| /* |
| * QEMU PC System Emulator |
| * |
| * Copyright (c) 2003-2004 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include "hw.h" |
| #include "pc.h" |
| #include "apic.h" |
| #include "fdc.h" |
| #include "ide.h" |
| #include "pci.h" |
| #include "vmware_vga.h" |
| #include "monitor.h" |
| #include "fw_cfg.h" |
| #include "hpet_emul.h" |
| #include "smbios.h" |
| #include "loader.h" |
| #include "elf.h" |
| #include "multiboot.h" |
| #include "mc146818rtc.h" |
| #include "msix.h" |
| #include "sysbus.h" |
| #include "sysemu.h" |
| #include "blockdev.h" |
| #include "ui/qemu-spice.h" |
| #include "memory.h" |
| #include "exec-memory.h" |
| |
| /* output Bochs bios info messages */ |
| //#define DEBUG_BIOS |
| |
| /* debug PC/ISA interrupts */ |
| //#define DEBUG_IRQ |
| |
| #ifdef DEBUG_IRQ |
| #define DPRINTF(fmt, ...) \ |
| do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) |
| #endif |
| |
| #define BIOS_FILENAME "bios.bin" |
| |
| #define PC_MAX_BIOS_SIZE (4 * 1024 * 1024) |
| |
| /* Leave a chunk of memory at the top of RAM for the BIOS ACPI tables. */ |
| #define ACPI_DATA_SIZE 0x10000 |
| #define BIOS_CFG_IOPORT 0x510 |
| #define FW_CFG_ACPI_TABLES (FW_CFG_ARCH_LOCAL + 0) |
| #define FW_CFG_SMBIOS_ENTRIES (FW_CFG_ARCH_LOCAL + 1) |
| #define FW_CFG_IRQ0_OVERRIDE (FW_CFG_ARCH_LOCAL + 2) |
| #define FW_CFG_E820_TABLE (FW_CFG_ARCH_LOCAL + 3) |
| #define FW_CFG_HPET (FW_CFG_ARCH_LOCAL + 4) |
| |
| #define MSI_ADDR_BASE 0xfee00000 |
| |
| #define E820_NR_ENTRIES 16 |
| |
| struct e820_entry { |
| uint64_t address; |
| uint64_t length; |
| uint32_t type; |
| } QEMU_PACKED __attribute((__aligned__(4))); |
| |
| struct e820_table { |
| uint32_t count; |
| struct e820_entry entry[E820_NR_ENTRIES]; |
| } QEMU_PACKED __attribute((__aligned__(4))); |
| |
| static struct e820_table e820_table; |
| struct hpet_fw_config hpet_cfg = {.count = UINT8_MAX}; |
| |
| void gsi_handler(void *opaque, int n, int level) |
| { |
| GSIState *s = opaque; |
| |
| DPRINTF("pc: %s GSI %d\n", level ? "raising" : "lowering", n); |
| if (n < ISA_NUM_IRQS) { |
| qemu_set_irq(s->i8259_irq[n], level); |
| } |
| qemu_set_irq(s->ioapic_irq[n], level); |
| } |
| |
| static void ioport80_write(void *opaque, uint32_t addr, uint32_t data) |
| { |
| } |
| |
| /* MSDOS compatibility mode FPU exception support */ |
| static qemu_irq ferr_irq; |
| |
| void pc_register_ferr_irq(qemu_irq irq) |
| { |
| ferr_irq = irq; |
| } |
| |
| /* XXX: add IGNNE support */ |
| void cpu_set_ferr(CPUX86State *s) |
| { |
| qemu_irq_raise(ferr_irq); |
| } |
| |
| static void ioportF0_write(void *opaque, uint32_t addr, uint32_t data) |
| { |
| qemu_irq_lower(ferr_irq); |
| } |
| |
| /* TSC handling */ |
| uint64_t cpu_get_tsc(CPUX86State *env) |
| { |
| return cpu_get_ticks(); |
| } |
| |
| /* SMM support */ |
| |
| static cpu_set_smm_t smm_set; |
| static void *smm_arg; |
| |
| void cpu_smm_register(cpu_set_smm_t callback, void *arg) |
| { |
| assert(smm_set == NULL); |
| assert(smm_arg == NULL); |
| smm_set = callback; |
| smm_arg = arg; |
| } |
| |
| void cpu_smm_update(CPUState *env) |
| { |
| if (smm_set && smm_arg && env == first_cpu) |
| smm_set(!!(env->hflags & HF_SMM_MASK), smm_arg); |
| } |
| |
| |
| /* IRQ handling */ |
| int cpu_get_pic_interrupt(CPUState *env) |
| { |
| int intno; |
| |
| intno = apic_get_interrupt(env->apic_state); |
| if (intno >= 0) { |
| return intno; |
| } |
| /* read the irq from the PIC */ |
| if (!apic_accept_pic_intr(env->apic_state)) { |
| return -1; |
| } |
| |
| intno = pic_read_irq(isa_pic); |
| return intno; |
| } |
| |
| static void pic_irq_request(void *opaque, int irq, int level) |
| { |
| CPUState *env = first_cpu; |
| |
| DPRINTF("pic_irqs: %s irq %d\n", level? "raise" : "lower", irq); |
| if (env->apic_state) { |
| while (env) { |
| if (apic_accept_pic_intr(env->apic_state)) { |
| apic_deliver_pic_intr(env->apic_state, level); |
| } |
| env = env->next_cpu; |
| } |
| } else { |
| if (level) |
