| /* |
| =============================================================================== |
| |
| This C source file is part of the SoftFloat IEC/IEEE Floating-point |
| Arithmetic Package, Release 2. |
| |
| Written by John R. Hauser. This work was made possible in part by the |
| International Computer Science Institute, located at Suite 600, 1947 Center |
| Street, Berkeley, California 94704. Funding was partially provided by the |
| National Science Foundation under grant MIP-9311980. The original version |
| of this code was written as part of a project to build a fixed-point vector |
| processor in collaboration with the University of California at Berkeley, |
| overseen by Profs. Nelson Morgan and John Wawrzynek. More information |
| is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
| arithmetic/softfloat.html'. |
| |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
| has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT |
| TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO |
| PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY |
| AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. |
| |
| Derivative works are acceptable, even for commercial purposes, so long as |
| (1) they include prominent notice that the work is derivative, and (2) they |
| include prominent notice akin to these three paragraphs for those parts of |
| this code that are retained. |
| |
| =============================================================================== |
| */ |
| |
| #include "fpa11.h" |
| #include "milieu.h" |
| #include "softfloat.h" |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Floating-point rounding mode, extended double-precision rounding precision, |
| and exception flags. |
| ------------------------------------------------------------------------------- |
| */ |
| int8 float_rounding_mode = float_round_nearest_even; |
| int8 floatx80_rounding_precision = 80; |
| int8 float_exception_flags; |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Primitive arithmetic functions, including multi-word arithmetic, and |
| division and square root approximations. (Can be specialized to target if |
| desired.) |
| ------------------------------------------------------------------------------- |
| */ |
| #include "softfloat-macros" |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Functions and definitions to determine: (1) whether tininess for underflow |
| is detected before or after rounding by default, (2) what (if anything) |
| happens when exceptions are raised, (3) how signaling NaNs are distinguished |
| from quiet NaNs, (4) the default generated quiet NaNs, and (5) how NaNs |
| are propagated from function inputs to output. These details are target- |
| specific. |
| ------------------------------------------------------------------------------- |
| */ |
| #include "softfloat-specialize" |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Takes a 64-bit fixed-point value `absZ' with binary point between bits 6 |
| and 7, and returns the properly rounded 32-bit integer corresponding to the |
| input. If `zSign' is nonzero, the input is negated before being converted |
| to an integer. Bit 63 of `absZ' must be zero. Ordinarily, the fixed-point |
| input is simply rounded to an integer, with the inexact exception raised if |
| the input cannot be represented exactly as an integer. If the fixed-point |
| input is too large, however, the invalid exception is raised and the largest |
| positive or negative integer is returned. |
| ------------------------------------------------------------------------------- |
| */ |
| static int32 roundAndPackInt32( flag zSign, bits64 absZ ) |
| { |
| int8 roundingMode; |
| flag roundNearestEven; |
| int8 roundIncrement, roundBits; |
| int32 z; |
| |
| roundingMode = float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| roundIncrement = 0x40; |
| if ( ! roundNearestEven ) { |
| if ( roundingMode == float_round_to_zero ) { |
| roundIncrement = 0; |
| } |
| else { |
| roundIncrement = 0x7F; |
| if ( zSign ) { |
| if ( roundingMode == float_round_up ) roundIncrement = 0; |
| } |
| else { |
| if ( roundingMode == float_round_down ) roundIncrement = 0; |
| } |
| } |
| } |
| roundBits = absZ & 0x7F; |
| absZ = ( absZ + roundIncrement )>>7; |
| absZ &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); |
| z = absZ; |
| if ( zSign ) z = - z; |
| if ( ( absZ>>32 ) || ( z && ( ( z < 0 ) ^ zSign ) ) ) { |
| float_exception_flags |= float_flag_invalid; |
| return zSign ? 0x80000000 : 0x7FFFFFFF; |
| } |
| if ( roundBits ) float_exception_flags |= float_flag_inexact; |
| return z; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the fraction bits of the single-precision floating-point value `a'. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE bits32 extractFloat32Frac( float32 a ) |
| { |
| |
| return a & 0x007FFFFF; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the exponent bits of the single-precision floating-point value `a'. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE int16 extractFloat32Exp( float32 a ) |
| { |
| |
| return ( a>>23 ) & 0xFF; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the sign bit of the single-precision floating-point value `a'. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE flag extractFloat32Sign( float32 a ) |
| { |
| |
| return a>>31; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Normalizes the subnormal single-precision floating-point value represented |
| by the denormalized significand `aSig'. The normalized exponent and |
| significand are stored at the locations pointed to by `zExpPtr' and |
| `zSigPtr', respectively. |
| ------------------------------------------------------------------------------- |
| */ |
| static void |
| normalizeFloat32Subnormal( bits32 aSig, int16 *zExpPtr, bits32 *zSigPtr ) |
| { |
| int8 shiftCount; |
| |
| shiftCount = countLeadingZeros32( aSig ) - 8; |
| *zSigPtr = aSig<<shiftCount; |
| *zExpPtr = 1 - shiftCount; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a |
| single-precision floating-point value, returning the result. After being |
| shifted into the proper positions, the three fields are simply added |
| together to form the result. This means that any integer portion of `zSig' |
| will be added into the exponent. Since a properly normalized significand |
| will have an integer portion equal to 1, the `zExp' input should be 1 less |
| than the desired result exponent whenever `zSig' is a complete, normalized |
| significand. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE float32 packFloat32( flag zSign, int16 zExp, bits32 zSig ) |
| { |
| return ( ( (bits32) zSign )<<31 ) + ( ( (bits32) zExp )<<23 ) + zSig; |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| and significand `zSig', and returns the proper single-precision floating- |
| point value corresponding to the abstract input. Ordinarily, the abstract |
| value is simply rounded and packed into the single-precision format, with |
| the inexact exception raised if the abstract input cannot be represented |
| exactly. If the abstract value is too large, however, the overflow and |
| inexact exceptions are raised and an infinity or maximal finite value is |
| returned. If the abstract value is too small, the input value is rounded to |
| a subnormal number, and the underflow and inexact exceptions are raised if |
| the abstract input cannot be represented exactly as a subnormal single- |
| precision floating-point number. |
| The input significand `zSig' has its binary point between bits 30 |
| and 29, which is 7 bits to the left of the usual location. This shifted |
| significand must be normalized or smaller. If `zSig' is not normalized, |
| `zExp' must be 0; in that case, the result returned is a subnormal number, |
