blob: b82c4f65e177b59d59c32883221706884e607fd2 [file] [log] [blame]
/*
* Linux host USB redirector
*
* Copyright (c) 2005 Fabrice Bellard
*
* Copyright (c) 2008 Max Krasnyansky
* Support for host device auto connect & disconnect
* Magor rewrite to support fully async operation
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu-common.h"
#include "qemu-timer.h"
#include "console.h"
#if defined(__linux__)
#include <dirent.h>
#include <sys/ioctl.h>
#include <signal.h>
#include <linux/usb/ch9.h>
#include <linux/usbdevice_fs.h>
#include <linux/version.h>
#include "hw/usb.h"
typedef int USBScanFunc(void *opaque, int bus_num, int addr, int class_id,
int vendor_id, int product_id,
const char *product_name, int speed);
static int usb_host_find_device(int *pbus_num, int *paddr,
char *product_name, int product_name_size,
const char *devname);
//#define DEBUG
#ifdef DEBUG
#define dprintf printf
#else
#define dprintf(...)
#endif
#define USBDEVFS_PATH "/proc/bus/usb"
#define PRODUCT_NAME_SZ 32
#define MAX_ENDPOINTS 16
/* endpoint association data */
struct endp_data {
uint8_t type;
uint8_t halted;
};
enum {
CTRL_STATE_IDLE = 0,
CTRL_STATE_SETUP,
CTRL_STATE_DATA,
CTRL_STATE_ACK
};
/*
* Control transfer state.
* Note that 'buffer' _must_ follow 'req' field because
* we need contigious buffer when we submit control URB.
*/
struct ctrl_struct {
uint16_t len;
uint16_t offset;
uint8_t state;
struct usb_ctrlrequest req;
uint8_t buffer[1024];
};
typedef struct USBHostDevice {
USBDevice dev;
int fd;
uint8_t descr[1024];
int descr_len;
int configuration;
int ninterfaces;
int closing;
struct ctrl_struct ctrl;
struct endp_data endp_table[MAX_ENDPOINTS];
/* Host side address */
int bus_num;
int addr;
struct USBHostDevice *next;
} USBHostDevice;
static int is_isoc(USBHostDevice *s, int ep)
{
return s->endp_table[ep - 1].type == USBDEVFS_URB_TYPE_ISO;
}
static int is_halted(USBHostDevice *s, int ep)
{
return s->endp_table[ep - 1].halted;
}
static void clear_halt(USBHostDevice *s, int ep)
{
s->endp_table[ep - 1].halted = 0;
}
static void set_halt(USBHostDevice *s, int ep)
{
s->endp_table[ep - 1].halted = 1;
}
static USBHostDevice *hostdev_list;
static void hostdev_link(USBHostDevice *dev)
{
dev->next = hostdev_list;
hostdev_list = dev;
}
static void hostdev_unlink(USBHostDevice *dev)
{
USBHostDevice *pdev = hostdev_list;
USBHostDevice **prev = &hostdev_list;
while (pdev) {
if (pdev == dev) {
*prev = dev->next;
return;
}
prev = &pdev->next;
pdev = pdev->next;
}
}
static USBHostDevice *hostdev_find(int bus_num, int addr)
{
USBHostDevice *s = hostdev_list;
while (s) {
if (s->bus_num == bus_num && s->addr == addr)
return s;
s = s->next;
}
return NULL;
}
/*
* Async URB state.
* We always allocate one isoc descriptor even for bulk transfers
* to simplify allocation and casts.