| cpu_interrupt(env, CPU_INTERRUPT_HARD); |
| else |
| cpu_reset_interrupt(env, CPU_INTERRUPT_HARD); |
| } |
| } |
| |
| /* PC cmos mappings */ |
| |
| #define REG_EQUIPMENT_BYTE 0x14 |
| |
| static int cmos_get_fd_drive_type(FDriveType fd0) |
| { |
| int val; |
| |
| switch (fd0) { |
| case FDRIVE_DRV_144: |
| /* 1.44 Mb 3"5 drive */ |
| val = 4; |
| break; |
| case FDRIVE_DRV_288: |
| /* 2.88 Mb 3"5 drive */ |
| val = 5; |
| break; |
| case FDRIVE_DRV_120: |
| /* 1.2 Mb 5"5 drive */ |
| val = 2; |
| break; |
| case FDRIVE_DRV_NONE: |
| default: |
| val = 0; |
| break; |
| } |
| return val; |
| } |
| |
| static void cmos_init_hd(int type_ofs, int info_ofs, BlockDriverState *hd, |
| ISADevice *s) |
| { |
| int cylinders, heads, sectors; |
| bdrv_get_geometry_hint(hd, &cylinders, &heads, §ors); |
| rtc_set_memory(s, type_ofs, 47); |
| rtc_set_memory(s, info_ofs, cylinders); |
| rtc_set_memory(s, info_ofs + 1, cylinders >> 8); |
| rtc_set_memory(s, info_ofs + 2, heads); |
| rtc_set_memory(s, info_ofs + 3, 0xff); |
| rtc_set_memory(s, info_ofs + 4, 0xff); |
| rtc_set_memory(s, info_ofs + 5, 0xc0 | ((heads > 8) << 3)); |
| rtc_set_memory(s, info_ofs + 6, cylinders); |
| rtc_set_memory(s, info_ofs + 7, cylinders >> 8); |
| rtc_set_memory(s, info_ofs + 8, sectors); |
| } |
| |
| /* convert boot_device letter to something recognizable by the bios */ |
| static int boot_device2nibble(char boot_device) |
| { |
| switch(boot_device) { |
| case 'a': |
| case 'b': |
| return 0x01; /* floppy boot */ |
| case 'c': |
| return 0x02; /* hard drive boot */ |
| case 'd': |
| return 0x03; /* CD-ROM boot */ |
| case 'n': |
| return 0x04; /* Network boot */ |
| } |
| return 0; |
| } |
| |
| static int set_boot_dev(ISADevice *s, const char *boot_device, int fd_bootchk) |
| { |
| #define PC_MAX_BOOT_DEVICES 3 |
| int nbds, bds[3] = { 0, }; |
| int i; |
| |
| nbds = strlen(boot_device); |
| if (nbds > PC_MAX_BOOT_DEVICES) { |
| error_report("Too many boot devices for PC"); |
| return(1); |
| } |
| for (i = 0; i < nbds; i++) { |
| bds[i] = boot_device2nibble(boot_device[i]); |
| if (bds[i] == 0) { |
| error_report("Invalid boot device for PC: '%c'", |
| boot_device[i]); |
| return(1); |
| } |
| } |
| rtc_set_memory(s, 0x3d, (bds[1] << 4) | bds[0]); |
| rtc_set_memory(s, 0x38, (bds[2] << 4) | (fd_bootchk ? 0x0 : 0x1)); |
| return(0); |
| } |
| |
| static int pc_boot_set(void *opaque, const char *boot_device) |
| { |
| return set_boot_dev(opaque, boot_device, 0); |
| } |
| |
| typedef struct pc_cmos_init_late_arg { |
| ISADevice *rtc_state; |
| BusState *idebus0, *idebus1; |
| } pc_cmos_init_late_arg; |
| |
| static void pc_cmos_init_late(void *opaque) |
| { |
| pc_cmos_init_late_arg *arg = opaque; |
| ISADevice *s = arg->rtc_state; |
| int val; |
| BlockDriverState *hd_table[4]; |
| int i; |
| |
| ide_get_bs(hd_table, arg->idebus0); |
| ide_get_bs(hd_table + 2, arg->idebus1); |
| |
| rtc_set_memory(s, 0x12, (hd_table[0] ? 0xf0 : 0) | (hd_table[1] ? 0x0f : 0)); |
| if (hd_table[0]) |
| cmos_init_hd(0x19, 0x1b, hd_table[0], s); |
| if (hd_table[1]) |
| cmos_init_hd(0x1a, 0x24, hd_table[1], s); |
| |
| val = 0; |
| for (i = 0; i < 4; i++) { |
| if (hd_table[i]) { |
| int cylinders, heads, sectors, translation; |
| /* NOTE: bdrv_get_geometry_hint() returns the physical |
| geometry. It is always such that: 1 <= sects <= 63, 1 |
| <= heads <= 16, 1 <= cylinders <= 16383. The BIOS |
| geometry can be different if a translation is done. */ |
| translation = bdrv_get_translation_hint(hd_table[i]); |
| if (translation == BIOS_ATA_TRANSLATION_AUTO) { |
| bdrv_get_geometry_hint(hd_table[i], &cylinders, &heads, §ors); |
| if (cylinders <= 1024 && heads <= 16 && sectors <= 63) { |
| /* No translation. */ |
| translation = 0; |
| } else { |
| /* LBA translation. */ |
| translation = 1; |
| } |
| } else { |
| translation--; |
| } |
| val |= translation << (i * 2); |
| } |
| } |
| rtc_set_memory(s, 0x39, val); |
| |