| and it must not require rounding. In the usual case that `zSig' is |
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. |
| The handling of underflow and overflow follows the IEC/IEEE Standard for |
| Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| static float32 roundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) |
| { |
| int8 roundingMode; |
| flag roundNearestEven; |
| int8 roundIncrement, roundBits; |
| flag isTiny; |
| |
| roundingMode = float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| roundIncrement = 0x40; |
| if ( ! roundNearestEven ) { |
| if ( roundingMode == float_round_to_zero ) { |
| roundIncrement = 0; |
| } |
| else { |
| roundIncrement = 0x7F; |
| if ( zSign ) { |
| if ( roundingMode == float_round_up ) roundIncrement = 0; |
| } |
| else { |
| if ( roundingMode == float_round_down ) roundIncrement = 0; |
| } |
| } |
| } |
| roundBits = zSig & 0x7F; |
| if ( 0xFD <= (bits16) zExp ) { |
| if ( ( 0xFD < zExp ) |
| || ( ( zExp == 0xFD ) |
| && ( (sbits32) ( zSig + roundIncrement ) < 0 ) ) |
| ) { |
| float_raise( float_flag_overflow | float_flag_inexact ); |
| return packFloat32( zSign, 0xFF, 0 ) - ( roundIncrement == 0 ); |
| } |
| if ( zExp < 0 ) { |
| isTiny = |
| ( float_detect_tininess == float_tininess_before_rounding ) |
| || ( zExp < -1 ) |
| || ( zSig + roundIncrement < 0x80000000 ); |
| shift32RightJamming( zSig, - zExp, &zSig ); |
| zExp = 0; |
| roundBits = zSig & 0x7F; |
| if ( isTiny && roundBits ) float_raise( float_flag_underflow ); |
| } |
| } |
| if ( roundBits ) float_exception_flags |= float_flag_inexact; |
| zSig = ( zSig + roundIncrement )>>7; |
| zSig &= ~ ( ( ( roundBits ^ 0x40 ) == 0 ) & roundNearestEven ); |
| if ( zSig == 0 ) zExp = 0; |
| return packFloat32( zSign, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| and significand `zSig', and returns the proper single-precision floating- |
| point value corresponding to the abstract input. This routine is just like |
| `roundAndPackFloat32' except that `zSig' does not have to be normalized in |
| any way. In all cases, `zExp' must be 1 less than the ``true'' floating- |
| point exponent. |
| ------------------------------------------------------------------------------- |
| */ |
| static float32 |
| normalizeRoundAndPackFloat32( flag zSign, int16 zExp, bits32 zSig ) |
| { |
| int8 shiftCount; |
| |
| shiftCount = countLeadingZeros32( zSig ) - 1; |
| return roundAndPackFloat32( zSign, zExp - shiftCount, zSig<<shiftCount ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the fraction bits of the double-precision floating-point value `a'. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE bits64 extractFloat64Frac( float64 a ) |
| { |
| |
| return a & LIT64( 0x000FFFFFFFFFFFFF ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the exponent bits of the double-precision floating-point value `a'. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE int16 extractFloat64Exp( float64 a ) |
| { |
| |
| return ( a>>52 ) & 0x7FF; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the sign bit of the double-precision floating-point value `a'. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE flag extractFloat64Sign( float64 a ) |
| { |
| |
| return a>>63; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Normalizes the subnormal double-precision floating-point value represented |
| by the denormalized significand `aSig'. The normalized exponent and |
| significand are stored at the locations pointed to by `zExpPtr' and |
| `zSigPtr', respectively. |
| ------------------------------------------------------------------------------- |
| */ |
| static void |
| normalizeFloat64Subnormal( bits64 aSig, int16 *zExpPtr, bits64 *zSigPtr ) |
| { |
| int8 shiftCount; |
| |
| shiftCount = countLeadingZeros64( aSig ) - 11; |
| *zSigPtr = aSig<<shiftCount; |
| *zExpPtr = 1 - shiftCount; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into a |
| double-precision floating-point value, returning the result. After being |
| shifted into the proper positions, the three fields are simply added |
| together to form the result. This means that any integer portion of `zSig' |
| will be added into the exponent. Since a properly normalized significand |
| will have an integer portion equal to 1, the `zExp' input should be 1 less |
| than the desired result exponent whenever `zSig' is a complete, normalized |
| significand. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE float64 packFloat64( flag zSign, int16 zExp, bits64 zSig ) |
| { |
| |
| return ( ( (bits64) zSign )<<63 ) + ( ( (bits64) zExp )<<52 ) + zSig; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| and significand `zSig', and returns the proper double-precision floating- |
| point value corresponding to the abstract input. Ordinarily, the abstract |
| value is simply rounded and packed into the double-precision format, with |
| the inexact exception raised if the abstract input cannot be represented |
| exactly. If the abstract value is too large, however, the overflow and |
| inexact exceptions are raised and an infinity or maximal finite value is |
| returned. If the abstract value is too small, the input value is rounded to |
| a subnormal number, and the underflow and inexact exceptions are raised if |
| the abstract input cannot be represented exactly as a subnormal double- |
| precision floating-point number. |
| The input significand `zSig' has its binary point between bits 62 |
| and 61, which is 10 bits to the left of the usual location. This shifted |
| significand must be normalized or smaller. If `zSig' is not normalized, |
| `zExp' must be 0; in that case, the result returned is a subnormal number, |
| and it must not require rounding. In the usual case that `zSig' is |
| normalized, `zExp' must be 1 less than the ``true'' floating-point exponent. |
| The handling of underflow and overflow follows the IEC/IEEE Standard for |
| Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| static float64 roundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) |
| { |
| int8 roundingMode; |
| flag roundNearestEven; |
| int16 roundIncrement, roundBits; |
| flag isTiny; |
| |
| roundingMode = float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| roundIncrement = 0x200; |
| if ( ! roundNearestEven ) { |
| if ( roundingMode == float_round_to_zero ) { |
| roundIncrement = 0; |
| } |
| else { |
| roundIncrement = 0x3FF; |
| if ( zSign ) { |
| if ( roundingMode == float_round_up ) roundIncrement = 0; |
| } |
| else { |
| if ( roundingMode == float_round_down ) roundIncrement = 0; |
| } |
| } |
| } |
| roundBits = zSig & 0x3FF; |
| if ( 0x7FD <= (bits16) zExp ) { |
| if ( ( 0x7FD < zExp ) |
| || ( ( zExp == 0x7FD ) |
| && ( (sbits64) ( zSig + roundIncrement ) < 0 ) ) |
| ) { |
| //register int lr = __builtin_return_address(0); |
| //printk("roundAndPackFloat64 called from 0x%08x\n",lr); |
| float_raise( float_flag_overflow | float_flag_inexact ); |
| return packFloat64( zSign, 0x7FF, 0 ) - ( roundIncrement == 0 ); |
| } |
| if ( zExp < 0 ) { |
| isTiny = |
| ( float_detect_tininess == float_tininess_before_rounding ) |
| || ( zExp < -1 ) |
| || ( zSig + roundIncrement < LIT64( 0x8000000000000000 ) ); |
| shift64RightJamming( zSig, - zExp, &zSig ); |
| zExp = 0; |
| roundBits = zSig & 0x3FF; |
| if ( isTiny && roundBits ) float_raise( float_flag_underflow ); |
| } |
| } |
| if ( roundBits ) float_exception_flags |= float_flag_inexact; |
| zSig = ( zSig + roundIncrement )>>10; |
| zSig &= ~ ( ( ( roundBits ^ 0x200 ) == 0 ) & roundNearestEven ); |
| if ( zSig == 0 ) zExp = 0; |
| return packFloat64( zSign, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| and significand `zSig', and returns the proper double-precision floating- |
| point value corresponding to the abstract input. This routine is just like |