*/
typedef struct AsyncURB
{
struct usbdevfs_urb urb;
struct usbdevfs_iso_packet_desc isocpd;
USBPacket *packet;
USBHostDevice *hdev;
} AsyncURB;
static AsyncURB *async_alloc(void)
{
return (AsyncURB *) qemu_mallocz(sizeof(AsyncURB));
}
static void async_free(AsyncURB *aurb)
{
qemu_free(aurb);
}
static void async_complete_ctrl(USBHostDevice *s, USBPacket *p)
{
switch(s->ctrl.state) {
case CTRL_STATE_SETUP:
if (p->len < s->ctrl.len)
s->ctrl.len = p->len;
s->ctrl.state = CTRL_STATE_DATA;
p->len = 8;
break;
case CTRL_STATE_ACK:
s->ctrl.state = CTRL_STATE_IDLE;
p->len = 0;
break;
default:
break;
}
}
static void async_complete(void *opaque)
{
USBHostDevice *s = opaque;
AsyncURB *aurb;
while (1) {
USBPacket *p;
int r = ioctl(s->fd, USBDEVFS_REAPURBNDELAY, &aurb);
if (r < 0) {
if (errno == EAGAIN)
return;
if (errno == ENODEV && !s->closing) {
printf("husb: device %d.%d disconnected\n", s->bus_num, s->addr);
usb_device_del_addr(0, s->dev.addr);
return;
}
dprintf("husb: async. reap urb failed errno %d\n", errno);
return;
}
p = aurb->packet;
dprintf("husb: async completed. aurb %p status %d alen %d\n",
aurb, aurb->urb.status, aurb->urb.actual_length);
if (p) {
switch (aurb->urb.status) {
case 0:
p->len = aurb->urb.actual_length;
if (aurb->urb.type == USBDEVFS_URB_TYPE_CONTROL)
async_complete_ctrl(s, p);
break;
case -EPIPE:
set_halt(s, p->devep);
/* fall through */
default:
p->len = USB_RET_NAK;
break;
}
usb_packet_complete(p);
}
async_free(aurb);
}
}
static void async_cancel(USBPacket *unused, void *opaque)
{
AsyncURB *aurb = opaque;
USBHostDevice *s = aurb->hdev;
dprintf("husb: async cancel. aurb %p\n", aurb);
/* Mark it as dead (see async_complete above) */
aurb->packet = NULL;
int r = ioctl(s->fd, USBDEVFS_DISCARDURB, aurb);
if (r < 0) {
dprintf("husb: async. discard urb failed errno %d\n", errno);
}
}
static int usb_host_claim_interfaces(USBHostDevice *dev, int configuration)
{
int dev_descr_len, config_descr_len;
int interface, nb_interfaces, nb_configurations;
int ret, i;
if (configuration == 0) /* address state - ignore */
return 1;
dprintf("husb: claiming interfaces. config %d\n", configuration);
i = 0;
dev_descr_len = dev->descr[0];
if (dev_descr_len > dev->descr_len)
goto fail;
nb_configurations = dev->descr[17];
i += dev_descr_len;
while (i < dev->descr_len) {
dprintf("husb: i is %d, descr_len is %d, dl %d, dt %d\n", i, dev->descr_len,
dev->descr[i], dev->descr[i+1]);
if (dev->descr[i+1] != USB_DT_CONFIG) {
i += dev->descr[i];
continue;
}
config_descr_len = dev->descr[i];
printf("husb: config #%d need %d\n", dev->descr[i + 5], configuration);
if (configuration < 0 || configuration == dev->descr[i + 5]) {
configuration = dev->descr[i + 5];
break;
}
i += config_descr_len;
}
if (i >= dev->descr_len) {
fprintf(stderr, "husb: update iface failed. no matching configuration\n");
goto fail;
}
nb_interfaces = dev->descr[i + 4];
#ifdef USBDEVFS_DISCONNECT
/* earlier Linux 2.4 do not support that */
{
struct usbdevfs_ioctl ctrl;
for (interface = 0; interface < nb_interfaces; interface++) {
ctrl.ioctl_code = USBDEVFS_DISCONNECT;
ctrl.ifno = interface;
ret = ioctl(dev->fd, USBDEVFS_IOCTL, &ctrl);
if (ret < 0 && errno != ENODATA) {
perror("USBDEVFS_DISCONNECT");
goto fail;
}
}
}
#endif
/* XXX: only grab if all interfaces are free */
for (interface = 0; interface < nb_interfaces; interface++) {
ret = ioctl(dev->fd, USBDEVFS_CLAIMINTERFACE, &interface);
if (ret < 0) {
if (errno == EBUSY) {
printf("husb: update iface. device already grabbed\n");
} else {
perror("husb: failed to claim interface");
}
fail:
return 0;
}
}
printf("husb: %d interfaces claimed for configuration %d\n",
nb_interfaces, configuration);
dev->ninterfaces = nb_interfaces;
dev->configuration = configuration;
return 1;
}
static int usb_host_release_interfaces(USBHostDevice *s)
{
int ret, i;
dprintf("husb: releasing interfaces\n");
for (i = 0; i < s->ninterfaces; i++) {
