blob: a65d7542d51397c37e2b0433408e6302d0a83090 [file] [log] [blame]
/*
* QTest testcase for the SSE timer device
*
* Copyright (c) 2021 Linaro Limited
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "qemu/osdep.h"
#include "libqtest-single.h"
/*
* SSE-123/SSE-300 timer in the mps3-an547 board, where it is driven
* at 32MHz, so 31.25ns per tick.
*/
#define TIMER_BASE 0x48000000
/* PERIPHNSPPC0 register in the SSE-300 Secure Access Configuration block */
#define PERIPHNSPPC0 (0x50080000 + 0x70)
/* Base of the System Counter control frame */
#define COUNTER_BASE 0x58100000
/* SSE counter register offsets in the control frame */
#define CNTCR 0
#define CNTSR 0x4
#define CNTCV_LO 0x8
#define CNTCV_HI 0xc
#define CNTSCR 0x10
/* SSE timer register offsets */
#define CNTPCT_LO 0
#define CNTPCT_HI 4
#define CNTFRQ 0x10
#define CNTP_CVAL_LO 0x20
#define CNTP_CVAL_HI 0x24
#define CNTP_TVAL 0x28
#define CNTP_CTL 0x2c
#define CNTP_AIVAL_LO 0x40
#define CNTP_AIVAL_HI 0x44
#define CNTP_AIVAL_RELOAD 0x48
#define CNTP_AIVAL_CTL 0x4c
/* 4 ticks in nanoseconds (so we can work in integers) */
#define FOUR_TICKS 125
static void clock_step_ticks(uint64_t ticks)
{
/*
* Advance the qtest clock by however many nanoseconds we
* need to move the timer forward the specified number of ticks.
* ticks must be a multiple of 4, so we get a whole number of ns.
*/
assert(!(ticks & 3));
clock_step(FOUR_TICKS * (ticks >> 2));
}
static void reset_counter_and_timer(void)
{
/*
* Reset the system counter and the timer between tests. This
* isn't a full reset, but it's sufficient for what the tests check.
*/
writel(COUNTER_BASE + CNTCR, 0);
writel(TIMER_BASE + CNTP_CTL, 0);
writel(TIMER_BASE + CNTP_AIVAL_CTL, 0);
writel(COUNTER_BASE + CNTCV_LO, 0);
writel(COUNTER_BASE + CNTCV_HI, 0);
}
static void test_counter(void)
{
/* Basic counter functionality test */
reset_counter_and_timer();
/* The counter should start disabled: check that it doesn't move */
clock_step_ticks(100);
g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 0);
g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
/* Now enable it and check that it does count */
writel(COUNTER_BASE + CNTCR, 1);
clock_step_ticks(100);
g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 100);
g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
/* Check the counter scaling functionality */
writel(COUNTER_BASE + CNTCR, 0);
writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */
writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */
clock_step_ticks(160);
g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_LO), ==, 110);
g_assert_cmpuint(readl(COUNTER_BASE + CNTCV_HI), ==, 0);
}
static void test_timer(void)
{
/* Basic timer functionality test */
reset_counter_and_timer();
/*
* The timer is behind a Peripheral Protection Controller, and
* qtest accesses are always non-secure (no memory attributes),
* so we must program the PPC to accept NS transactions. TIMER0
* is on port 0 of PPC0, controlled by bit 0 of this register.
*/
writel(PERIPHNSPPC0, 1);
/* We must enable the System Counter or the timer won't run. */
writel(COUNTER_BASE + CNTCR, 1);
/* Timer starts disabled and with a counter of 0 */
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 0);
g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 0);
g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0);
/* Turn it on */
writel(TIMER_BASE + CNTP_CTL, 1);
/* Is the timer ticking? */
clock_step_ticks(100);
g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 100);
g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0);
/* Set the CompareValue to 4000 ticks */
writel(TIMER_BASE + CNTP_CVAL_LO, 4000);
writel(TIMER_BASE + CNTP_CVAL_HI, 0);
/* Check TVAL view of the counter */
g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 3900);
/* Advance to the CompareValue mark and check ISTATUS is set */
clock_step_ticks(3900);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_TVAL), ==, 0);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
/* Now exercise the auto-reload part of the timer */
writel(TIMER_BASE + CNTP_AIVAL_RELOAD, 200);
writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
/* Check AIVAL was reloaded and that ISTATUS is now clear */
g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4200);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
/*
* Check that when we advance forward to the reload time the interrupt
* fires and the value reloads
*/
clock_step_ticks(100);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
clock_step_ticks(100);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4400);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
clock_step_ticks(100);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
/* Check that writing 0 to CLR clears the interrupt */
writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
/* Check that when we move forward to the reload time it fires again */
clock_step_ticks(100);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0);
/*
* Step the clock far enough that we overflow the low half of the
* CNTPCT and AIVAL registers, and check that their high halves
* give the right values. We do the forward movement in
* non-autoinc mode because otherwise it takes forever as the
* timer has to emulate all the 'reload at t + N, t + 2N, etc'
* steps.
*/
writel(TIMER_BASE + CNTP_AIVAL_CTL, 0);
clock_step_ticks(0x42ULL << 32);
g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_LO), ==, 4400);
g_assert_cmpuint(readl(TIMER_BASE + CNTPCT_HI), ==, 0x42);
/* Turn on the autoinc again to check AIVAL_HI */
writel(TIMER_BASE + CNTP_AIVAL_CTL, 1);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_LO), ==, 4600);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_AIVAL_HI), ==, 0x42);
}
static void test_timer_scale_change(void)
{
/*
* Test that the timer responds correctly to counter
* scaling changes while it has an active timer.
*/
reset_counter_and_timer();
/* Give ourselves access to the timer, and enable the counter and timer */
writel(PERIPHNSPPC0, 1);
writel(COUNTER_BASE + CNTCR, 1);
writel(TIMER_BASE + CNTP_CTL, 1);
/* Set the CompareValue to 4000 ticks */
writel(TIMER_BASE + CNTP_CVAL_LO, 4000);
writel(TIMER_BASE + CNTP_CVAL_HI, 0);
/* Advance halfway and check ISTATUS is not set */
clock_step_ticks(2000);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
/* Reprogram the counter to run at 1/16th speed */
writel(COUNTER_BASE + CNTCR, 0);
writel(COUNTER_BASE + CNTSCR, 0x00100000); /* 1/16th normal speed */
writel(COUNTER_BASE + CNTCR, 5); /* EN, SCEN */
/* Advance to where the timer would have fired and check it has not */
clock_step_ticks(2000);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
/* Advance to where the timer must fire at the new clock rate */
clock_step_ticks(29996);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 1);
clock_step_ticks(4);
g_assert_cmpuint(readl(TIMER_BASE + CNTP_CTL), ==, 5);
}
int main(int argc, char **argv)
{
int r;
g_test_init(&argc, &argv, NULL);
qtest_start("-machine mps3-an547");
qtest_add_func("/sse-timer/counter", test_counter);
qtest_add_func("/sse-timer/timer", test_timer);
qtest_add_func("/sse-timer/timer-scale-change", test_timer_scale_change);
r = g_test_run();
qtest_end();
return r;
}