
| if (cpu_hypervisor_mode(env)) { |
| switch (size) { |
| case 1: |
| cpu_stb_hypv(env, addr, val); |
| break; |
| case 2: |
| cpu_stw_hypv(env, addr, val); |
| break; |
| case 4: |
| cpu_stl_hypv(env, addr, val); |
| break; |
| case 8: |
| default: |
| cpu_stq_hypv(env, addr, val); |
| break; |
| } |
| } else { |
| /* secondary space access has lowest asi bit equal to 1 */ |
| if (asi & 1) { |
| switch (size) { |
| case 1: |
| cpu_stb_kernel_secondary(env, addr, val); |
| break; |
| case 2: |
| cpu_stw_kernel_secondary(env, addr, val); |
| break; |
| case 4: |
| cpu_stl_kernel_secondary(env, addr, val); |
| break; |
| case 8: |
| default: |
| cpu_stq_kernel_secondary(env, addr, val); |
| break; |
| } |
| } else { |
| switch (size) { |
| case 1: |
| cpu_stb_kernel(env, addr, val); |
| break; |
| case 2: |
| cpu_stw_kernel(env, addr, val); |
| break; |
| case 4: |
| cpu_stl_kernel(env, addr, val); |
| break; |
| case 8: |
| default: |
| cpu_stq_kernel(env, addr, val); |
| break; |
| } |
| } |
| } |
| } else { |
| /* secondary space access has lowest asi bit equal to 1 */ |
| if (asi & 1) { |
| switch (size) { |
| case 1: |
| cpu_stb_user_secondary(env, addr, val); |
| break; |
| case 2: |
| cpu_stw_user_secondary(env, addr, val); |
| break; |
| case 4: |
| cpu_stl_user_secondary(env, addr, val); |
| break; |
| case 8: |
| default: |
| cpu_stq_user_secondary(env, addr, val); |
| break; |
| } |
| } else { |
| switch (size) { |
| case 1: |
| cpu_stb_user(env, addr, val); |
| break; |
| case 2: |
| cpu_stw_user(env, addr, val); |
| break; |
| case 4: |
| cpu_stl_user(env, addr, val); |
| break; |
| case 8: |
| default: |
| cpu_stq_user(env, addr, val); |
| break; |
| } |
| } |
| } |
| break; |
| case 0x14: /* Bypass */ |
| case 0x15: /* Bypass, non-cacheable */ |
| case 0x1c: /* Bypass LE */ |
| case 0x1d: /* Bypass, non-cacheable LE */ |
| { |
| switch (size) { |
| case 1: |
| stb_phys(addr, val); |
| break; |
| case 2: |
| stw_phys(addr, val); |
| break; |
| case 4: |
| stl_phys(addr, val); |
| break; |
| case 8: |
| default: |
| stq_phys(addr, val); |
| break; |
| } |
| } |
| return; |
| case 0x24: /* Nucleus quad LDD 128 bit atomic */ |
| case 0x2c: /* Nucleus quad LDD 128 bit atomic LE |
| Only ldda allowed */ |
| helper_raise_exception(env, TT_ILL_INSN); |
| return; |
| case 0x04: /* Nucleus */ |
| case 0x0c: /* Nucleus Little Endian (LE) */ |
| { |
| switch (size) { |
| case 1: |
| cpu_stb_nucleus(env, addr, val); |
| break; |
| case 2: |
| cpu_stw_nucleus(env, addr, val); |
| break; |
| case 4: |
| cpu_stl_nucleus(env, addr, val); |
| break; |
| default: |
| case 8: |
| cpu_stq_nucleus(env, addr, val); |
| break; |
| } |
| break; |
| } |
| |
| case 0x4a: /* UPA config */ |
| /* XXX */ |
| return; |
| case 0x45: /* LSU */ |
| { |
| uint64_t oldreg; |
| |
| oldreg = env->lsu; |
| env->lsu = val & (DMMU_E | IMMU_E); |
| /* Mappings generated during D/I MMU disabled mode are |
| invalid in normal mode */ |
| if (oldreg != env->lsu) { |
| DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", |
| oldreg, env->lsu); |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env1); |
| #endif |
| tlb_flush(env, 1); |
| } |
| return; |
| } |