ret = ioctl(s->fd, USBDEVFS_RELEASEINTERFACE, &i);
if (ret < 0) {
perror("husb: failed to release interface");
return 0;
}
}
return 1;
}
static void usb_host_handle_reset(USBDevice *dev)
{
USBHostDevice *s = (USBHostDevice *) dev;
dprintf("husb: reset device %u.%u\n", s->bus_num, s->addr);
ioctl(s->fd, USBDEVFS_RESET);
usb_host_claim_interfaces(s, s->configuration);
}
static void usb_host_handle_destroy(USBDevice *dev)
{
USBHostDevice *s = (USBHostDevice *)dev;
s->closing = 1;
qemu_set_fd_handler(s->fd, NULL, NULL, NULL);
hostdev_unlink(s);
async_complete(s);
if (s->fd >= 0)
close(s->fd);
qemu_free(s);
}
static int usb_linux_update_endp_table(USBHostDevice *s);
static int usb_host_handle_data(USBHostDevice *s, USBPacket *p)
{
struct usbdevfs_urb *urb;
AsyncURB *aurb;
int ret;
aurb = async_alloc();
if (!aurb) {
dprintf("husb: async malloc failed\n");
return USB_RET_NAK;
}
aurb->hdev = s;
aurb->packet = p;
urb = &aurb->urb;
if (p->pid == USB_TOKEN_IN)
urb->endpoint = p->devep | 0x80;
else
urb->endpoint = p->devep;
if (is_halted(s, p->devep)) {
ret = ioctl(s->fd, USBDEVFS_CLEAR_HALT, &urb->endpoint);
if (ret < 0) {
dprintf("husb: failed to clear halt. ep 0x%x errno %d\n",
urb->endpoint, errno);
return USB_RET_NAK;
}
clear_halt(s, p->devep);
}
urb->buffer = p->data;
urb->buffer_length = p->len;
if (is_isoc(s, p->devep)) {
/* Setup ISOC transfer */
urb->type = USBDEVFS_URB_TYPE_ISO;
urb->flags = USBDEVFS_URB_ISO_ASAP;
urb->number_of_packets = 1;
urb->iso_frame_desc[0].length = p->len;
} else {
/* Setup bulk transfer */
urb->type = USBDEVFS_URB_TYPE_BULK;
}
urb->usercontext = s;
ret = ioctl(s->fd, USBDEVFS_SUBMITURB, urb);
dprintf("husb: data submit. ep 0x%x len %u aurb %p\n", urb->endpoint, p->len, aurb);
if (ret < 0) {
dprintf("husb: submit failed. errno %d\n", errno);
async_free(aurb);
switch(errno) {
case ETIMEDOUT:
return USB_RET_NAK;
case EPIPE:
default:
return USB_RET_STALL;
}
}
usb_defer_packet(p, async_cancel, aurb);
return USB_RET_ASYNC;
}
static int ctrl_error(void)
{
if (errno == ETIMEDOUT)
return USB_RET_NAK;
else
return USB_RET_STALL;
}
static int usb_host_set_address(USBHostDevice *s, int addr)
{
dprintf("husb: ctrl set addr %u\n", addr);
s->dev.addr = addr;
return 0;
}
static int usb_host_set_config(USBHostDevice *s, int config)
{
usb_host_release_interfaces(s);
int ret = ioctl(s->fd, USBDEVFS_SETCONFIGURATION, &config);
dprintf("husb: ctrl set config %d ret %d errno %d\n", config, ret, errno);
if (ret < 0)
return ctrl_error();
usb_host_claim_interfaces(s, config);
return 0;
}
static int usb_host_set_interface(USBHostDevice *s, int iface, int alt)
{
struct usbdevfs_setinterface si;
int ret;
si.interface = iface;
si.altsetting = alt;
ret = ioctl(s->fd, USBDEVFS_SETINTERFACE, &si);
dprintf("husb: ctrl set iface %d altset %d ret %d errno %d\n",
iface, alt, ret, errno);
if (ret < 0)
return ctrl_error();
usb_linux_update_endp_table(s);
return 0;
}
static int usb_host_handle_control(USBHostDevice *s, USBPacket *p)
{
struct usbdevfs_urb *urb;
AsyncURB *aurb;
int ret, value, index;
/*
* Process certain standard device requests.
* These are infrequent and are processed synchronously.
*/
value = le16_to_cpu(s->ctrl.req.wValue);
index = le16_to_cpu(s->ctrl.req.wIndex);
dprintf("husb: ctrl type 0x%x req 0x%x val 0x%x index %u len %u\n",
s->ctrl.req.bRequestType, s->ctrl.req.bRequest, value, index,
s->ctrl.len);
if (s->ctrl.req.bRequestType == 0) {
switch (s->ctrl.req.bRequest) {
case USB_REQ_SET_ADDRESS:
return usb_host_set_address(s, value);
case USB_REQ_SET_CONFIGURATION:
return usb_host_set_config(s, value & 0xff);
}
}
if (s->ctrl.req.bRequestType == 1 &&
s->ctrl.req.bRequest == USB_REQ_SET_INTERFACE)
return usb_host_set_interface(s, index, value);
/* The rest are asynchronous */
aurb = async_alloc();
if (!aurb) {
dprintf("husb: async malloc failed\n");
return USB_RET_NAK;
}
aurb->hdev = s;
aurb->packet = p;
/*
* Setup ctrl transfer.