| `roundAndPackFloat64' except that `zSig' does not have to be normalized in |
| any way. In all cases, `zExp' must be 1 less than the ``true'' floating- |
| point exponent. |
| ------------------------------------------------------------------------------- |
| */ |
| static float64 |
| normalizeRoundAndPackFloat64( flag zSign, int16 zExp, bits64 zSig ) |
| { |
| int8 shiftCount; |
| |
| shiftCount = countLeadingZeros64( zSig ) - 1; |
| return roundAndPackFloat64( zSign, zExp - shiftCount, zSig<<shiftCount ); |
| |
| } |
| |
| #ifdef FLOATX80 |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the fraction bits of the extended double-precision floating-point |
| value `a'. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE bits64 extractFloatx80Frac( floatx80 a ) |
| { |
| |
| return a.low; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the exponent bits of the extended double-precision floating-point |
| value `a'. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE int32 extractFloatx80Exp( floatx80 a ) |
| { |
| |
| return a.high & 0x7FFF; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the sign bit of the extended double-precision floating-point value |
| `a'. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE flag extractFloatx80Sign( floatx80 a ) |
| { |
| |
| return a.high>>15; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Normalizes the subnormal extended double-precision floating-point value |
| represented by the denormalized significand `aSig'. The normalized exponent |
| and significand are stored at the locations pointed to by `zExpPtr' and |
| `zSigPtr', respectively. |
| ------------------------------------------------------------------------------- |
| */ |
| static void |
| normalizeFloatx80Subnormal( bits64 aSig, int32 *zExpPtr, bits64 *zSigPtr ) |
| { |
| int8 shiftCount; |
| |
| shiftCount = countLeadingZeros64( aSig ); |
| *zSigPtr = aSig<<shiftCount; |
| *zExpPtr = 1 - shiftCount; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Packs the sign `zSign', exponent `zExp', and significand `zSig' into an |
| extended double-precision floating-point value, returning the result. |
| ------------------------------------------------------------------------------- |
| */ |
| INLINE floatx80 packFloatx80( flag zSign, int32 zExp, bits64 zSig ) |
| { |
| floatx80 z; |
| |
| z.low = zSig; |
| z.high = ( ( (bits16) zSign )<<15 ) + zExp; |
| return z; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| and extended significand formed by the concatenation of `zSig0' and `zSig1', |
| and returns the proper extended double-precision floating-point value |
| corresponding to the abstract input. Ordinarily, the abstract value is |
| rounded and packed into the extended double-precision format, with the |
| inexact exception raised if the abstract input cannot be represented |
| exactly. If the abstract value is too large, however, the overflow and |
| inexact exceptions are raised and an infinity or maximal finite value is |
| returned. If the abstract value is too small, the input value is rounded to |
| a subnormal number, and the underflow and inexact exceptions are raised if |
| the abstract input cannot be represented exactly as a subnormal extended |
| double-precision floating-point number. |
| If `roundingPrecision' is 32 or 64, the result is rounded to the same |
| number of bits as single or double precision, respectively. Otherwise, the |
| result is rounded to the full precision of the extended double-precision |
| format. |
| The input significand must be normalized or smaller. If the input |
| significand is not normalized, `zExp' must be 0; in that case, the result |
| returned is a subnormal number, and it must not require rounding. The |
| handling of underflow and overflow follows the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| static floatx80 |
| roundAndPackFloatx80( |
| int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 |
| ) |
| { |
| int8 roundingMode; |
| flag roundNearestEven, increment, isTiny; |
| int64 roundIncrement, roundMask, roundBits; |
| |
| roundingMode = float_rounding_mode; |
| roundNearestEven = ( roundingMode == float_round_nearest_even ); |
| if ( roundingPrecision == 80 ) goto precision80; |
| if ( roundingPrecision == 64 ) { |
| roundIncrement = LIT64( 0x0000000000000400 ); |
| roundMask = LIT64( 0x00000000000007FF ); |
| } |
| else if ( roundingPrecision == 32 ) { |
| roundIncrement = LIT64( 0x0000008000000000 ); |
| roundMask = LIT64( 0x000000FFFFFFFFFF ); |
| } |
| else { |
| goto precision80; |
| } |
| zSig0 |= ( zSig1 != 0 ); |
| if ( ! roundNearestEven ) { |
| if ( roundingMode == float_round_to_zero ) { |
| roundIncrement = 0; |
| } |
| else { |
| roundIncrement = roundMask; |
| if ( zSign ) { |
| if ( roundingMode == float_round_up ) roundIncrement = 0; |
| } |
| else { |
| if ( roundingMode == float_round_down ) roundIncrement = 0; |
| } |
| } |
| } |
| roundBits = zSig0 & roundMask; |
| if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { |
| if ( ( 0x7FFE < zExp ) |
| || ( ( zExp == 0x7FFE ) && ( zSig0 + roundIncrement < zSig0 ) ) |
| ) { |
| goto overflow; |
| } |
| if ( zExp <= 0 ) { |
| isTiny = |
| ( float_detect_tininess == float_tininess_before_rounding ) |
| || ( zExp < 0 ) |
| || ( zSig0 <= zSig0 + roundIncrement ); |
| shift64RightJamming( zSig0, 1 - zExp, &zSig0 ); |
| zExp = 0; |
| roundBits = zSig0 & roundMask; |
| if ( isTiny && roundBits ) float_raise( float_flag_underflow ); |
| if ( roundBits ) float_exception_flags |= float_flag_inexact; |
| zSig0 += roundIncrement; |
| if ( (sbits64) zSig0 < 0 ) zExp = 1; |
| roundIncrement = roundMask + 1; |
| if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { |
| roundMask |= roundIncrement; |
| } |
| zSig0 &= ~ roundMask; |
| return packFloatx80( zSign, zExp, zSig0 ); |
| } |
| } |
| if ( roundBits ) float_exception_flags |= float_flag_inexact; |
| zSig0 += roundIncrement; |
| if ( zSig0 < roundIncrement ) { |
| ++zExp; |
| zSig0 = LIT64( 0x8000000000000000 ); |
| } |
| roundIncrement = roundMask + 1; |
| if ( roundNearestEven && ( roundBits<<1 == roundIncrement ) ) { |
| roundMask |= roundIncrement; |
| } |
| zSig0 &= ~ roundMask; |
| if ( zSig0 == 0 ) zExp = 0; |
| return packFloatx80( zSign, zExp, zSig0 ); |
| precision80: |
| increment = ( (sbits64) zSig1 < 0 ); |
| if ( ! roundNearestEven ) { |
| if ( roundingMode == float_round_to_zero ) { |
| increment = 0; |
| } |
| else { |
| if ( zSign ) { |
| increment = ( roundingMode == float_round_down ) && zSig1; |
| } |
| else { |
| increment = ( roundingMode == float_round_up ) && zSig1; |
| } |
| } |
| } |
| if ( 0x7FFD <= (bits32) ( zExp - 1 ) ) { |
| if ( ( 0x7FFE < zExp ) |
| || ( ( zExp == 0x7FFE ) |
| && ( zSig0 == LIT64( 0xFFFFFFFFFFFFFFFF ) ) |
| && increment |
| ) |
| ) { |
| roundMask = 0; |
| overflow: |
| float_raise( float_flag_overflow | float_flag_inexact ); |
| if ( ( roundingMode == float_round_to_zero ) |
| || ( zSign && ( roundingMode == float_round_up ) ) |
| || ( ! zSign && ( roundingMode == float_round_down ) ) |
| ) { |
| return packFloatx80( zSign, 0x7FFE, ~ roundMask ); |
| } |
| return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| if ( zExp <= 0 ) { |
| isTiny = |
| ( float_detect_tininess == float_tininess_before_rounding ) |
| || ( zExp < 0 ) |
| || ! increment |
| || ( zSig0 < LIT64( 0xFFFFFFFFFFFFFFFF ) ); |
| shift64ExtraRightJamming( zSig0, zSig1, 1 - zExp, &zSig0, &zSig1 ); |
| zExp = 0; |
| if ( isTiny && zSig1 ) float_raise( float_flag_underflow ); |
| if ( zSig1 ) float_exception_flags |= float_flag_inexact; |
| if ( roundNearestEven ) { |
| increment = ( (sbits64) zSig1 < 0 ); |
| } |
| else { |
| if ( zSign ) { |
| increment = ( roundingMode == float_round_down ) && zSig1; |
| } |
| else { |
| increment = ( roundingMode == float_round_up ) && zSig1; |
| } |