| qemu_unregister_reset(pc_cmos_init_late, opaque); |
| } |
| |
| void pc_cmos_init(ram_addr_t ram_size, ram_addr_t above_4g_mem_size, |
| const char *boot_device, |
| ISADevice *floppy, BusState *idebus0, BusState *idebus1, |
| ISADevice *s) |
| { |
| int val, nb, nb_heads, max_track, last_sect, i; |
| FDriveType fd_type[2] = { FDRIVE_DRV_NONE, FDRIVE_DRV_NONE }; |
| BlockDriverState *fd[MAX_FD]; |
| static pc_cmos_init_late_arg arg; |
| |
| /* various important CMOS locations needed by PC/Bochs bios */ |
| |
| /* memory size */ |
| val = 640; /* base memory in K */ |
| rtc_set_memory(s, 0x15, val); |
| rtc_set_memory(s, 0x16, val >> 8); |
| |
| val = (ram_size / 1024) - 1024; |
| if (val > 65535) |
| val = 65535; |
| rtc_set_memory(s, 0x17, val); |
| rtc_set_memory(s, 0x18, val >> 8); |
| rtc_set_memory(s, 0x30, val); |
| rtc_set_memory(s, 0x31, val >> 8); |
| |
| if (above_4g_mem_size) { |
| rtc_set_memory(s, 0x5b, (unsigned int)above_4g_mem_size >> 16); |
| rtc_set_memory(s, 0x5c, (unsigned int)above_4g_mem_size >> 24); |
| rtc_set_memory(s, 0x5d, (uint64_t)above_4g_mem_size >> 32); |
| } |
| |
| if (ram_size > (16 * 1024 * 1024)) |
| val = (ram_size / 65536) - ((16 * 1024 * 1024) / 65536); |
| else |
| val = 0; |
| if (val > 65535) |
| val = 65535; |
| rtc_set_memory(s, 0x34, val); |
| rtc_set_memory(s, 0x35, val >> 8); |
| |
| /* set the number of CPU */ |
| rtc_set_memory(s, 0x5f, smp_cpus - 1); |
| |
| /* set boot devices, and disable floppy signature check if requested */ |
| if (set_boot_dev(s, boot_device, fd_bootchk)) { |
| exit(1); |
| } |
| |
| /* floppy type */ |
| if (floppy) { |
| fdc_get_bs(fd, floppy); |
| for (i = 0; i < 2; i++) { |
| if (fd[i] && bdrv_is_inserted(fd[i])) { |
| bdrv_get_floppy_geometry_hint(fd[i], &nb_heads, &max_track, |
| &last_sect, FDRIVE_DRV_NONE, |
| &fd_type[i]); |
| } |
| } |
| } |
| val = (cmos_get_fd_drive_type(fd_type[0]) << 4) | |
| cmos_get_fd_drive_type(fd_type[1]); |
| rtc_set_memory(s, 0x10, val); |
| |
| val = 0; |
| nb = 0; |
| if (fd_type[0] < FDRIVE_DRV_NONE) { |
| nb++; |
| } |
| if (fd_type[1] < FDRIVE_DRV_NONE) { |
| nb++; |
| } |
| switch (nb) { |
| case 0: |
| break; |
| case 1: |
| val |= 0x01; /* 1 drive, ready for boot */ |
| break; |
| case 2: |
| val |= 0x41; /* 2 drives, ready for boot */ |
| break; |
| } |
| val |= 0x02; /* FPU is there */ |
| val |= 0x04; /* PS/2 mouse installed */ |
| rtc_set_memory(s, REG_EQUIPMENT_BYTE, val); |
| |
| /* hard drives */ |
| arg.rtc_state = s; |
| arg.idebus0 = idebus0; |
| arg.idebus1 = idebus1; |
| qemu_register_reset(pc_cmos_init_late, &arg); |
| } |
| |
| /* port 92 stuff: could be split off */ |
| typedef struct Port92State { |
| ISADevice dev; |
| MemoryRegion io; |
| uint8_t outport; |
| qemu_irq *a20_out; |
| } Port92State; |
| |
| static void port92_write(void *opaque, uint32_t addr, uint32_t val) |
| { |
| Port92State *s = opaque; |
| |
| DPRINTF("port92: write 0x%02x\n", val); |
| s->outport = val; |
| qemu_set_irq(*s->a20_out, (val >> 1) & 1); |
| if (val & 1) { |
| qemu_system_reset_request(); |
| } |
| } |
| |
| static uint32_t port92_read(void *opaque, uint32_t addr) |
| { |
| Port92State *s = opaque; |
| uint32_t ret; |
| |
| ret = s->outport; |
| DPRINTF("port92: read 0x%02x\n", ret); |
| return ret; |
| } |
| |
| static void port92_init(ISADevice *dev, qemu_irq *a20_out) |
| { |
| Port92State *s = DO_UPCAST(Port92State, dev, dev); |
| |
| s->a20_out = a20_out; |
| } |
| |
| static const VMStateDescription vmstate_port92_isa = { |
| .name = "port92", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .minimum_version_id_old = 1, |
| .fields = (VMStateField []) { |
| VMSTATE_UINT8(outport, Port92State), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void port92_reset(DeviceState *d) |
| { |
| Port92State *s = container_of(d, Port92State, dev.qdev); |
| |
| s->outport &= ~1; |
| } |
| |
| static const MemoryRegionPortio port92_portio[] = { |
| { 0, 1, 1, .read = port92_read, .write = port92_write }, |