*
* s->ctrl is layed out such that data buffer immediately follows
* 'req' struct which is exactly what usbdevfs expects.
*/
urb = &aurb->urb;
urb->type = USBDEVFS_URB_TYPE_CONTROL;
urb->endpoint = p->devep;
urb->buffer = &s->ctrl.req;
urb->buffer_length = 8 + s->ctrl.len;
urb->usercontext = s;
ret = ioctl(s->fd, USBDEVFS_SUBMITURB, urb);
dprintf("husb: submit ctrl. len %u aurb %p\n", urb->buffer_length, aurb);
if (ret < 0) {
dprintf("husb: submit failed. errno %d\n", errno);
async_free(aurb);
switch(errno) {
case ETIMEDOUT:
return USB_RET_NAK;
case EPIPE:
default:
return USB_RET_STALL;
}
}
usb_defer_packet(p, async_cancel, aurb);
return USB_RET_ASYNC;
}
static int do_token_setup(USBDevice *dev, USBPacket *p)
{
USBHostDevice *s = (USBHostDevice *) dev;
int ret = 0;
if (p->len != 8)
return USB_RET_STALL;
memcpy(&s->ctrl.req, p->data, 8);
s->ctrl.len = le16_to_cpu(s->ctrl.req.wLength);
s->ctrl.offset = 0;
s->ctrl.state = CTRL_STATE_SETUP;
if (s->ctrl.req.bRequestType & USB_DIR_IN) {
ret = usb_host_handle_control(s, p);
if (ret < 0)
return ret;
if (ret < s->ctrl.len)
s->ctrl.len = ret;
s->ctrl.state = CTRL_STATE_DATA;
} else {
if (s->ctrl.len == 0)
s->ctrl.state = CTRL_STATE_ACK;
else
s->ctrl.state = CTRL_STATE_DATA;
}
return ret;
}
static int do_token_in(USBDevice *dev, USBPacket *p)
{
USBHostDevice *s = (USBHostDevice *) dev;
int ret = 0;
if (p->devep != 0)
return usb_host_handle_data(s, p);
switch(s->ctrl.state) {
case CTRL_STATE_ACK:
if (!(s->ctrl.req.bRequestType & USB_DIR_IN)) {
ret = usb_host_handle_control(s, p);
if (ret == USB_RET_ASYNC)
return USB_RET_ASYNC;
s->ctrl.state = CTRL_STATE_IDLE;
return ret > 0 ? 0 : ret;
}
return 0;
case CTRL_STATE_DATA:
if (s->ctrl.req.bRequestType & USB_DIR_IN) {
int len = s->ctrl.len - s->ctrl.offset;
if (len > p->len)
len = p->len;
memcpy(p->data, s->ctrl.buffer + s->ctrl.offset, len);
s->ctrl.offset += len;
if (s->ctrl.offset >= s->ctrl.len)
s->ctrl.state = CTRL_STATE_ACK;
return len;
}
s->ctrl.state = CTRL_STATE_IDLE;
return USB_RET_STALL;
default:
return USB_RET_STALL;
}
}
static int do_token_out(USBDevice *dev, USBPacket *p)
{
USBHostDevice *s = (USBHostDevice *) dev;
if (p->devep != 0)
return usb_host_handle_data(s, p);
switch(s->ctrl.state) {
case CTRL_STATE_ACK:
if (s->ctrl.req.bRequestType & USB_DIR_IN) {
s->ctrl.state = CTRL_STATE_IDLE;
/* transfer OK */
} else {
/* ignore additional output */
}
return 0;
case CTRL_STATE_DATA:
if (!(s->ctrl.req.bRequestType & USB_DIR_IN)) {
int len = s->ctrl.len - s->ctrl.offset;
if (len > p->len)
len = p->len;
memcpy(s->ctrl.buffer + s->ctrl.offset, p->data, len);
s->ctrl.offset += len;
if (s->ctrl.offset >= s->ctrl.len)
s->ctrl.state = CTRL_STATE_ACK;
return len;
}
s->ctrl.state = CTRL_STATE_IDLE;
return USB_RET_STALL;
default:
return USB_RET_STALL;
}
}
/*
* Packet handler.