| } |
| if ( increment ) { |
| ++zSig0; |
| zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); |
| if ( (sbits64) zSig0 < 0 ) zExp = 1; |
| } |
| return packFloatx80( zSign, zExp, zSig0 ); |
| } |
| } |
| if ( zSig1 ) float_exception_flags |= float_flag_inexact; |
| if ( increment ) { |
| ++zSig0; |
| if ( zSig0 == 0 ) { |
| ++zExp; |
| zSig0 = LIT64( 0x8000000000000000 ); |
| } |
| else { |
| zSig0 &= ~ ( ( zSig1 + zSig1 == 0 ) & roundNearestEven ); |
| } |
| } |
| else { |
| if ( zSig0 == 0 ) zExp = 0; |
| } |
| |
| return packFloatx80( zSign, zExp, zSig0 ); |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Takes an abstract floating-point value having sign `zSign', exponent |
| `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', |
| and returns the proper extended double-precision floating-point value |
| corresponding to the abstract input. This routine is just like |
| `roundAndPackFloatx80' except that the input significand does not have to be |
| normalized. |
| ------------------------------------------------------------------------------- |
| */ |
| static floatx80 |
| normalizeRoundAndPackFloatx80( |
| int8 roundingPrecision, flag zSign, int32 zExp, bits64 zSig0, bits64 zSig1 |
| ) |
| { |
| int8 shiftCount; |
| |
| if ( zSig0 == 0 ) { |
| zSig0 = zSig1; |
| zSig1 = 0; |
| zExp -= 64; |
| } |
| shiftCount = countLeadingZeros64( zSig0 ); |
| shortShift128Left( zSig0, zSig1, shiftCount, &zSig0, &zSig1 ); |
| zExp -= shiftCount; |
| return |
| roundAndPackFloatx80( roundingPrecision, zSign, zExp, zSig0, zSig1 ); |
| |
| } |
| |
| #endif |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the 32-bit two's complement integer `a' to |
| the single-precision floating-point format. The conversion is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 int32_to_float32( int32 a ) |
| { |
| flag zSign; |
| |
| if ( a == 0 ) return 0; |
| if ( a == 0x80000000 ) return packFloat32( 1, 0x9E, 0 ); |
| zSign = ( a < 0 ); |
| return normalizeRoundAndPackFloat32( zSign, 0x9C, zSign ? - a : a ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the 32-bit two's complement integer `a' to |
| the double-precision floating-point format. The conversion is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 int32_to_float64( int32 a ) |
| { |
| flag aSign; |
| uint32 absA; |
| int8 shiftCount; |
| bits64 zSig; |
| |
| if ( a == 0 ) return 0; |
| aSign = ( a < 0 ); |
| absA = aSign ? - a : a; |
| shiftCount = countLeadingZeros32( absA ) + 21; |
| zSig = absA; |
| return packFloat64( aSign, 0x432 - shiftCount, zSig<<shiftCount ); |
| |
| } |
| |
| #ifdef FLOATX80 |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the 32-bit two's complement integer `a' |
| to the extended double-precision floating-point format. The conversion |
| is performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 int32_to_floatx80( int32 a ) |
| { |
| flag zSign; |
| uint32 absA; |
| int8 shiftCount; |
| bits64 zSig; |
| |
| if ( a == 0 ) return packFloatx80( 0, 0, 0 ); |
| zSign = ( a < 0 ); |
| absA = zSign ? - a : a; |
| shiftCount = countLeadingZeros32( absA ) + 32; |
| zSig = absA; |
| return packFloatx80( zSign, 0x403E - shiftCount, zSig<<shiftCount ); |
| |
| } |
| |
| #endif |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the single-precision floating-point value |
| `a' to the 32-bit two's complement integer format. The conversion is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic---which means in particular that the conversion is rounded |
| according to the current rounding mode. If `a' is a NaN, the largest |
| positive integer is returned. Otherwise, if the conversion overflows, the |
| largest integer with the same sign as `a' is returned. |
| ------------------------------------------------------------------------------- |
| */ |
| int32 float32_to_int32( float32 a ) |
| { |
| flag aSign; |
| int16 aExp, shiftCount; |
| bits32 aSig; |
| bits64 zSig; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; |
| if ( aExp ) aSig |= 0x00800000; |
| shiftCount = 0xAF - aExp; |
| zSig = aSig; |
| zSig <<= 32; |
| if ( 0 < shiftCount ) shift64RightJamming( zSig, shiftCount, &zSig ); |
| return roundAndPackInt32( aSign, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the single-precision floating-point value |
| `a' to the 32-bit two's complement integer format. The conversion is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic, except that the conversion is always rounded toward zero. If |
| `a' is a NaN, the largest positive integer is returned. Otherwise, if the |
| conversion overflows, the largest integer with the same sign as `a' is |
| returned. |
| ------------------------------------------------------------------------------- |
| */ |
| int32 float32_to_int32_round_to_zero( float32 a ) |
| { |
| flag aSign; |
| int16 aExp, shiftCount; |
| bits32 aSig; |
| int32 z; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| shiftCount = aExp - 0x9E; |
| if ( 0 <= shiftCount ) { |
| if ( a == 0xCF000000 ) return 0x80000000; |
| float_raise( float_flag_invalid ); |
| if ( ! aSign || ( ( aExp == 0xFF ) && aSig ) ) return 0x7FFFFFFF; |
| return 0x80000000; |
| } |
| else if ( aExp <= 0x7E ) { |
| if ( aExp | aSig ) float_exception_flags |= float_flag_inexact; |
| return 0; |
| } |
| aSig = ( aSig | 0x00800000 )<<8; |
| z = aSig>>( - shiftCount ); |
| if ( (bits32) ( aSig<<( shiftCount & 31 ) ) ) { |
| float_exception_flags |= float_flag_inexact; |
| } |
| return aSign ? - z : z; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the single-precision floating-point value |
| `a' to the double-precision floating-point format. The conversion is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 float32_to_float64( float32 a ) |
| { |
| flag aSign; |
| int16 aExp; |
| bits32 aSig; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| if ( aExp == 0xFF ) { |
| if ( aSig ) return commonNaNToFloat64( float32ToCommonNaN( a ) ); |
| return packFloat64( aSign, 0x7FF, 0 ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat64( aSign, 0, 0 ); |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| --aExp; |
| } |
| return packFloat64( aSign, aExp + 0x380, ( (bits64) aSig )<<29 ); |
| |
| } |
| |
| #ifdef FLOATX80 |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the single-precision floating-point value |
| `a' to the extended double-precision floating-point format. The conversion |
| is performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 float32_to_floatx80( float32 a ) |
| { |
| flag aSign; |
| int16 aExp; |
| bits32 aSig; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| if ( aExp == 0xFF ) { |
| if ( aSig ) return commonNaNToFloatx80( float32ToCommonNaN( a ) ); |
| return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| } |
| aSig |= 0x00800000; |
| return packFloatx80( aSign, aExp + 0x3F80, ( (bits64) aSig )<<40 ); |
| |
| } |
| |
| #endif |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Rounds the single-precision floating-point value `a' to an integer, and |
| returns the result as a single-precision floating-point value. The |
| operation is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 float32_round_to_int( float32 a ) |
| { |
| flag aSign; |
| int16 aExp; |
| bits32 lastBitMask, roundBitsMask; |
| int8 roundingMode; |
| float32 z; |
| |
| aExp = extractFloat32Exp( a ); |
| if ( 0x96 <= aExp ) { |
| if ( ( aExp == 0xFF ) && extractFloat32Frac( a ) ) { |
| return propagateFloat32NaN( a, a ); |
| } |
| return a; |
| } |
| if ( aExp <= 0x7E ) { |
| if ( (bits32) ( a<<1 ) == 0 ) return a; |
| float_exception_flags |= float_flag_inexact; |
| aSign = extractFloat32Sign( a ); |
| switch ( float_rounding_mode ) { |
| case float_round_nearest_even: |
| if ( ( aExp == 0x7E ) && extractFloat32Frac( a ) ) { |
| return packFloat32( aSign, 0x7F, 0 ); |
| } |