| PORTIO_END_OF_LIST(), |
| }; |
| |
| static const MemoryRegionOps port92_ops = { |
| .old_portio = port92_portio |
| }; |
| |
| static int port92_initfn(ISADevice *dev) |
| { |
| Port92State *s = DO_UPCAST(Port92State, dev, dev); |
| |
| memory_region_init_io(&s->io, &port92_ops, s, "port92", 1); |
| isa_register_ioport(dev, &s->io, 0x92); |
| |
| s->outport = 0; |
| return 0; |
| } |
| |
| static ISADeviceInfo port92_info = { |
| .qdev.name = "port92", |
| .qdev.size = sizeof(Port92State), |
| .qdev.vmsd = &vmstate_port92_isa, |
| .qdev.no_user = 1, |
| .qdev.reset = port92_reset, |
| .init = port92_initfn, |
| }; |
| |
| static void port92_register(void) |
| { |
| isa_qdev_register(&port92_info); |
| } |
| device_init(port92_register) |
| |
| static void handle_a20_line_change(void *opaque, int irq, int level) |
| { |
| CPUState *cpu = opaque; |
| |
| /* XXX: send to all CPUs ? */ |
| /* XXX: add logic to handle multiple A20 line sources */ |
| cpu_x86_set_a20(cpu, level); |
| } |
| |
| /***********************************************************/ |
| /* Bochs BIOS debug ports */ |
| |
| static void bochs_bios_write(void *opaque, uint32_t addr, uint32_t val) |
| { |
| static const char shutdown_str[8] = "Shutdown"; |
| static int shutdown_index = 0; |
| |
| switch(addr) { |
| /* Bochs BIOS messages */ |
| case 0x400: |
| case 0x401: |
| /* used to be panic, now unused */ |
| break; |
| case 0x402: |
| case 0x403: |
| #ifdef DEBUG_BIOS |
| fprintf(stderr, "%c", val); |
| #endif |
| break; |
| case 0x8900: |
| /* same as Bochs power off */ |
| if (val == shutdown_str[shutdown_index]) { |
| shutdown_index++; |
| if (shutdown_index == 8) { |
| shutdown_index = 0; |
| qemu_system_shutdown_request(); |
| } |
| } else { |
| shutdown_index = 0; |
| } |
| break; |
| |
| /* LGPL'ed VGA BIOS messages */ |
| case 0x501: |
| case 0x502: |
| exit((val << 1) | 1); |
| case 0x500: |
| case 0x503: |
| #ifdef DEBUG_BIOS |
| fprintf(stderr, "%c", val); |
| #endif |
| break; |
| } |
| } |
| |
| int e820_add_entry(uint64_t address, uint64_t length, uint32_t type) |
| { |
| int index = le32_to_cpu(e820_table.count); |
| struct e820_entry *entry; |
| |
| if (index >= E820_NR_ENTRIES) |
| return -EBUSY; |
| entry = &e820_table.entry[index++]; |
| |
| entry->address = cpu_to_le64(address); |
| entry->length = cpu_to_le64(length); |
| entry->type = cpu_to_le32(type); |
| |
| e820_table.count = cpu_to_le32(index); |
| return index; |
| } |
| |
| static void *bochs_bios_init(void) |
| { |
| void *fw_cfg; |
| uint8_t *smbios_table; |
| size_t smbios_len; |
| uint64_t *numa_fw_cfg; |
| int i, j; |
| |
| register_ioport_write(0x400, 1, 2, bochs_bios_write, NULL); |
| register_ioport_write(0x401, 1, 2, bochs_bios_write, NULL); |
| register_ioport_write(0x402, 1, 1, bochs_bios_write, NULL); |
| register_ioport_write(0x403, 1, 1, bochs_bios_write, NULL); |
| register_ioport_write(0x8900, 1, 1, bochs_bios_write, NULL); |
| |
| register_ioport_write(0x501, 1, 1, bochs_bios_write, NULL); |
| register_ioport_write(0x501, 1, 2, bochs_bios_write, NULL); |
| register_ioport_write(0x502, 1, 2, bochs_bios_write, NULL); |
| register_ioport_write(0x500, 1, 1, bochs_bios_write, NULL); |
| register_ioport_write(0x503, 1, 1, bochs_bios_write, NULL); |
| |
| fw_cfg = fw_cfg_init(BIOS_CFG_IOPORT, BIOS_CFG_IOPORT + 1, 0, 0); |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1); |
| fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_ACPI_TABLES, (uint8_t *)acpi_tables, |
| acpi_tables_len); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_IRQ0_OVERRIDE, &irq0override, 1); |
| |
| smbios_table = smbios_get_table(&smbios_len); |
| if (smbios_table) |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_SMBIOS_ENTRIES, |
| smbios_table, smbios_len); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_E820_TABLE, (uint8_t *)&e820_table, |
| sizeof(struct e820_table)); |
| |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_HPET, (uint8_t *)&hpet_cfg, |