* Called by the HC (host controller).
*
* Returns length of the transaction or one of the USB_RET_XXX codes.
*/
int usb_host_handle_packet(USBDevice *s, USBPacket *p)
{
switch(p->pid) {
case USB_MSG_ATTACH:
s->state = USB_STATE_ATTACHED;
return 0;
case USB_MSG_DETACH:
s->state = USB_STATE_NOTATTACHED;
return 0;
case USB_MSG_RESET:
s->remote_wakeup = 0;
s->addr = 0;
s->state = USB_STATE_DEFAULT;
s->handle_reset(s);
return 0;
}
/* Rest of the PIDs must match our address */
if (s->state < USB_STATE_DEFAULT || p->devaddr != s->addr)
return USB_RET_NODEV;
switch (p->pid) {
case USB_TOKEN_SETUP:
return do_token_setup(s, p);
case USB_TOKEN_IN:
return do_token_in(s, p);
case USB_TOKEN_OUT:
return do_token_out(s, p);
default:
return USB_RET_STALL;
}
}
/* returns 1 on problem encountered or 0 for success */
static int usb_linux_update_endp_table(USBHostDevice *s)
{
uint8_t *descriptors;
uint8_t devep, type, configuration, alt_interface;
struct usbdevfs_ctrltransfer ct;
int interface, ret, length, i;
ct.bRequestType = USB_DIR_IN;
ct.bRequest = USB_REQ_GET_CONFIGURATION;
ct.wValue = 0;
ct.wIndex = 0;
ct.wLength = 1;
ct.data = &configuration;
ct.timeout = 50;
ret = ioctl(s->fd, USBDEVFS_CONTROL, &ct);
if (ret < 0) {
perror("usb_linux_update_endp_table");
return 1;
}
/* in address state */
if (configuration == 0)
return 1;
/* get the desired configuration, interface, and endpoint descriptors
* from device description */
descriptors = &s->descr[18];
length = s->descr_len - 18;
i = 0;
if (descriptors[i + 1] != USB_DT_CONFIG ||
descriptors[i + 5] != configuration) {
dprintf("invalid descriptor data - configuration\n");
return 1;
}
i += descriptors[i];
while (i < length) {
if (descriptors[i + 1] != USB_DT_INTERFACE ||
(descriptors[i + 1] == USB_DT_INTERFACE &&
descriptors[i + 4] == 0)) {
i += descriptors[i];
continue;
}
interface = descriptors[i + 2];
ct.bRequestType = USB_DIR_IN | USB_RECIP_INTERFACE;
ct.bRequest = USB_REQ_GET_INTERFACE;
ct.wValue = 0;
ct.wIndex = interface;
ct.wLength = 1;
ct.data = &alt_interface;
ct.timeout = 50;
ret = ioctl(s->fd, USBDEVFS_CONTROL, &ct);
if (ret < 0) {
perror("usb_linux_update_endp_table");
return 1;
}
/* the current interface descriptor is the active interface
* and has endpoints */
if (descriptors[i + 3] != alt_interface) {
i += descriptors[i];
continue;
}
/* advance to the endpoints */
while (i < length && descriptors[i +1] != USB_DT_ENDPOINT)
i += descriptors[i];
if (i >= length)
break;
while (i < length) {
if (descriptors[i + 1] != USB_DT_ENDPOINT)
break;
devep = descriptors[i + 2];
switch (descriptors[i + 3] & 0x3) {
case 0x00:
type = USBDEVFS_URB_TYPE_CONTROL;
break;
case 0x01:
type = USBDEVFS_URB_TYPE_ISO;
break;
case 0x02:
type = USBDEVFS_URB_TYPE_BULK;
break;
case 0x03:
type = USBDEVFS_URB_TYPE_INTERRUPT;
break;
default:
dprintf("usb_host: malformed endpoint type\n");
type = USBDEVFS_URB_TYPE_BULK;
}
s->endp_table[(devep & 0xf) - 1].type = type;
s->endp_table[(devep & 0xf) - 1].halted = 0;
i += descriptors[i];
}
}
return 0;
}
static USBDevice *usb_host_device_open_addr(int bus_num, int addr, const char *prod_name)
{
int fd = -1, ret;
USBHostDevice *dev = NULL;
struct usbdevfs_connectinfo ci;
char buf[1024];
dev = qemu_mallocz(sizeof(USBHostDevice));
if (!dev)
goto fail;
dev->bus_num = bus_num;
dev->addr = addr;
printf("husb: open device %d.%d\n", bus_num, addr);
snprintf(buf, sizeof(buf), USBDEVFS_PATH "/%03d/%03d",
bus_num, addr);
fd = open(buf, O_RDWR | O_NONBLOCK);
if (fd < 0) {
perror(buf);
goto fail;
}
/* read the device description */
dev->descr_len = read(fd, dev->descr, sizeof(dev->descr));
if (dev->descr_len <= 0) {
perror("husb: reading device data failed");
goto fail;
}
#ifdef DEBUG
{
int x;
printf("=== begin dumping device descriptor data ===\n");
for (x = 0; x < dev->descr_len; x++)
printf("%02x ", dev->descr[x]);
printf("\n=== end dumping device descriptor data ===\n");
}
#endif
dev->fd = fd;
/*
* Initial configuration is -1 which makes us claim first
* available config. We used to start with 1, which does not
* always work. I've seen devices where first config starts
* with 2.