| break; |
| case float_round_down: |
| return aSign ? 0xBF800000 : 0; |
| case float_round_up: |
| return aSign ? 0x80000000 : 0x3F800000; |
| } |
| return packFloat32( aSign, 0, 0 ); |
| } |
| lastBitMask = 1; |
| lastBitMask <<= 0x96 - aExp; |
| roundBitsMask = lastBitMask - 1; |
| z = a; |
| roundingMode = float_rounding_mode; |
| if ( roundingMode == float_round_nearest_even ) { |
| z += lastBitMask>>1; |
| if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; |
| } |
| else if ( roundingMode != float_round_to_zero ) { |
| if ( extractFloat32Sign( z ) ^ ( roundingMode == float_round_up ) ) { |
| z += roundBitsMask; |
| } |
| } |
| z &= ~ roundBitsMask; |
| if ( z != a ) float_exception_flags |= float_flag_inexact; |
| return z; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of adding the absolute values of the single-precision |
| floating-point values `a' and `b'. If `zSign' is true, the sum is negated |
| before being returned. `zSign' is ignored if the result is a NaN. The |
| addition is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| static float32 addFloat32Sigs( float32 a, float32 b, flag zSign ) |
| { |
| int16 aExp, bExp, zExp; |
| bits32 aSig, bSig, zSig; |
| int16 expDiff; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| bSig = extractFloat32Frac( b ); |
| bExp = extractFloat32Exp( b ); |
| expDiff = aExp - bExp; |
| aSig <<= 6; |
| bSig <<= 6; |
| if ( 0 < expDiff ) { |
| if ( aExp == 0xFF ) { |
| if ( aSig ) return propagateFloat32NaN( a, b ); |
| return a; |
| } |
| if ( bExp == 0 ) { |
| --expDiff; |
| } |
| else { |
| bSig |= 0x20000000; |
| } |
| shift32RightJamming( bSig, expDiff, &bSig ); |
| zExp = aExp; |
| } |
| else if ( expDiff < 0 ) { |
| if ( bExp == 0xFF ) { |
| if ( bSig ) return propagateFloat32NaN( a, b ); |
| return packFloat32( zSign, 0xFF, 0 ); |
| } |
| if ( aExp == 0 ) { |
| ++expDiff; |
| } |
| else { |
| aSig |= 0x20000000; |
| } |
| shift32RightJamming( aSig, - expDiff, &aSig ); |
| zExp = bExp; |
| } |
| else { |
| if ( aExp == 0xFF ) { |
| if ( aSig | bSig ) return propagateFloat32NaN( a, b ); |
| return a; |
| } |
| if ( aExp == 0 ) return packFloat32( zSign, 0, ( aSig + bSig )>>6 ); |
| zSig = 0x40000000 + aSig + bSig; |
| zExp = aExp; |
| goto roundAndPack; |
| } |
| aSig |= 0x20000000; |
| zSig = ( aSig + bSig )<<1; |
| --zExp; |
| if ( (sbits32) zSig < 0 ) { |
| zSig = aSig + bSig; |
| ++zExp; |
| } |
| roundAndPack: |
| return roundAndPackFloat32( zSign, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of subtracting the absolute values of the single- |
| precision floating-point values `a' and `b'. If `zSign' is true, the |
| difference is negated before being returned. `zSign' is ignored if the |
| result is a NaN. The subtraction is performed according to the IEC/IEEE |
| Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| static float32 subFloat32Sigs( float32 a, float32 b, flag zSign ) |
| { |
| int16 aExp, bExp, zExp; |
| bits32 aSig, bSig, zSig; |
| int16 expDiff; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| bSig = extractFloat32Frac( b ); |
| bExp = extractFloat32Exp( b ); |
| expDiff = aExp - bExp; |
| aSig <<= 7; |
| bSig <<= 7; |
| if ( 0 < expDiff ) goto aExpBigger; |
| if ( expDiff < 0 ) goto bExpBigger; |
| if ( aExp == 0xFF ) { |
| if ( aSig | bSig ) return propagateFloat32NaN( a, b ); |
| float_raise( float_flag_invalid ); |
| return float32_default_nan; |
| } |
| if ( aExp == 0 ) { |
| aExp = 1; |
| bExp = 1; |
| } |
| if ( bSig < aSig ) goto aBigger; |
| if ( aSig < bSig ) goto bBigger; |
| return packFloat32( float_rounding_mode == float_round_down, 0, 0 ); |
| bExpBigger: |
| if ( bExp == 0xFF ) { |
| if ( bSig ) return propagateFloat32NaN( a, b ); |
| return packFloat32( zSign ^ 1, 0xFF, 0 ); |
| } |
| if ( aExp == 0 ) { |
| ++expDiff; |
| } |
| else { |
| aSig |= 0x40000000; |
| } |
| shift32RightJamming( aSig, - expDiff, &aSig ); |
| bSig |= 0x40000000; |
| bBigger: |
| zSig = bSig - aSig; |
| zExp = bExp; |
| zSign ^= 1; |
| goto normalizeRoundAndPack; |
| aExpBigger: |
| if ( aExp == 0xFF ) { |
| if ( aSig ) return propagateFloat32NaN( a, b ); |
| return a; |
| } |
| if ( bExp == 0 ) { |
| --expDiff; |
| } |
| else { |
| bSig |= 0x40000000; |
| } |
| shift32RightJamming( bSig, expDiff, &bSig ); |
| aSig |= 0x40000000; |
| aBigger: |
| zSig = aSig - bSig; |
| zExp = aExp; |
| normalizeRoundAndPack: |
| --zExp; |
| return normalizeRoundAndPackFloat32( zSign, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of adding the single-precision floating-point values `a' |
| and `b'. The operation is performed according to the IEC/IEEE Standard for |
| Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 float32_add( float32 a, float32 b ) |
| { |
| flag aSign, bSign; |
| |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| if ( aSign == bSign ) { |
| return addFloat32Sigs( a, b, aSign ); |
| } |
| else { |
| return subFloat32Sigs( a, b, aSign ); |
| } |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of subtracting the single-precision floating-point values |
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard |
| for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 float32_sub( float32 a, float32 b ) |
| { |
| flag aSign, bSign; |
| |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| if ( aSign == bSign ) { |
| return subFloat32Sigs( a, b, aSign ); |
| } |
| else { |
| return addFloat32Sigs( a, b, aSign ); |
| } |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of multiplying the single-precision floating-point values |
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard |
| for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 float32_mul( float32 a, float32 b ) |
| { |
| flag aSign, bSign, zSign; |
| int16 aExp, bExp, zExp; |
| bits32 aSig, bSig; |
| bits64 zSig64; |
| bits32 zSig; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| bSig = extractFloat32Frac( b ); |
| bExp = extractFloat32Exp( b ); |
| bSign = extractFloat32Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0xFF ) { |
| if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { |
| return propagateFloat32NaN( a, b ); |
| } |
| if ( ( bExp | bSig ) == 0 ) { |
| float_raise( float_flag_invalid ); |
| return float32_default_nan; |
| } |
| return packFloat32( zSign, 0xFF, 0 ); |
| } |
| if ( bExp == 0xFF ) { |
| if ( bSig ) return propagateFloat32NaN( a, b ); |
| if ( ( aExp | aSig ) == 0 ) { |
| float_raise( float_flag_invalid ); |
| return float32_default_nan; |
| } |
| return packFloat32( zSign, 0xFF, 0 ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) return packFloat32( zSign, 0, 0 ); |
| normalizeFloat32Subnormal( bSig, &bExp, &bSig ); |
| } |
| zExp = aExp + bExp - 0x7F; |
| aSig = ( aSig | 0x00800000 )<<7; |
| bSig = ( bSig | 0x00800000 )<<8; |
| shift64RightJamming( ( (bits64) aSig ) * bSig, 32, &zSig64 ); |
| zSig = zSig64; |
| if ( 0 <= (sbits32) ( zSig<<1 ) ) { |
| zSig <<= 1; |
| --zExp; |
| } |
| return roundAndPackFloat32( zSign, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of dividing the single-precision floating-point value `a' |
| by the corresponding value `b'. The operation is performed according to the |
| IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 float32_div( float32 a, float32 b ) |
| { |
| flag aSign, bSign, zSign; |
| int16 aExp, bExp, zExp; |
| bits32 aSig, bSig, zSig; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| bSig = extractFloat32Frac( b ); |
| bExp = extractFloat32Exp( b ); |
| bSign = extractFloat32Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0xFF ) { |
| if ( aSig ) return propagateFloat32NaN( a, b ); |
| if ( bExp == 0xFF ) { |
| if ( bSig ) return propagateFloat32NaN( a, b ); |
| float_raise( float_flag_invalid ); |
| return float32_default_nan; |
| } |
| return packFloat32( zSign, 0xFF, 0 ); |
| } |