| sizeof(struct hpet_fw_config)); |
| /* allocate memory for the NUMA channel: one (64bit) word for the number |
| * of nodes, one word for each VCPU->node and one word for each node to |
| * hold the amount of memory. |
| */ |
| numa_fw_cfg = g_malloc0((1 + smp_cpus + nb_numa_nodes) * 8); |
| numa_fw_cfg[0] = cpu_to_le64(nb_numa_nodes); |
| for (i = 0; i < smp_cpus; i++) { |
| for (j = 0; j < nb_numa_nodes; j++) { |
| if (node_cpumask[j] & (1 << i)) { |
| numa_fw_cfg[i + 1] = cpu_to_le64(j); |
| break; |
| } |
| } |
| } |
| for (i = 0; i < nb_numa_nodes; i++) { |
| numa_fw_cfg[smp_cpus + 1 + i] = cpu_to_le64(node_mem[i]); |
| } |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_NUMA, (uint8_t *)numa_fw_cfg, |
| (1 + smp_cpus + nb_numa_nodes) * 8); |
| |
| return fw_cfg; |
| } |
| |
| static long get_file_size(FILE *f) |
| { |
| long where, size; |
| |
| /* XXX: on Unix systems, using fstat() probably makes more sense */ |
| |
| where = ftell(f); |
| fseek(f, 0, SEEK_END); |
| size = ftell(f); |
| fseek(f, where, SEEK_SET); |
| |
| return size; |
| } |
| |
| static void load_linux(void *fw_cfg, |
| const char *kernel_filename, |
| const char *initrd_filename, |
| const char *kernel_cmdline, |
| target_phys_addr_t max_ram_size) |
| { |
| uint16_t protocol; |
| int setup_size, kernel_size, initrd_size = 0, cmdline_size; |
| uint32_t initrd_max; |
| uint8_t header[8192], *setup, *kernel, *initrd_data; |
| target_phys_addr_t real_addr, prot_addr, cmdline_addr, initrd_addr = 0; |
| FILE *f; |
| char *vmode; |
| |
| /* Align to 16 bytes as a paranoia measure */ |
| cmdline_size = (strlen(kernel_cmdline)+16) & ~15; |
| |
| /* load the kernel header */ |
| f = fopen(kernel_filename, "rb"); |
| if (!f || !(kernel_size = get_file_size(f)) || |
| fread(header, 1, MIN(ARRAY_SIZE(header), kernel_size), f) != |
| MIN(ARRAY_SIZE(header), kernel_size)) { |
| fprintf(stderr, "qemu: could not load kernel '%s': %s\n", |
| kernel_filename, strerror(errno)); |
| exit(1); |
| } |
| |
| /* kernel protocol version */ |
| #if 0 |
| fprintf(stderr, "header magic: %#x\n", ldl_p(header+0x202)); |
| #endif |
| if (ldl_p(header+0x202) == 0x53726448) |
| protocol = lduw_p(header+0x206); |
| else { |
| /* This looks like a multiboot kernel. If it is, let's stop |
| treating it like a Linux kernel. */ |
| if (load_multiboot(fw_cfg, f, kernel_filename, initrd_filename, |
| kernel_cmdline, kernel_size, header)) |
| return; |
| protocol = 0; |
| } |
| |
| if (protocol < 0x200 || !(header[0x211] & 0x01)) { |
| /* Low kernel */ |
| real_addr = 0x90000; |
| cmdline_addr = 0x9a000 - cmdline_size; |
| prot_addr = 0x10000; |
| } else if (protocol < 0x202) { |
| /* High but ancient kernel */ |
| real_addr = 0x90000; |
| cmdline_addr = 0x9a000 - cmdline_size; |
| prot_addr = 0x100000; |
| } else { |
| /* High and recent kernel */ |
| real_addr = 0x10000; |
| cmdline_addr = 0x20000; |
| prot_addr = 0x100000; |
| } |
| |
| #if 0 |
| fprintf(stderr, |
| "qemu: real_addr = 0x" TARGET_FMT_plx "\n" |
| "qemu: cmdline_addr = 0x" TARGET_FMT_plx "\n" |
| "qemu: prot_addr = 0x" TARGET_FMT_plx "\n", |
| real_addr, |
| cmdline_addr, |
| prot_addr); |
| #endif |
| |
| /* highest address for loading the initrd */ |
| if (protocol >= 0x203) |
| initrd_max = ldl_p(header+0x22c); |
| else |
| initrd_max = 0x37ffffff; |
| |
| if (initrd_max >= max_ram_size-ACPI_DATA_SIZE) |
| initrd_max = max_ram_size-ACPI_DATA_SIZE-1; |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_ADDR, cmdline_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, strlen(kernel_cmdline)+1); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_CMDLINE_DATA, |
| (uint8_t*)strdup(kernel_cmdline), |
| strlen(kernel_cmdline)+1); |
| |
| if (protocol >= 0x202) { |
| stl_p(header+0x228, cmdline_addr); |
| } else { |
| stw_p(header+0x20, 0xA33F); |
| stw_p(header+0x22, cmdline_addr-real_addr); |
| } |
| |
| /* handle vga= parameter */ |