| case 0x50: /* I-MMU regs */ |
| { |
| int reg = (addr >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->immuregs[reg]; |
| switch (reg) { |
| case 0: /* RO */ |
| return; |
| case 1: /* Not in I-MMU */ |
| case 2: |
| return; |
| case 3: /* SFSR */ |
| if ((val & 1) == 0) { |
| val = 0; /* Clear SFSR */ |
| } |
| env->immu.sfsr = val; |
| break; |
| case 4: /* RO */ |
| return; |
| case 5: /* TSB access */ |
| DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", env->immu.tsb, val); |
| env->immu.tsb = val; |
| break; |
| case 6: /* Tag access */ |
| env->immu.tag_access = val; |
| break; |
| case 7: |
| case 8: |
| return; |
| default: |
| break; |
| } |
| |
| if (oldreg != env->immuregs[reg]) { |
| DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", reg, oldreg, env->immuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| return; |
| } |
| case 0x54: /* I-MMU data in */ |
| replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env); |
| return; |
| case 0x55: /* I-MMU data access */ |
| { |
| /* TODO: auto demap */ |
| |
| unsigned int i = (addr >> 3) & 0x3f; |
| |
| replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env); |
| |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("immu data access replaced entry [%i]\n", i); |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| return; |
| } |
| case 0x57: /* I-MMU demap */ |
| demap_tlb(env->itlb, addr, "immu", env); |
| return; |
| case 0x58: /* D-MMU regs */ |
| { |
| int reg = (addr >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->dmmuregs[reg]; |
| switch (reg) { |
| case 0: /* RO */ |
| case 4: |
| return; |
| case 3: /* SFSR */ |
| if ((val & 1) == 0) { |
| val = 0; /* Clear SFSR, Fault address */ |
| env->dmmu.sfar = 0; |
| } |
| env->dmmu.sfsr = val; |
| break; |
| case 1: /* Primary context */ |
| env->dmmu.mmu_primary_context = val; |
| /* can be optimized to only flush MMU_USER_IDX |
| and MMU_KERNEL_IDX entries */ |
| tlb_flush(env, 1); |
| break; |
| case 2: /* Secondary context */ |
| env->dmmu.mmu_secondary_context = val; |
| /* can be optimized to only flush MMU_USER_SECONDARY_IDX |
| and MMU_KERNEL_SECONDARY_IDX entries */ |
| tlb_flush(env, 1); |
| break; |
| case 5: /* TSB access */ |
| DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", env->dmmu.tsb, val); |
| env->dmmu.tsb = val; |
| break; |
| case 6: /* Tag access */ |
| env->dmmu.tag_access = val; |
| break; |
| case 7: /* Virtual Watchpoint */ |
| case 8: /* Physical Watchpoint */ |
| default: |
| env->dmmuregs[reg] = val; |
| break; |
| } |
| |
| if (oldreg != env->dmmuregs[reg]) { |
| DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| return; |
| } |
| case 0x5c: /* D-MMU data in */ |
| replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env); |
| return; |
| case 0x5d: /* D-MMU data access */ |
| { |
| unsigned int i = (addr >> 3) & 0x3f; |
| |
| replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env); |
| |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| return; |
| } |
| case 0x5f: /* D-MMU demap */ |
| demap_tlb(env->dtlb, addr, "dmmu", env); |
| return; |
| case 0x49: /* Interrupt data receive */ |
| env->ivec_status = val & 0x20; |
| return; |