| if ( bExp == 0xFF ) { |
| if ( bSig ) return propagateFloat32NaN( a, b ); |
| return packFloat32( zSign, 0, 0 ); |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| if ( ( aExp | aSig ) == 0 ) { |
| float_raise( float_flag_invalid ); |
| return float32_default_nan; |
| } |
| float_raise( float_flag_divbyzero ); |
| return packFloat32( zSign, 0xFF, 0 ); |
| } |
| normalizeFloat32Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat32( zSign, 0, 0 ); |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| } |
| zExp = aExp - bExp + 0x7D; |
| aSig = ( aSig | 0x00800000 )<<7; |
| bSig = ( bSig | 0x00800000 )<<8; |
| if ( bSig <= ( aSig + aSig ) ) { |
| aSig >>= 1; |
| ++zExp; |
| } |
| zSig = ( ( (bits64) aSig )<<32 ) / bSig; |
| if ( ( zSig & 0x3F ) == 0 ) { |
| zSig |= ( ( (bits64) bSig ) * zSig != ( (bits64) aSig )<<32 ); |
| } |
| return roundAndPackFloat32( zSign, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the remainder of the single-precision floating-point value `a' |
| with respect to the corresponding value `b'. The operation is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 float32_rem( float32 a, float32 b ) |
| { |
| flag aSign, bSign, zSign; |
| int16 aExp, bExp, expDiff; |
| bits32 aSig, bSig; |
| bits32 q; |
| bits64 aSig64, bSig64, q64; |
| bits32 alternateASig; |
| sbits32 sigMean; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| bSig = extractFloat32Frac( b ); |
| bExp = extractFloat32Exp( b ); |
| bSign = extractFloat32Sign( b ); |
| if ( aExp == 0xFF ) { |
| if ( aSig || ( ( bExp == 0xFF ) && bSig ) ) { |
| return propagateFloat32NaN( a, b ); |
| } |
| float_raise( float_flag_invalid ); |
| return float32_default_nan; |
| } |
| if ( bExp == 0xFF ) { |
| if ( bSig ) return propagateFloat32NaN( a, b ); |
| return a; |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| float_raise( float_flag_invalid ); |
| return float32_default_nan; |
| } |
| normalizeFloat32Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return a; |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| } |
| expDiff = aExp - bExp; |
| aSig |= 0x00800000; |
| bSig |= 0x00800000; |
| if ( expDiff < 32 ) { |
| aSig <<= 8; |
| bSig <<= 8; |
| if ( expDiff < 0 ) { |
| if ( expDiff < -1 ) return a; |
| aSig >>= 1; |
| } |
| q = ( bSig <= aSig ); |
| if ( q ) aSig -= bSig; |
| if ( 0 < expDiff ) { |
| q = ( ( (bits64) aSig )<<32 ) / bSig; |
| q >>= 32 - expDiff; |
| bSig >>= 2; |
| aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; |
| } |
| else { |
| aSig >>= 2; |
| bSig >>= 2; |
| } |
| } |
| else { |
| if ( bSig <= aSig ) aSig -= bSig; |
| aSig64 = ( (bits64) aSig )<<40; |
| bSig64 = ( (bits64) bSig )<<40; |
| expDiff -= 64; |
| while ( 0 < expDiff ) { |
| q64 = estimateDiv128To64( aSig64, 0, bSig64 ); |
| q64 = ( 2 < q64 ) ? q64 - 2 : 0; |
| aSig64 = - ( ( bSig * q64 )<<38 ); |
| expDiff -= 62; |
| } |
| expDiff += 64; |
| q64 = estimateDiv128To64( aSig64, 0, bSig64 ); |
| q64 = ( 2 < q64 ) ? q64 - 2 : 0; |
| q = q64>>( 64 - expDiff ); |
| bSig <<= 6; |
| aSig = ( ( aSig64>>33 )<<( expDiff - 1 ) ) - bSig * q; |
| } |
| do { |
| alternateASig = aSig; |
| ++q; |
| aSig -= bSig; |
| } while ( 0 <= (sbits32) aSig ); |
| sigMean = aSig + alternateASig; |
| if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { |
| aSig = alternateASig; |
| } |
| zSign = ( (sbits32) aSig < 0 ); |
| if ( zSign ) aSig = - aSig; |
| return normalizeRoundAndPackFloat32( aSign ^ zSign, bExp, aSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the square root of the single-precision floating-point value `a'. |
| The operation is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 float32_sqrt( float32 a ) |
| { |
| flag aSign; |
| int16 aExp, zExp; |
| bits32 aSig, zSig; |
| bits64 rem, term; |
| |
| aSig = extractFloat32Frac( a ); |
| aExp = extractFloat32Exp( a ); |
| aSign = extractFloat32Sign( a ); |
| if ( aExp == 0xFF ) { |
| if ( aSig ) return propagateFloat32NaN( a, 0 ); |
| if ( ! aSign ) return a; |
| float_raise( float_flag_invalid ); |
| return float32_default_nan; |
| } |
| if ( aSign ) { |
| if ( ( aExp | aSig ) == 0 ) return a; |
| float_raise( float_flag_invalid ); |
| return float32_default_nan; |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return 0; |
| normalizeFloat32Subnormal( aSig, &aExp, &aSig ); |
| } |
| zExp = ( ( aExp - 0x7F )>>1 ) + 0x7E; |
| aSig = ( aSig | 0x00800000 )<<8; |
| zSig = estimateSqrt32( aExp, aSig ) + 2; |
| if ( ( zSig & 0x7F ) <= 5 ) { |
| if ( zSig < 2 ) { |
| zSig = 0xFFFFFFFF; |
| } |
| else { |
| aSig >>= aExp & 1; |
| term = ( (bits64) zSig ) * zSig; |
| rem = ( ( (bits64) aSig )<<32 ) - term; |
| while ( (sbits64) rem < 0 ) { |
| --zSig; |
| rem += ( ( (bits64) zSig )<<1 ) | 1; |
| } |
| zSig |= ( rem != 0 ); |
| } |
| } |
| shift32RightJamming( zSig, 1, &zSig ); |
| return roundAndPackFloat32( 0, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the single-precision floating-point value `a' is equal to the |
| corresponding value `b', and 0 otherwise. The comparison is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float32_eq( float32 a, float32 b ) |
| { |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { |
| float_raise( float_flag_invalid ); |
| } |
| return 0; |
| } |
| return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the single-precision floating-point value `a' is less than or |
| equal to the corresponding value `b', and 0 otherwise. The comparison is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float32_le( float32 a, float32 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| float_raise( float_flag_invalid ); |
| return 0; |
| } |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); |
| return ( a == b ) || ( aSign ^ ( a < b ) ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the single-precision floating-point value `a' is less than |
| the corresponding value `b', and 0 otherwise. The comparison is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float32_lt( float32 a, float32 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| float_raise( float_flag_invalid ); |
| return 0; |
| } |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); |
| return ( a != b ) && ( aSign ^ ( a < b ) ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the single-precision floating-point value `a' is equal to the |
| corresponding value `b', and 0 otherwise. The invalid exception is raised |
| if either operand is a NaN. Otherwise, the comparison is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float32_eq_signaling( float32 a, float32 b ) |
| { |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| float_raise( float_flag_invalid ); |
| return 0; |
| } |
| return ( a == b ) || ( (bits32) ( ( a | b )<<1 ) == 0 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the single-precision floating-point value `a' is less than or |
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
| cause an exception. Otherwise, the comparison is performed according to the |
| IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float32_le_quiet( float32 a, float32 b ) |
| { |
| flag aSign, bSign; |
| //int16 aExp, bExp; |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { |
| float_raise( float_flag_invalid ); |
| } |
| return 0; |
| } |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| if ( aSign != bSign ) return aSign || ( (bits32) ( ( a | b )<<1 ) == 0 ); |
| return ( a == b ) || ( aSign ^ ( a < b ) ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the single-precision floating-point value `a' is less than |
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
| exception. Otherwise, the comparison is performed according to the IEC/IEEE |
| Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float32_lt_quiet( float32 a, float32 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat32Exp( a ) == 0xFF ) && extractFloat32Frac( a ) ) |