| vmode = strstr(kernel_cmdline, "vga="); |
| if (vmode) { |
| unsigned int video_mode; |
| /* skip "vga=" */ |
| vmode += 4; |
| if (!strncmp(vmode, "normal", 6)) { |
| video_mode = 0xffff; |
| } else if (!strncmp(vmode, "ext", 3)) { |
| video_mode = 0xfffe; |
| } else if (!strncmp(vmode, "ask", 3)) { |
| video_mode = 0xfffd; |
| } else { |
| video_mode = strtol(vmode, NULL, 0); |
| } |
| stw_p(header+0x1fa, video_mode); |
| } |
| |
| /* loader type */ |
| /* High nybble = B reserved for Qemu; low nybble is revision number. |
| If this code is substantially changed, you may want to consider |
| incrementing the revision. */ |
| if (protocol >= 0x200) |
| header[0x210] = 0xB0; |
| |
| /* heap */ |
| if (protocol >= 0x201) { |
| header[0x211] |= 0x80; /* CAN_USE_HEAP */ |
| stw_p(header+0x224, cmdline_addr-real_addr-0x200); |
| } |
| |
| /* load initrd */ |
| if (initrd_filename) { |
| if (protocol < 0x200) { |
| fprintf(stderr, "qemu: linux kernel too old to load a ram disk\n"); |
| exit(1); |
| } |
| |
| initrd_size = get_image_size(initrd_filename); |
| if (initrd_size < 0) { |
| fprintf(stderr, "qemu: error reading initrd %s\n", |
| initrd_filename); |
| exit(1); |
| } |
| |
| initrd_addr = (initrd_max-initrd_size) & ~4095; |
| |
| initrd_data = g_malloc(initrd_size); |
| load_image(initrd_filename, initrd_data); |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_INITRD_DATA, initrd_data, initrd_size); |
| |
| stl_p(header+0x218, initrd_addr); |
| stl_p(header+0x21c, initrd_size); |
| } |
| |
| /* load kernel and setup */ |
| setup_size = header[0x1f1]; |
| if (setup_size == 0) |
| setup_size = 4; |
| setup_size = (setup_size+1)*512; |
| kernel_size -= setup_size; |
| |
| setup = g_malloc(setup_size); |
| kernel = g_malloc(kernel_size); |
| fseek(f, 0, SEEK_SET); |
| if (fread(setup, 1, setup_size, f) != setup_size) { |
| fprintf(stderr, "fread() failed\n"); |
| exit(1); |
| } |
| if (fread(kernel, 1, kernel_size, f) != kernel_size) { |
| fprintf(stderr, "fread() failed\n"); |
| exit(1); |
| } |
| fclose(f); |
| memcpy(setup, header, MIN(sizeof(header), setup_size)); |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_ADDR, prot_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_KERNEL_DATA, kernel, kernel_size); |
| |
| fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_ADDR, real_addr); |
| fw_cfg_add_i32(fw_cfg, FW_CFG_SETUP_SIZE, setup_size); |
| fw_cfg_add_bytes(fw_cfg, FW_CFG_SETUP_DATA, setup, setup_size); |
| |
| option_rom[nb_option_roms].name = "linuxboot.bin"; |
| option_rom[nb_option_roms].bootindex = 0; |
| nb_option_roms++; |
| } |
| |
| #define NE2000_NB_MAX 6 |
| |
| static const int ne2000_io[NE2000_NB_MAX] = { 0x300, 0x320, 0x340, 0x360, |
| 0x280, 0x380 }; |
| static const int ne2000_irq[NE2000_NB_MAX] = { 9, 10, 11, 3, 4, 5 }; |
| |
| static const int parallel_io[MAX_PARALLEL_PORTS] = { 0x378, 0x278, 0x3bc }; |
| static const int parallel_irq[MAX_PARALLEL_PORTS] = { 7, 7, 7 }; |
| |
| void pc_init_ne2k_isa(NICInfo *nd) |
| { |
| static int nb_ne2k = 0; |
| |
| if (nb_ne2k == NE2000_NB_MAX) |
| return; |
| isa_ne2000_init(ne2000_io[nb_ne2k], |
| ne2000_irq[nb_ne2k], nd); |
| nb_ne2k++; |
| } |
| |
| int cpu_is_bsp(CPUState *env) |
| { |
| /* We hard-wire the BSP to the first CPU. */ |
| return env->cpu_index == 0; |
| } |
| |
| DeviceState *cpu_get_current_apic(void) |
| { |
| if (cpu_single_env) { |
| return cpu_single_env->apic_state; |
| } else { |
| return NULL; |
| } |
| } |
| |
| static DeviceState *apic_init(void *env, uint8_t apic_id) |
| { |
| DeviceState *dev; |
| SysBusDevice *d; |
| static int apic_mapped; |
| |
| dev = qdev_create(NULL, "apic"); |
| qdev_prop_set_uint8(dev, "id", apic_id); |
| qdev_prop_set_ptr(dev, "cpu_env", env); |
| qdev_init_nofail(dev); |
| d = sysbus_from_qdev(dev); |
| |
| /* XXX: mapping more APICs at the same memory location */ |
| if (apic_mapped == 0) { |
| /* NOTE: the APIC is directly connected to the CPU - it is not |