| case 0x46: /* D-cache data */ |
| case 0x47: /* D-cache tag access */ |
| case 0x4b: /* E-cache error enable */ |
| case 0x4c: /* E-cache asynchronous fault status */ |
| case 0x4d: /* E-cache asynchronous fault address */ |
| case 0x4e: /* E-cache tag data */ |
| case 0x66: /* I-cache instruction access */ |
| case 0x67: /* I-cache tag access */ |
| case 0x6e: /* I-cache predecode */ |
| case 0x6f: /* I-cache LRU etc. */ |
| case 0x76: /* E-cache tag */ |
| case 0x7e: /* E-cache tag */ |
| return; |
| case 0x51: /* I-MMU 8k TSB pointer, RO */ |
| case 0x52: /* I-MMU 64k TSB pointer, RO */ |
| case 0x56: /* I-MMU tag read, RO */ |
| case 0x59: /* D-MMU 8k TSB pointer, RO */ |
| case 0x5a: /* D-MMU 64k TSB pointer, RO */ |
| case 0x5b: /* D-MMU data pointer, RO */ |
| case 0x5e: /* D-MMU tag read, RO */ |
| case 0x48: /* Interrupt dispatch, RO */ |
| case 0x7f: /* Incoming interrupt vector, RO */ |
| case 0x82: /* Primary no-fault, RO */ |
| case 0x83: /* Secondary no-fault, RO */ |
| case 0x8a: /* Primary no-fault LE, RO */ |
| case 0x8b: /* Secondary no-fault LE, RO */ |
| default: |
| cpu_unassigned_access(env, addr, 1, 0, 1, size); |
| return; |
| } |
| } |
| #endif /* CONFIG_USER_ONLY */ |
| |
| void helper_ldda_asi(CPUSPARCState *env, target_ulong addr, int asi, int rd) |
| { |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (cpu_has_hypervisor(env) |
| && asi >= 0x30 && asi < 0x80 |
| && !(env->hpstate & HS_PRIV))) { |
| helper_raise_exception(env, TT_PRIV_ACT); |
| } |
| |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| #if !defined(CONFIG_USER_ONLY) |
| case 0x24: /* Nucleus quad LDD 128 bit atomic */ |
| case 0x2c: /* Nucleus quad LDD 128 bit atomic LE */ |
| helper_check_align(env, addr, 0xf); |
| if (rd == 0) { |
| env->gregs[1] = cpu_ldq_nucleus(env, addr + 8); |
| if (asi == 0x2c) { |
| bswap64s(&env->gregs[1]); |
| } |
| } else if (rd < 8) { |
| env->gregs[rd] = cpu_ldq_nucleus(env, addr); |
| env->gregs[rd + 1] = cpu_ldq_nucleus(env, addr + 8); |
| if (asi == 0x2c) { |
| bswap64s(&env->gregs[rd]); |
| bswap64s(&env->gregs[rd + 1]); |
| } |
| } else { |
| env->regwptr[rd] = cpu_ldq_nucleus(env, addr); |
| env->regwptr[rd + 1] = cpu_ldq_nucleus(env, addr + 8); |
| if (asi == 0x2c) { |
| bswap64s(&env->regwptr[rd]); |
| bswap64s(&env->regwptr[rd + 1]); |
| } |
| } |
| break; |
| #endif |
| default: |
| helper_check_align(env, addr, 0x3); |
| if (rd == 0) { |
| env->gregs[1] = helper_ld_asi(env, addr + 4, asi, 4, 0); |
| } else if (rd < 8) { |
| env->gregs[rd] = helper_ld_asi(env, addr, asi, 4, 0); |
| env->gregs[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0); |
| } else { |
| env->regwptr[rd] = helper_ld_asi(env, addr, asi, 4, 0); |
| env->regwptr[rd + 1] = helper_ld_asi(env, addr + 4, asi, 4, 0); |
| } |
| break; |
| } |
| } |
| |
| void helper_ldf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, |
| int rd) |
| { |
| unsigned int i; |
| target_ulong val; |
| |
| helper_check_align(env, addr, 3); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case 0xf0: /* UA2007/JPS1 Block load primary */ |
| case 0xf1: /* UA2007/JPS1 Block load secondary */ |
| case 0xf8: /* UA2007/JPS1 Block load primary LE */ |