*/
if (!usb_host_claim_interfaces(dev, -1))
goto fail;
ret = ioctl(fd, USBDEVFS_CONNECTINFO, &ci);
if (ret < 0) {
perror("usb_host_device_open: USBDEVFS_CONNECTINFO");
goto fail;
}
printf("husb: grabbed usb device %d.%d\n", bus_num, addr);
ret = usb_linux_update_endp_table(dev);
if (ret)
goto fail;
if (ci.slow)
dev->dev.speed = USB_SPEED_LOW;
else
dev->dev.speed = USB_SPEED_HIGH;
dev->dev.handle_packet = usb_host_handle_packet;
dev->dev.handle_reset = usb_host_handle_reset;
dev->dev.handle_destroy = usb_host_handle_destroy;
if (!prod_name || prod_name[0] == '\0')
snprintf(dev->dev.devname, sizeof(dev->dev.devname),
"host:%d.%d", bus_num, addr);
else
pstrcpy(dev->dev.devname, sizeof(dev->dev.devname),
prod_name);
/* USB devio uses 'write' flag to check for async completions */
qemu_set_fd_handler(dev->fd, NULL, async_complete, dev);
hostdev_link(dev);
return (USBDevice *) dev;
fail:
if (dev)
qemu_free(dev);
close(fd);
return NULL;
}
USBDevice *usb_host_device_open(const char *devname)
{
int bus_num, addr;
char product_name[PRODUCT_NAME_SZ];
if (usb_host_find_device(&bus_num, &addr,
product_name, sizeof(product_name),
devname) < 0)
return NULL;
if (hostdev_find(bus_num, addr)) {
term_printf("husb: host usb device %d.%d is already open\n", bus_num, addr);
return NULL;
}
return usb_host_device_open_addr(bus_num, addr, product_name);
}
static int get_tag_value(char *buf, int buf_size,
const char *str, const char *tag,
const char *stopchars)
{
const char *p;
char *q;
p = strstr(str, tag);
if (!p)
return -1;
p += strlen(tag);
while (isspace(*p))
p++;
q = buf;
while (*p != '\0' && !strchr(stopchars, *p)) {
if ((q - buf) < (buf_size - 1))
*q++ = *p;
p++;
}
*q = '\0';
return q - buf;
}
static int usb_host_scan(void *opaque, USBScanFunc *func)
{
FILE *f;
char line[1024];
char buf[1024];
int bus_num, addr, speed, device_count, class_id, product_id, vendor_id;
int ret;
char product_name[512];
f = fopen(USBDEVFS_PATH "/devices", "r");
if (!f) {
term_printf("husb: could not open %s\n", USBDEVFS_PATH "/devices");
return 0;
}
device_count = 0;
bus_num = addr = speed = class_id = product_id = vendor_id = 0;
ret = 0;
for(;;) {
if (fgets(line, sizeof(line), f) == NULL)
break;
if (strlen(line) > 0)
line[strlen(line) - 1] = '\0';
if (line[0] == 'T' && line[1] == ':') {
if (device_count && (vendor_id || product_id)) {
/* New device. Add the previously discovered device. */
ret = func(opaque, bus_num, addr, class_id, vendor_id,
product_id, product_name, speed);
if (ret)
goto the_end;
}
if (get_tag_value(buf, sizeof(buf), line, "Bus=", " ") < 0)
goto fail;
bus_num = atoi(buf);
if (get_tag_value(buf, sizeof(buf), line, "Dev#=", " ") < 0)
goto fail;
addr = atoi(buf);
if (get_tag_value(buf, sizeof(buf), line, "Spd=", " ") < 0)