| on the global memory bus. */ |
| /* XXX: what if the base changes? */ |
| sysbus_mmio_map(d, 0, MSI_ADDR_BASE); |
| apic_mapped = 1; |
| } |
| |
| msix_supported = 1; |
| |
| return dev; |
| } |
| |
| /* set CMOS shutdown status register (index 0xF) as S3_resume(0xFE) |
| BIOS will read it and start S3 resume at POST Entry */ |
| void pc_cmos_set_s3_resume(void *opaque, int irq, int level) |
| { |
| ISADevice *s = opaque; |
| |
| if (level) { |
| rtc_set_memory(s, 0xF, 0xFE); |
| } |
| } |
| |
| void pc_acpi_smi_interrupt(void *opaque, int irq, int level) |
| { |
| CPUState *s = opaque; |
| |
| if (level) { |
| cpu_interrupt(s, CPU_INTERRUPT_SMI); |
| } |
| } |
| |
| static void pc_cpu_reset(void *opaque) |
| { |
| CPUState *env = opaque; |
| |
| cpu_reset(env); |
| env->halted = !cpu_is_bsp(env); |
| } |
| |
| static CPUState *pc_new_cpu(const char *cpu_model) |
| { |
| CPUState *env; |
| |
| env = cpu_init(cpu_model); |
| if (!env) { |
| fprintf(stderr, "Unable to find x86 CPU definition\n"); |
| exit(1); |
| } |
| if ((env->cpuid_features & CPUID_APIC) || smp_cpus > 1) { |
| env->apic_state = apic_init(env, env->cpuid_apic_id); |
| } |
| qemu_register_reset(pc_cpu_reset, env); |
| pc_cpu_reset(env); |
| return env; |
| } |
| |
| void pc_cpus_init(const char *cpu_model) |
| { |
| int i; |
| |
| /* init CPUs */ |
| if (cpu_model == NULL) { |
| #ifdef TARGET_X86_64 |
| cpu_model = "qemu64"; |
| #else |
| cpu_model = "qemu32"; |
| #endif |
| } |
| |
| for(i = 0; i < smp_cpus; i++) { |
| pc_new_cpu(cpu_model); |
| } |
| } |
| |
| void pc_memory_init(MemoryRegion *system_memory, |
| const char *kernel_filename, |
| const char *kernel_cmdline, |
| const char *initrd_filename, |
| ram_addr_t below_4g_mem_size, |
| ram_addr_t above_4g_mem_size, |
| MemoryRegion *rom_memory, |
| MemoryRegion **ram_memory) |
| { |
| char *filename; |
| int ret, linux_boot, i; |
| MemoryRegion *ram, *bios, *isa_bios, *option_rom_mr; |
| MemoryRegion *ram_below_4g, *ram_above_4g; |
| int bios_size, isa_bios_size; |
| void *fw_cfg; |
| |
| linux_boot = (kernel_filename != NULL); |
| |
| /* Allocate RAM. We allocate it as a single memory region and use |
| * aliases to address portions of it, mostly for backwards compatibility |
| * with older qemus that used qemu_ram_alloc(). |
| */ |
| ram = g_malloc(sizeof(*ram)); |
| memory_region_init_ram(ram, NULL, "pc.ram", |
| below_4g_mem_size + above_4g_mem_size); |
| *ram_memory = ram; |
| ram_below_4g = g_malloc(sizeof(*ram_below_4g)); |
| memory_region_init_alias(ram_below_4g, "ram-below-4g", ram, |
| 0, below_4g_mem_size); |
| memory_region_add_subregion(system_memory, 0, ram_below_4g); |
| if (above_4g_mem_size > 0) { |
| ram_above_4g = g_malloc(sizeof(*ram_above_4g)); |
| memory_region_init_alias(ram_above_4g, "ram-above-4g", ram, |
| below_4g_mem_size, above_4g_mem_size); |
| memory_region_add_subregion(system_memory, 0x100000000ULL, |
| ram_above_4g); |
| } |
| |
| /* BIOS load */ |
| if (bios_name == NULL) |
| bios_name = BIOS_FILENAME; |
| filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); |
| if (filename) { |
| bios_size = get_image_size(filename); |
| } else { |
| bios_size = -1; |
| } |
| if (bios_size <= 0 || |
| (bios_size % 65536) != 0) { |
| goto bios_error; |
| } |
| bios = g_malloc(sizeof(*bios)); |
| memory_region_init_ram(bios, NULL, "pc.bios", bios_size); |
| memory_region_set_readonly(bios, true); |
| ret = rom_add_file_fixed(bios_name, (uint32_t)(-bios_size), -1); |
| if (ret != 0) { |
| bios_error: |
| fprintf(stderr, "qemu: could not load PC BIOS '%s'\n", bios_name); |
| exit(1); |
| } |
| if (filename) { |
| g_free(filename); |
| } |
| /* map the last 128KB of the BIOS in ISA space */ |
| isa_bios_size = bios_size; |
| if (isa_bios_size > (128 * 1024)) |
| isa_bios_size = 128 * 1024; |
| isa_bios = g_malloc(sizeof(*isa_bios)); |
| memory_region_init_alias(isa_bios, "isa-bios", bios, |
| bios_size - isa_bios_size, isa_bios_size); |