| case 0xf9: /* UA2007/JPS1 Block load secondary LE */ |
| if (rd & 7) { |
| helper_raise_exception(env, TT_ILL_INSN); |
| return; |
| } |
| helper_check_align(env, addr, 0x3f); |
| for (i = 0; i < 8; i++, rd += 2, addr += 8) { |
| env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x8f, 8, 0); |
| } |
| return; |
| |
| case 0x16: /* UA2007 Block load primary, user privilege */ |
| case 0x17: /* UA2007 Block load secondary, user privilege */ |
| case 0x1e: /* UA2007 Block load primary LE, user privilege */ |
| case 0x1f: /* UA2007 Block load secondary LE, user privilege */ |
| case 0x70: /* JPS1 Block load primary, user privilege */ |
| case 0x71: /* JPS1 Block load secondary, user privilege */ |
| case 0x78: /* JPS1 Block load primary LE, user privilege */ |
| case 0x79: /* JPS1 Block load secondary LE, user privilege */ |
| if (rd & 7) { |
| helper_raise_exception(env, TT_ILL_INSN); |
| return; |
| } |
| helper_check_align(env, addr, 0x3f); |
| for (i = 0; i < 8; i++, rd += 2, addr += 8) { |
| env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi & 0x19, 8, 0); |
| } |
| return; |
| |
| default: |
| break; |
| } |
| |
| switch (size) { |
| default: |
| case 4: |
| val = helper_ld_asi(env, addr, asi, size, 0); |
| if (rd & 1) { |
| env->fpr[rd / 2].l.lower = val; |
| } else { |
| env->fpr[rd / 2].l.upper = val; |
| } |
| break; |
| case 8: |
| env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, size, 0); |
| break; |
| case 16: |
| env->fpr[rd / 2].ll = helper_ld_asi(env, addr, asi, 8, 0); |
| env->fpr[rd / 2 + 1].ll = helper_ld_asi(env, addr + 8, asi, 8, 0); |
| break; |
| } |
| } |
| |
| void helper_stf_asi(CPUSPARCState *env, target_ulong addr, int asi, int size, |
| int rd) |
| { |
| unsigned int i; |
| target_ulong val; |
| |
| helper_check_align(env, addr, 3); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case 0xe0: /* UA2007/JPS1 Block commit store primary (cache flush) */ |
| case 0xe1: /* UA2007/JPS1 Block commit store secondary (cache flush) */ |
| case 0xf0: /* UA2007/JPS1 Block store primary */ |
| case 0xf1: /* UA2007/JPS1 Block store secondary */ |
| case 0xf8: /* UA2007/JPS1 Block store primary LE */ |
| case 0xf9: /* UA2007/JPS1 Block store secondary LE */ |
| if (rd & 7) { |
| helper_raise_exception(env, TT_ILL_INSN); |
| return; |
| } |
| helper_check_align(env, addr, 0x3f); |
| for (i = 0; i < 8; i++, rd += 2, addr += 8) { |
| helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x8f, 8); |
| } |
| |
| return; |
| case 0x16: /* UA2007 Block load primary, user privilege */ |
| case 0x17: /* UA2007 Block load secondary, user privilege */ |
| case 0x1e: /* UA2007 Block load primary LE, user privilege */ |
| case 0x1f: /* UA2007 Block load secondary LE, user privilege */ |
| case 0x70: /* JPS1 Block store primary, user privilege */ |
| case 0x71: /* JPS1 Block store secondary, user privilege */ |
| case 0x78: /* JPS1 Block load primary LE, user privilege */ |
| case 0x79: /* JPS1 Block load secondary LE, user privilege */ |
| if (rd & 7) { |
| helper_raise_exception(env, TT_ILL_INSN); |
| return; |
| } |
| helper_check_align(env, addr, 0x3f); |
| for (i = 0; i < 8; i++, rd += 2, addr += 8) { |
| helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi & 0x19, 8); |
| } |
| |
| return; |
| default: |
| break; |
| } |
| |
| switch (size) { |
| default: |
| case 4: |
| if (rd & 1) { |
| val = env->fpr[rd / 2].l.lower; |
| } else { |
| val = env->fpr[rd / 2].l.upper; |
| } |
| helper_st_asi(env, addr, val, asi, size); |
| break; |
| case 8: |
| helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, size); |
| break; |
| case 16: |
| helper_st_asi(env, addr, env->fpr[rd / 2].ll, asi, 8); |
| helper_st_asi(env, addr + 8, env->fpr[rd / 2 + 1].ll, asi, 8); |
| break; |
| } |
| } |
| |
| target_ulong helper_cas_asi(CPUSPARCState *env, target_ulong addr, |
| target_ulong val1, target_ulong val2, uint32_t asi) |
| { |
| target_ulong ret; |
| |
| val2 &= 0xffffffffUL; |
| ret = helper_ld_asi(env, addr, asi, 4, 0); |
| ret &= 0xffffffffUL; |
| if (val2 == ret) { |
| helper_st_asi(env, addr, val1 & 0xffffffffUL, asi, 4); |
| } |
| return ret; |
| } |
| |
| target_ulong helper_casx_asi(CPUSPARCState *env, target_ulong addr, |
| target_ulong val1, target_ulong val2, |
| uint32_t asi) |
| { |
| target_ulong ret; |
| |
| ret = helper_ld_asi(env, addr, asi, 8, 0); |
| if (val2 == ret) { |
| helper_st_asi(env, addr, val1, asi, 8); |
| } |
| return ret; |
| } |
| #endif /* TARGET_SPARC64 */ |
| |
| void helper_ldqf(CPUSPARCState *env, target_ulong addr, int mem_idx) |
| { |
| /* XXX add 128 bit load */ |
| CPU_QuadU u; |
| |
| helper_check_align(env, addr, 7); |
| #if !defined(CONFIG_USER_ONLY) |
| switch (mem_idx) { |
| case MMU_USER_IDX: |
| u.ll.upper = cpu_ldq_user(env, addr); |
| u.ll.lower = cpu_ldq_user(env, addr + 8); |
| QT0 = u.q; |
| break; |
| case MMU_KERNEL_IDX: |
| u.ll.upper = cpu_ldq_kernel(env, addr); |
| u.ll.lower = cpu_ldq_kernel(env, addr + 8); |
| QT0 = u.q; |
| break; |
| #ifdef TARGET_SPARC64 |
| case MMU_HYPV_IDX: |
| u.ll.upper = cpu_ldq_hypv(env, addr); |
| u.ll.lower = cpu_ldq_hypv(env, addr + 8); |
| QT0 = u.q; |
| break; |
| #endif |
| default: |
| DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx); |
| break; |
| } |
| #else |
| u.ll.upper = ldq_raw(address_mask(env, addr)); |
| u.ll.lower = ldq_raw(address_mask(env, addr + 8)); |
| QT0 = u.q; |
| #endif |
| } |
| |
| void helper_stqf(CPUSPARCState *env, target_ulong addr, int mem_idx) |
| { |
| /* XXX add 128 bit store */ |
| CPU_QuadU u; |
| |
| helper_check_align(env, addr, 7); |
| #if !defined(CONFIG_USER_ONLY) |
| switch (mem_idx) { |
| case MMU_USER_IDX: |
| u.q = QT0; |
| cpu_stq_user(env, addr, u.ll.upper); |
| cpu_stq_user(env, addr + 8, u.ll.lower); |
| break; |
| case MMU_KERNEL_IDX: |
| u.q = QT0; |
| cpu_stq_kernel(env, addr, u.ll.upper); |
| cpu_stq_kernel(env, addr + 8, u.ll.lower); |
| break; |
| #ifdef TARGET_SPARC64 |
| case MMU_HYPV_IDX: |
| u.q = QT0; |
| cpu_stq_hypv(env, addr, u.ll.upper); |
| cpu_stq_hypv(env, addr + 8, u.ll.lower); |
| break; |
| #endif |
| default: |
| DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx); |
| break; |
| } |
| #else |
| u.q = QT0; |
| stq_raw(address_mask(env, addr), u.ll.upper); |
| stq_raw(address_mask(env, addr + 8), u.ll.lower); |
| #endif |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| #ifndef TARGET_SPARC64 |
