| /* |
| * QTest testcase for the SSE timer device |
| * |
| * Copyright (c) 2021 Linaro Limited |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms of the GNU General Public License as published by the |
| * Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License |
| * for more details. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "libqtest-single.h" |
| |
| /* |
| * SSE-123/SSE-300 timer in the mps3-an547 board, where it is driven |
| * at 32MHz, so 31.25ns per tick. |
| */ |
| #define TIMER_BASE 0x48000000 |
| |
| /* PERIPHNSPPC0 register in the SSE-300 Secure Access Configuration block */ |
| #define PERIPHNSPPC0 (0x50080000 + 0x70) |
| |
| /* Base of the System Counter control frame */ |
| #define COUNTER_BASE 0x58100000 |
| |
| /* SSE counter register offsets in the control frame */ |
| #define CNTCR 0 |
| #define CNTSR 0x4 |
| #define CNTCV_LO 0x8 |
| #define CNTCV_HI 0xc |
| #define CNTSCR 0x10 |
| |
| /* SSE timer register offsets */ |
| #define CNTPCT_LO 0 |
| #define CNTPCT_HI 4 |
| #define CNTFRQ 0x10 |
| #define CNTP_CVAL_LO 0x20 |
| #define CNTP_CVAL_HI 0x24 |
| #define CNTP_TVAL 0x28 |
| #define CNTP_CTL 0x2c |
| #define CNTP_AIVAL_LO 0x40 |
| #define CNTP_AIVAL_HI 0x44 |
| #define CNTP_AIVAL_RELOAD 0x48 |
| #define CNTP_AIVAL_CTL 0x4c |
| |
| /* 4 ticks in nanoseconds (so we can work in integers) */ |
| #define FOUR_TICKS 125 |
| |
| static void clock_step_ticks(uint64_t ticks) |
| { |
| /* |
| * Advance the qtest clock by however many nanoseconds we |
| * need to move the timer forward the specified number of ticks. |
| * ticks must be a multiple of 4, so we get a whole number of ns. |
| */ |
| assert(!(ticks & 3)); |
| clock_step(FOUR_TICKS * (ticks >> 2)); |
| } |
| |
| static void reset_counter_and_timer(void) |
| { |
| /* |
| * Reset the system counter and the timer between tests. This |
| * isn't a full reset, but it's sufficient for what the tests check. |
| */ |
| writel(COUNTER_BASE + CNTCR, 0); |
| writel(TIMER_BASE + CNTP_CTL, 0); |
| writel(TIMER_BASE + CNTP_AIVAL_CTL, 0); |
| writel(COUNTER_BASE + CNTCV_LO, 0); |
| writel(COUNTER_BASE + CNTCV_HI, 0); |
| } |
| |
| static void test_counter(void) |
| { |
| /* Basic counter functionality test */ |
| |
| reset_counter_and_timer(); |
| /* The counter should start disabled: check that it doesn't move */ |
| clock_step_ticks(100); |
| g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 0); |
| g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0); |
| /* Now enable it and check that it does count */ |
| writel(COUNTER_BASE + CNTCR, 1); |
| clock_step_ticks(100); |
| g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 100); |
| g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0); |
| /* Check the counter scaling functionality */ |
| writel(COUNTER_BASE + CNTCR, 0); |
| writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */ |
| writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */ |
| clock_step_ticks(160); |
| g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 110); |
| g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0); |
| } |
| |
| static void test_timer(void) |
| { |
| /* Basic timer functionality test */ |
| |
| reset_counter_and_timer(); |
| /* |
| * The timer is behind a Peripheral Protection Controller, and |
| * qtest accesses are always non-secure (no memory attributes), |
| * so we must program the PPC to accept NS transactions. TIMER0 |
| * is on port 0 of PPC0, controlled by bit 0 of this register. |
| */ |
| writel(PERIPHNSPPC0, 1); |
| /* We must enable the System Counter or the timer won't run. */ |
| writel(COUNTER_BASE + CNTCR, 1); |
| |
| /* Timer starts disabled and with a counter of 0 */ |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 0); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 0); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0); |
| |
| /* Turn it on */ |
| writel(TIMER_BASE + CNTP_CTL, 1); |
| |
| /* Is the timer ticking? */ |