| memory_region_add_subregion_overlap(rom_memory, |
| 0x100000 - isa_bios_size, |
| isa_bios, |
| 1); |
| memory_region_set_readonly(isa_bios, true); |
| |
| option_rom_mr = g_malloc(sizeof(*option_rom_mr)); |
| memory_region_init_ram(option_rom_mr, NULL, "pc.rom", PC_ROM_SIZE); |
| memory_region_add_subregion_overlap(rom_memory, |
| PC_ROM_MIN_VGA, |
| option_rom_mr, |
| 1); |
| |
| /* map all the bios at the top of memory */ |
| memory_region_add_subregion(rom_memory, |
| (uint32_t)(-bios_size), |
| bios); |
| |
| fw_cfg = bochs_bios_init(); |
| rom_set_fw(fw_cfg); |
| |
| if (linux_boot) { |
| load_linux(fw_cfg, kernel_filename, initrd_filename, kernel_cmdline, below_4g_mem_size); |
| } |
| |
| for (i = 0; i < nb_option_roms; i++) { |
| rom_add_option(option_rom[i].name, option_rom[i].bootindex); |
| } |
| } |
| |
| qemu_irq *pc_allocate_cpu_irq(void) |
| { |
| return qemu_allocate_irqs(pic_irq_request, NULL, 1); |
| } |
| |
| void pc_vga_init(PCIBus *pci_bus) |
| { |
| if (cirrus_vga_enabled) { |
| if (pci_bus) { |
| pci_cirrus_vga_init(pci_bus); |
| } else { |
| isa_cirrus_vga_init(get_system_memory()); |
| } |
| } else if (vmsvga_enabled) { |
| if (pci_bus) { |
| if (!pci_vmsvga_init(pci_bus)) { |
| fprintf(stderr, "Warning: vmware_vga not available," |
| " using standard VGA instead\n"); |
| pci_vga_init(pci_bus); |
| } |
| } else { |
| fprintf(stderr, "%s: vmware_vga: no PCI bus\n", __FUNCTION__); |
| } |
| #ifdef CONFIG_SPICE |
| } else if (qxl_enabled) { |
| if (pci_bus) |
| pci_create_simple(pci_bus, -1, "qxl-vga"); |
| else |
| fprintf(stderr, "%s: qxl: no PCI bus\n", __FUNCTION__); |
| #endif |
| } else if (std_vga_enabled) { |
| if (pci_bus) { |
| pci_vga_init(pci_bus); |
| } else { |
| isa_vga_init(); |
| } |
| } |
| } |
| |
| static void cpu_request_exit(void *opaque, int irq, int level) |
| { |
| CPUState *env = cpu_single_env; |
| |
| if (env && level) { |
| cpu_exit(env); |
| } |
| } |
| |
| void pc_basic_device_init(qemu_irq *gsi, |
| ISADevice **rtc_state, |
| ISADevice **floppy, |
| bool no_vmport) |
| { |
| int i; |
| DriveInfo *fd[MAX_FD]; |
| qemu_irq rtc_irq = NULL; |
| qemu_irq *a20_line; |
| ISADevice *i8042, *port92, *vmmouse, *pit; |
| qemu_irq *cpu_exit_irq; |
| |
| register_ioport_write(0x80, 1, 1, ioport80_write, NULL); |
| |
| register_ioport_write(0xf0, 1, 1, ioportF0_write, NULL); |
| |
| if (!no_hpet) { |
| DeviceState *hpet = sysbus_try_create_simple("hpet", HPET_BASE, NULL); |
| |
| if (hpet) { |
| for (i = 0; i < GSI_NUM_PINS; i++) { |
| sysbus_connect_irq(sysbus_from_qdev(hpet), i, gsi[i]); |
| } |
| rtc_irq = qdev_get_gpio_in(hpet, 0); |
| } |
| } |
| *rtc_state = rtc_init(2000, rtc_irq); |
| |
| qemu_register_boot_set(pc_boot_set, *rtc_state); |
| |
| pit = pit_init(0x40, 0); |
| pcspk_init(pit); |
| |
| for(i = 0; i < MAX_SERIAL_PORTS; i++) { |
| if (serial_hds[i]) { |
| serial_isa_init(i, serial_hds[i]); |
| } |
| } |
| |
| for(i = 0; i < MAX_PARALLEL_PORTS; i++) { |
| if (parallel_hds[i]) { |
| parallel_init(i, parallel_hds[i]); |
| } |
| } |
| |
| a20_line = qemu_allocate_irqs(handle_a20_line_change, first_cpu, 2); |
| i8042 = isa_create_simple("i8042"); |
| i8042_setup_a20_line(i8042, &a20_line[0]); |
| if (!no_vmport) { |
| vmport_init(); |
| vmmouse = isa_try_create("vmmouse"); |
| } else { |
| vmmouse = NULL; |
| } |
| if (vmmouse) { |
| qdev_prop_set_ptr(&vmmouse->qdev, "ps2_mouse", i8042); |
| qdev_init_nofail(&vmmouse->qdev); |
| } |
| port92 = isa_create_simple("port92"); |
| port92_init(port92, &a20_line[1]); |
| |
| cpu_exit_irq = qemu_allocate_irqs(cpu_request_exit, NULL, 1); |
| DMA_init(0, cpu_exit_irq); |
| |
| for(i = 0; i < MAX_FD; i++) { |
| fd[i] = drive_get(IF_FLOPPY, 0, i); |
| } |
| *floppy = fdctrl_init_isa(fd); |
| } |
| |
| void pc_pci_device_init(PCIBus *pci_bus) |
| { |
| int max_bus; |
| int bus; |
| |
| max_bus = drive_get_max_bus(IF_SCSI); |
| for (bus = 0; bus <= max_bus; bus++) { |
| pci_create_simple(pci_bus, -1, "lsi53c895a"); |
| } |
| } |