goto fail;
if (!strcmp(buf, "480"))
speed = USB_SPEED_HIGH;
else if (!strcmp(buf, "1.5"))
speed = USB_SPEED_LOW;
else
speed = USB_SPEED_FULL;
product_name[0] = '\0';
class_id = 0xff;
device_count++;
product_id = 0;
vendor_id = 0;
} else if (line[0] == 'P' && line[1] == ':') {
if (get_tag_value(buf, sizeof(buf), line, "Vendor=", " ") < 0)
goto fail;
vendor_id = strtoul(buf, NULL, 16);
if (get_tag_value(buf, sizeof(buf), line, "ProdID=", " ") < 0)
goto fail;
product_id = strtoul(buf, NULL, 16);
} else if (line[0] == 'S' && line[1] == ':') {
if (get_tag_value(buf, sizeof(buf), line, "Product=", "") < 0)
goto fail;
pstrcpy(product_name, sizeof(product_name), buf);
} else if (line[0] == 'D' && line[1] == ':') {
if (get_tag_value(buf, sizeof(buf), line, "Cls=", " (") < 0)
goto fail;
class_id = strtoul(buf, NULL, 16);
}
fail: ;
}
if (device_count && (vendor_id || product_id)) {
/* Add the last device. */
ret = func(opaque, bus_num, addr, class_id, vendor_id,
product_id, product_name, speed);
}
the_end:
fclose(f);
return ret;
}
struct USBAutoFilter {
struct USBAutoFilter *next;
int bus_num;
int addr;
int vendor_id;
int product_id;
};
static QEMUTimer *usb_auto_timer;
static struct USBAutoFilter *usb_auto_filter;
static int usb_host_auto_scan(void *opaque, int bus_num, int addr,
int class_id, int vendor_id, int product_id,
const char *product_name, int speed)
{
struct USBAutoFilter *f;
struct USBDevice *dev;
/* Ignore hubs */
if (class_id == 9)
return 0;
for (f = usb_auto_filter; f; f = f->next) {
if (f->bus_num >= 0 && f->bus_num != bus_num)
continue;
if (f->addr >= 0 && f->addr != addr)
continue;
if (f->vendor_id >= 0 && f->vendor_id != vendor_id)
continue;
if (f->product_id >= 0 && f->product_id != product_id)
continue;
/* We got a match */
/* Allredy attached ? */
if (hostdev_find(bus_num, addr))
return 0;
dprintf("husb: auto open: bus_num %d addr %d\n", bus_num, addr);
dev = usb_host_device_open_addr(bus_num, addr, product_name);
if (dev)
usb_device_add_dev(dev);
}
return 0;
}
static void usb_host_auto_timer(void *unused)
{
usb_host_scan(NULL, usb_host_auto_scan);
qemu_mod_timer(usb_auto_timer, qemu_get_clock(rt_clock) + 2000);
}
/*
* Add autoconnect filter
* -1 means 'any' (device, vendor, etc)
*/
static void usb_host_auto_add(int bus_num, int addr, int vendor_id, int product_id)
{
struct USBAutoFilter *f = qemu_mallocz(sizeof(*f));
if (!f) {
fprintf(stderr, "husb: failed to allocate auto filter\n");
return;
}
f->bus_num = bus_num;
f->addr = addr;
f->vendor_id = vendor_id;
f->product_id = product_id;
if (!usb_auto_filter) {
/*
* First entry. Init and start the monitor.
* Right now we're using timer to check for new devices.
* If this turns out to be too expensive we can move that into a
* separate thread.