| clock_step_ticks(100); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 100); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0); |
| |
| /* Set the CompareValue to 4000 ticks */ |
| writel(TIMER_BASE + CNTP_CVAL_LO, 4000); |
| writel(TIMER_BASE + CNTP_CVAL_HI, 0); |
| |
| /* Check TVAL view of the counter */ |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 3900); |
| |
| /* Advance to the CompareValue mark and check ISTATUS is set */ |
| clock_step_ticks(3900); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 0); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); |
| |
| /* Now exercise the auto-reload part of the timer */ |
| writel(TIMER_BASE + CNTP_AIVAL_RELOAD, 200); |
| writel(TIMER_BASE + CNTP_AIVAL_CTL, 1); |
| |
| /* Check AIVAL was reloaded and that ISTATUS is now clear */ |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4200); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); |
| |
| /* |
| * Check that when we advance forward to the reload time the interrupt |
| * fires and the value reloads |
| */ |
| clock_step_ticks(100); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); |
| clock_step_ticks(100); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4400); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0); |
| |
| clock_step_ticks(100); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); |
| /* Check that writing 0 to CLR clears the interrupt */ |
| writel(TIMER_BASE + CNTP_AIVAL_CTL, 1); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); |
| /* Check that when we move forward to the reload time it fires again */ |
| clock_step_ticks(100); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0); |
| |
| /* |
| * Step the clock far enough that we overflow the low half of the |
| * CNTPCT and AIVAL registers, and check that their high halves |
| * give the right values. We do the forward movement in |
| * non-autoinc mode because otherwise it takes forever as the |
| * timer has to emulate all the 'reload at t + N, t + 2N, etc' |
| * steps. |
| */ |
| writel(TIMER_BASE + CNTP_AIVAL_CTL, 0); |
| clock_step_ticks(0x42ULL << 32); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 4400); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0x42); |
| |
| /* Turn on the autoinc again to check AIVAL_HI */ |
| writel(TIMER_BASE + CNTP_AIVAL_CTL, 1); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0x42); |
| } |
| |
| static void test_timer_scale_change(void) |
| { |
| /* |
| * Test that the timer responds correctly to counter |
| * scaling changes while it has an active timer. |
| */ |
| reset_counter_and_timer(); |
| /* Give ourselves access to the timer, and enable the counter and timer */ |
| writel(PERIPHNSPPC0, 1); |
| writel(COUNTER_BASE + CNTCR, 1); |
| writel(TIMER_BASE + CNTP_CTL, 1); |
| /* Set the CompareValue to 4000 ticks */ |
| writel(TIMER_BASE + CNTP_CVAL_LO, 4000); |
| writel(TIMER_BASE + CNTP_CVAL_HI, 0); |
| /* Advance halfway and check ISTATUS is not set */ |
| clock_step_ticks(2000); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); |
| /* Reprogram the counter to run at 1/16th speed */ |
| writel(COUNTER_BASE + CNTCR, 0); |
| writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */ |
| writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */ |
| /* Advance to where the timer would have fired and check it has not */ |
| clock_step_ticks(2000); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); |
| /* Advance to where the timer must fire at the new clock rate */ |
| clock_step_ticks(29996); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1); |
| clock_step_ticks(4); |
| g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5); |
| } |
| |
| int main(int argc, char **argv) |
| { |
| int r; |
| |
| g_test_init(&argc, &argv, NULL); |
| |
| qtest_start("-machine mps3-an547"); |
| |
| qtest_add_func("/sse-timer/counter", test_counter); |
| qtest_add_func("/sse-timer/timer", test_timer); |
| qtest_add_func("/sse-timer/timer-scale-change", test_timer_scale_change); |
| |
| r = g_test_run(); |
| |
| qtest_end(); |
| |
| return r; |
| } |