| || ( ( extractFloat32Exp( b ) == 0xFF ) && extractFloat32Frac( b ) ) |
| ) { |
| if ( float32_is_signaling_nan( a ) || float32_is_signaling_nan( b ) ) { |
| float_raise( float_flag_invalid ); |
| } |
| return 0; |
| } |
| aSign = extractFloat32Sign( a ); |
| bSign = extractFloat32Sign( b ); |
| if ( aSign != bSign ) return aSign && ( (bits32) ( ( a | b )<<1 ) != 0 ); |
| return ( a != b ) && ( aSign ^ ( a < b ) ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the double-precision floating-point value |
| `a' to the 32-bit two's complement integer format. The conversion is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic---which means in particular that the conversion is rounded |
| according to the current rounding mode. If `a' is a NaN, the largest |
| positive integer is returned. Otherwise, if the conversion overflows, the |
| largest integer with the same sign as `a' is returned. |
| ------------------------------------------------------------------------------- |
| */ |
| int32 float64_to_int32( float64 a ) |
| { |
| flag aSign; |
| int16 aExp, shiftCount; |
| bits64 aSig; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; |
| if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); |
| shiftCount = 0x42C - aExp; |
| if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); |
| return roundAndPackInt32( aSign, aSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the double-precision floating-point value |
| `a' to the 32-bit two's complement integer format. The conversion is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic, except that the conversion is always rounded toward zero. If |
| `a' is a NaN, the largest positive integer is returned. Otherwise, if the |
| conversion overflows, the largest integer with the same sign as `a' is |
| returned. |
| ------------------------------------------------------------------------------- |
| */ |
| int32 float64_to_int32_round_to_zero( float64 a ) |
| { |
| flag aSign; |
| int16 aExp, shiftCount; |
| bits64 aSig, savedASig; |
| int32 z; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| shiftCount = 0x433 - aExp; |
| if ( shiftCount < 21 ) { |
| if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; |
| goto invalid; |
| } |
| else if ( 52 < shiftCount ) { |
| if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; |
| return 0; |
| } |
| aSig |= LIT64( 0x0010000000000000 ); |
| savedASig = aSig; |
| aSig >>= shiftCount; |
| z = aSig; |
| if ( aSign ) z = - z; |
| if ( ( z < 0 ) ^ aSign ) { |
| invalid: |
| float_exception_flags |= float_flag_invalid; |
| return aSign ? 0x80000000 : 0x7FFFFFFF; |
| } |
| if ( ( aSig<<shiftCount ) != savedASig ) { |
| float_exception_flags |= float_flag_inexact; |
| } |
| return z; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the double-precision floating-point value |
| `a' to the 32-bit two's complement unsigned integer format. The conversion |
| is performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic---which means in particular that the conversion is rounded |
| according to the current rounding mode. If `a' is a NaN, the largest |
| positive integer is returned. Otherwise, if the conversion overflows, the |
| largest positive integer is returned. |
| ------------------------------------------------------------------------------- |
| */ |
| int32 float64_to_uint32( float64 a ) |
| { |
| flag aSign; |
| int16 aExp, shiftCount; |
| bits64 aSig; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = 0; //extractFloat64Sign( a ); |
| //if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; |
| if ( aExp ) aSig |= LIT64( 0x0010000000000000 ); |
| shiftCount = 0x42C - aExp; |
| if ( 0 < shiftCount ) shift64RightJamming( aSig, shiftCount, &aSig ); |
| return roundAndPackInt32( aSign, aSig ); |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the double-precision floating-point value |
| `a' to the 32-bit two's complement integer format. The conversion is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic, except that the conversion is always rounded toward zero. If |
| `a' is a NaN, the largest positive integer is returned. Otherwise, if the |
| conversion overflows, the largest positive integer is returned. |
| ------------------------------------------------------------------------------- |
| */ |
| int32 float64_to_uint32_round_to_zero( float64 a ) |
| { |
| flag aSign; |
| int16 aExp, shiftCount; |
| bits64 aSig, savedASig; |
| int32 z; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| shiftCount = 0x433 - aExp; |
| if ( shiftCount < 21 ) { |
| if ( ( aExp == 0x7FF ) && aSig ) aSign = 0; |
| goto invalid; |
| } |
| else if ( 52 < shiftCount ) { |
| if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; |
| return 0; |
| } |
| aSig |= LIT64( 0x0010000000000000 ); |
| savedASig = aSig; |
| aSig >>= shiftCount; |
| z = aSig; |
| if ( aSign ) z = - z; |
| if ( ( z < 0 ) ^ aSign ) { |
| invalid: |
| float_exception_flags |= float_flag_invalid; |
| return aSign ? 0x80000000 : 0x7FFFFFFF; |
| } |
| if ( ( aSig<<shiftCount ) != savedASig ) { |
| float_exception_flags |= float_flag_inexact; |
| } |
| return z; |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the double-precision floating-point value |
| `a' to the single-precision floating-point format. The conversion is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 float64_to_float32( float64 a ) |
| { |
| flag aSign; |
| int16 aExp; |
| bits64 aSig; |
| bits32 zSig; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| if ( aExp == 0x7FF ) { |
| if ( aSig ) return commonNaNToFloat32( float64ToCommonNaN( a ) ); |
| return packFloat32( aSign, 0xFF, 0 ); |
| } |
| shift64RightJamming( aSig, 22, &aSig ); |
| zSig = aSig; |
| if ( aExp || zSig ) { |
| zSig |= 0x40000000; |
| aExp -= 0x381; |
| } |
| return roundAndPackFloat32( aSign, aExp, zSig ); |
| |
| } |
| |
| #ifdef FLOATX80 |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the double-precision floating-point value |
| `a' to the extended double-precision floating-point format. The conversion |
| is performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 float64_to_floatx80( float64 a ) |
| { |
| flag aSign; |
| int16 aExp; |
| bits64 aSig; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| if ( aExp == 0x7FF ) { |
| if ( aSig ) return commonNaNToFloatx80( float64ToCommonNaN( a ) ); |
| return packFloatx80( aSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloatx80( aSign, 0, 0 ); |
| normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
| } |
| return |
| packFloatx80( |
| aSign, aExp + 0x3C00, ( aSig | LIT64( 0x0010000000000000 ) )<<11 ); |
| |
| } |
| |
| #endif |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Rounds the double-precision floating-point value `a' to an integer, and |
| returns the result as a double-precision floating-point value. The |
| operation is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 float64_round_to_int( float64 a ) |
| { |
| flag aSign; |
| int16 aExp; |
| bits64 lastBitMask, roundBitsMask; |
| int8 roundingMode; |
| float64 z; |
| |
| aExp = extractFloat64Exp( a ); |
| if ( 0x433 <= aExp ) { |
| if ( ( aExp == 0x7FF ) && extractFloat64Frac( a ) ) { |
| return propagateFloat64NaN( a, a ); |
| } |
| return a; |
| } |
| if ( aExp <= 0x3FE ) { |
| if ( (bits64) ( a<<1 ) == 0 ) return a; |
| float_exception_flags |= float_flag_inexact; |
| aSign = extractFloat64Sign( a ); |
| switch ( float_rounding_mode ) { |
| case float_round_nearest_even: |
| if ( ( aExp == 0x3FE ) && extractFloat64Frac( a ) ) { |
| return packFloat64( aSign, 0x3FF, 0 ); |
| } |
| break; |
| case float_round_down: |
| return aSign ? LIT64( 0xBFF0000000000000 ) : 0; |
| case float_round_up: |
| return |
| aSign ? LIT64( 0x8000000000000000 ) : LIT64( 0x3FF0000000000000 ); |
| } |