| void cpu_unassigned_access(CPUSPARCState *env, hwaddr addr, |
| int is_write, int is_exec, int is_asi, int size) |
| { |
| int fault_type; |
| |
| #ifdef DEBUG_UNASSIGNED |
| if (is_asi) { |
| printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx |
| " asi 0x%02x from " TARGET_FMT_lx "\n", |
| is_exec ? "exec" : is_write ? "write" : "read", size, |
| size == 1 ? "" : "s", addr, is_asi, env->pc); |
| } else { |
| printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx |
| " from " TARGET_FMT_lx "\n", |
| is_exec ? "exec" : is_write ? "write" : "read", size, |
| size == 1 ? "" : "s", addr, env->pc); |
| } |
| #endif |
| /* Don't overwrite translation and access faults */ |
| fault_type = (env->mmuregs[3] & 0x1c) >> 2; |
| if ((fault_type > 4) || (fault_type == 0)) { |
| env->mmuregs[3] = 0; /* Fault status register */ |
| if (is_asi) { |
| env->mmuregs[3] |= 1 << 16; |
| } |
| if (env->psrs) { |
| env->mmuregs[3] |= 1 << 5; |
| } |
| if (is_exec) { |
| env->mmuregs[3] |= 1 << 6; |
| } |
| if (is_write) { |
| env->mmuregs[3] |= 1 << 7; |
| } |
| env->mmuregs[3] |= (5 << 2) | 2; |
| /* SuperSPARC will never place instruction fault addresses in the FAR */ |
| if (!is_exec) { |
| env->mmuregs[4] = addr; /* Fault address register */ |
| } |
| } |
| /* overflow (same type fault was not read before another fault) */ |
| if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { |
| env->mmuregs[3] |= 1; |
| } |
| |
| if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { |
| if (is_exec) { |
| helper_raise_exception(env, TT_CODE_ACCESS); |
| } else { |
| helper_raise_exception(env, TT_DATA_ACCESS); |
| } |
| } |
| |
| /* flush neverland mappings created during no-fault mode, |
| so the sequential MMU faults report proper fault types */ |
| if (env->mmuregs[0] & MMU_NF) { |
| tlb_flush(env, 1); |
| } |
| } |
| #else |
| void cpu_unassigned_access(CPUSPARCState *env, hwaddr addr, |
| int is_write, int is_exec, int is_asi, int size) |
| { |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| |
| if (is_exec) { |
| helper_raise_exception(env, TT_CODE_ACCESS); |
| } else { |
| helper_raise_exception(env, TT_DATA_ACCESS); |
| } |
| } |
| #endif |
| #endif |
| |
| /* XXX: make it generic ? */ |
| void cpu_restore_state2(CPUSPARCState *env, uintptr_t retaddr) |
| { |
| TranslationBlock *tb; |
| |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| tb = tb_find_pc(retaddr); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, retaddr); |
| } |
| } |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| void do_unaligned_access(CPUSPARCState *env, target_ulong addr, int is_write, |
| int is_user, uintptr_t retaddr) |
| { |
| #ifdef DEBUG_UNALIGNED |
| printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| cpu_restore_state2(env, retaddr); |
| helper_raise_exception(env, TT_UNALIGNED); |
| } |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill(CPUSPARCState *env, target_ulong addr, int is_write, int mmu_idx, |
| uintptr_t retaddr) |
| { |
| int ret; |
| |
| ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx); |
| if (ret) { |
| cpu_restore_state2(env, retaddr); |
| cpu_loop_exit(env); |
| } |
| } |
| #endif |