*/
usb_auto_timer = qemu_new_timer(rt_clock, usb_host_auto_timer, NULL);
if (!usb_auto_timer) {
fprintf(stderr, "husb: failed to allocate auto scan timer\n");
qemu_free(f);
return;
}
/* Check for new devices every two seconds */
qemu_mod_timer(usb_auto_timer, qemu_get_clock(rt_clock) + 2000);
}
dprintf("husb: auto filter: bus_num %d addr %d vid %d pid %d\n",
bus_num, addr, vendor_id, product_id);
f->next = usb_auto_filter;
usb_auto_filter = f;
}
typedef struct FindDeviceState {
int vendor_id;
int product_id;
int bus_num;
int addr;
char product_name[PRODUCT_NAME_SZ];
} FindDeviceState;
static int usb_host_find_device_scan(void *opaque, int bus_num, int addr,
int class_id,
int vendor_id, int product_id,
const char *product_name, int speed)
{
FindDeviceState *s = opaque;
if ((vendor_id == s->vendor_id &&
product_id == s->product_id) ||
(bus_num == s->bus_num &&
addr == s->addr)) {
pstrcpy(s->product_name, PRODUCT_NAME_SZ, product_name);
s->bus_num = bus_num;
s->addr = addr;
return 1;
} else {
return 0;
}
}
/* the syntax is :
'bus.addr' (decimal numbers) or
'vendor_id:product_id' (hexa numbers) */
static int usb_host_find_device(int *pbus_num, int *paddr,
char *product_name, int product_name_size,
const char *devname)
{
const char *p;
int ret;
FindDeviceState fs;
p = strchr(devname, '.');
if (p) {
*pbus_num = strtoul(devname, NULL, 0);
if (*(p + 1) == '*') {
usb_host_auto_add(*pbus_num, -1, -1, -1);
return -1;
}
*paddr = strtoul(p + 1, NULL, 0);
fs.bus_num = *pbus_num;
fs.addr = *paddr;
ret = usb_host_scan(&fs, usb_host_find_device_scan);
if (ret)
pstrcpy(product_name, product_name_size, fs.product_name);
return 0;
}
p = strchr(devname, ':');
if (p) {
fs.vendor_id = strtoul(devname, NULL, 16);
if (*(p + 1) == '*') {
usb_host_auto_add(-1, -1, fs.vendor_id, -1);
return -1;
}
fs.product_id = strtoul(p + 1, NULL, 16);
ret = usb_host_scan(&fs, usb_host_find_device_scan);
if (ret) {
*pbus_num = fs.bus_num;
*paddr = fs.addr;
pstrcpy(product_name, product_name_size, fs.product_name);
return 0;
}
}
return -1;
}
/**********************/
/* USB host device info */
struct usb_class_info {
int class;
const char *class_name;
};
static const struct usb_class_info usb_class_info[] = {
{ USB_CLASS_AUDIO, "Audio"},
{ USB_CLASS_COMM, "Communication"},
{ USB_CLASS_HID, "HID"},
{ USB_CLASS_HUB, "Hub" },
{ USB_CLASS_PHYSICAL, "Physical" },
{ USB_CLASS_PRINTER, "Printer" },
{ USB_CLASS_MASS_STORAGE, "Storage" },
{ USB_CLASS_CDC_DATA, "Data" },
{ USB_CLASS_APP_SPEC, "Application Specific" },
{ USB_CLASS_VENDOR_SPEC, "Vendor Specific" },
{ USB_CLASS_STILL_IMAGE, "Still Image" },
{ USB_CLASS_CSCID, "Smart Card" },
{ USB_CLASS_CONTENT_SEC, "Content Security" },
{ -1, NULL }
};
static const char *usb_class_str(uint8_t class)
{
const struct usb_class_info *p;
for(p = usb_class_info; p->class != -1; p++) {
if (p->class == class)
break;
}
return p->class_name;
}
static void usb_info_device(int bus_num, int addr, int class_id,
int vendor_id, int product_id,
const char *product_name,
int speed)
{
const char *class_str, *speed_str;
switch(speed) {
case USB_SPEED_LOW:
speed_str = "1.5";
break;
case USB_SPEED_FULL:
speed_str = "12";
break;
case USB_SPEED_HIGH:
speed_str = "480";
break;
default:
speed_str = "?";
break;
}
term_printf(" Device %d.%d, speed %s Mb/s\n",
bus_num, addr, speed_str);
class_str = usb_class_str(class_id);
if (class_str)
term_printf(" %s:", class_str);
else
term_printf(" Class %02x:", class_id);
term_printf(" USB device %04x:%04x", vendor_id, product_id);
if (product_name[0] != '\0')
term_printf(", %s", product_name);
term_printf("\n");
}
static int usb_host_info_device(void *opaque, int bus_num, int addr,
int class_id,
int vendor_id, int product_id,
const char *product_name,
int speed)
{
usb_info_device(bus_num, addr, class_id, vendor_id, product_id,
product_name, speed);
return 0;
}
void usb_host_info(void)
{
usb_host_scan(NULL, usb_host_info_device);
}
#else
#include "hw/usb.h"
void usb_host_info(void)
{
term_printf("USB host devices not supported\n");
}
/* XXX: modify configure to compile the right host driver */
USBDevice *usb_host_device_open(const char *devname)
{
return NULL;
}
#endif