| return packFloat64( aSign, 0, 0 ); |
| } |
| lastBitMask = 1; |
| lastBitMask <<= 0x433 - aExp; |
| roundBitsMask = lastBitMask - 1; |
| z = a; |
| roundingMode = float_rounding_mode; |
| if ( roundingMode == float_round_nearest_even ) { |
| z += lastBitMask>>1; |
| if ( ( z & roundBitsMask ) == 0 ) z &= ~ lastBitMask; |
| } |
| else if ( roundingMode != float_round_to_zero ) { |
| if ( extractFloat64Sign( z ) ^ ( roundingMode == float_round_up ) ) { |
| z += roundBitsMask; |
| } |
| } |
| z &= ~ roundBitsMask; |
| if ( z != a ) float_exception_flags |= float_flag_inexact; |
| return z; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of adding the absolute values of the double-precision |
| floating-point values `a' and `b'. If `zSign' is true, the sum is negated |
| before being returned. `zSign' is ignored if the result is a NaN. The |
| addition is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| static float64 addFloat64Sigs( float64 a, float64 b, flag zSign ) |
| { |
| int16 aExp, bExp, zExp; |
| bits64 aSig, bSig, zSig; |
| int16 expDiff; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| bSig = extractFloat64Frac( b ); |
| bExp = extractFloat64Exp( b ); |
| expDiff = aExp - bExp; |
| aSig <<= 9; |
| bSig <<= 9; |
| if ( 0 < expDiff ) { |
| if ( aExp == 0x7FF ) { |
| if ( aSig ) return propagateFloat64NaN( a, b ); |
| return a; |
| } |
| if ( bExp == 0 ) { |
| --expDiff; |
| } |
| else { |
| bSig |= LIT64( 0x2000000000000000 ); |
| } |
| shift64RightJamming( bSig, expDiff, &bSig ); |
| zExp = aExp; |
| } |
| else if ( expDiff < 0 ) { |
| if ( bExp == 0x7FF ) { |
| if ( bSig ) return propagateFloat64NaN( a, b ); |
| return packFloat64( zSign, 0x7FF, 0 ); |
| } |
| if ( aExp == 0 ) { |
| ++expDiff; |
| } |
| else { |
| aSig |= LIT64( 0x2000000000000000 ); |
| } |
| shift64RightJamming( aSig, - expDiff, &aSig ); |
| zExp = bExp; |
| } |
| else { |
| if ( aExp == 0x7FF ) { |
| if ( aSig | bSig ) return propagateFloat64NaN( a, b ); |
| return a; |
| } |
| if ( aExp == 0 ) return packFloat64( zSign, 0, ( aSig + bSig )>>9 ); |
| zSig = LIT64( 0x4000000000000000 ) + aSig + bSig; |
| zExp = aExp; |
| goto roundAndPack; |
| } |
| aSig |= LIT64( 0x2000000000000000 ); |
| zSig = ( aSig + bSig )<<1; |
| --zExp; |
| if ( (sbits64) zSig < 0 ) { |
| zSig = aSig + bSig; |
| ++zExp; |
| } |
| roundAndPack: |
| return roundAndPackFloat64( zSign, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of subtracting the absolute values of the double- |
| precision floating-point values `a' and `b'. If `zSign' is true, the |
| difference is negated before being returned. `zSign' is ignored if the |
| result is a NaN. The subtraction is performed according to the IEC/IEEE |
| Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| static float64 subFloat64Sigs( float64 a, float64 b, flag zSign ) |
| { |
| int16 aExp, bExp, zExp; |
| bits64 aSig, bSig, zSig; |
| int16 expDiff; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| bSig = extractFloat64Frac( b ); |
| bExp = extractFloat64Exp( b ); |
| expDiff = aExp - bExp; |
| aSig <<= 10; |
| bSig <<= 10; |
| if ( 0 < expDiff ) goto aExpBigger; |
| if ( expDiff < 0 ) goto bExpBigger; |
| if ( aExp == 0x7FF ) { |
| if ( aSig | bSig ) return propagateFloat64NaN( a, b ); |
| float_raise( float_flag_invalid ); |
| return float64_default_nan; |
| } |
| if ( aExp == 0 ) { |
| aExp = 1; |
| bExp = 1; |
| } |
| if ( bSig < aSig ) goto aBigger; |
| if ( aSig < bSig ) goto bBigger; |
| return packFloat64( float_rounding_mode == float_round_down, 0, 0 ); |
| bExpBigger: |
| if ( bExp == 0x7FF ) { |
| if ( bSig ) return propagateFloat64NaN( a, b ); |
| return packFloat64( zSign ^ 1, 0x7FF, 0 ); |
| } |
| if ( aExp == 0 ) { |
| ++expDiff; |
| } |
| else { |
| aSig |= LIT64( 0x4000000000000000 ); |
| } |
| shift64RightJamming( aSig, - expDiff, &aSig ); |
| bSig |= LIT64( 0x4000000000000000 ); |
| bBigger: |
| zSig = bSig - aSig; |
| zExp = bExp; |
| zSign ^= 1; |
| goto normalizeRoundAndPack; |
| aExpBigger: |
| if ( aExp == 0x7FF ) { |
| if ( aSig ) return propagateFloat64NaN( a, b ); |
| return a; |
| } |
| if ( bExp == 0 ) { |
| --expDiff; |
| } |
| else { |
| bSig |= LIT64( 0x4000000000000000 ); |
| } |
| shift64RightJamming( bSig, expDiff, &bSig ); |
| aSig |= LIT64( 0x4000000000000000 ); |
| aBigger: |
| zSig = aSig - bSig; |
| zExp = aExp; |
| normalizeRoundAndPack: |
| --zExp; |
| return normalizeRoundAndPackFloat64( zSign, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of adding the double-precision floating-point values `a' |
| and `b'. The operation is performed according to the IEC/IEEE Standard for |
| Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 float64_add( float64 a, float64 b ) |
| { |
| flag aSign, bSign; |
| |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| if ( aSign == bSign ) { |
| return addFloat64Sigs( a, b, aSign ); |
| } |
| else { |
| return subFloat64Sigs( a, b, aSign ); |
| } |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of subtracting the double-precision floating-point values |
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard |
| for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 float64_sub( float64 a, float64 b ) |
| { |
| flag aSign, bSign; |
| |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| if ( aSign == bSign ) { |
| return subFloat64Sigs( a, b, aSign ); |
| } |
| else { |
| return addFloat64Sigs( a, b, aSign ); |
| } |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of multiplying the double-precision floating-point values |
| `a' and `b'. The operation is performed according to the IEC/IEEE Standard |
| for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 float64_mul( float64 a, float64 b ) |
| { |
| flag aSign, bSign, zSign; |
| int16 aExp, bExp, zExp; |
| bits64 aSig, bSig, zSig0, zSig1; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| bSig = extractFloat64Frac( b ); |
| bExp = extractFloat64Exp( b ); |
| bSign = extractFloat64Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0x7FF ) { |
| if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { |
| return propagateFloat64NaN( a, b ); |
| } |
| if ( ( bExp | bSig ) == 0 ) { |
| float_raise( float_flag_invalid ); |
| return float64_default_nan; |
| } |
| return packFloat64( zSign, 0x7FF, 0 ); |
| } |
| if ( bExp == 0x7FF ) { |
| if ( bSig ) return propagateFloat64NaN( a, b ); |
| if ( ( aExp | aSig ) == 0 ) { |
| float_raise( float_flag_invalid ); |
| return float64_default_nan; |
| } |
| return packFloat64( zSign, 0x7FF, 0 ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); |
| normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) return packFloat64( zSign, 0, 0 ); |
| normalizeFloat64Subnormal( bSig, &bExp, &bSig ); |
| } |
| zExp = aExp + bExp - 0x3FF; |
| aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; |
| bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; |
| mul64To128( aSig, bSig, &zSig0, &zSig1 ); |
| zSig0 |= ( zSig1 != 0 ); |
| if ( 0 <= (sbits64) ( zSig0<<1 ) ) { |
| zSig0 <<= 1; |
| --zExp; |
| } |
| return roundAndPackFloat64( zSign, zExp, zSig0 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of dividing the double-precision floating-point value `a' |
| by the corresponding value `b'. The operation is performed according to |
| the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 float64_div( float64 a, float64 b ) |
| { |
| flag aSign, bSign, zSign; |
| int16 aExp, bExp, zExp; |
| bits64 aSig, bSig, zSig; |
| bits64 rem0, rem1; |
| bits64 term0, term1; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| bSig = extractFloat64Frac( b ); |
| bExp = extractFloat64Exp( b ); |
| bSign = extractFloat64Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0x7FF ) { |
| if ( aSig ) return propagateFloat64NaN( a, b ); |
| if ( bExp == 0x7FF ) { |
| if ( bSig ) return propagateFloat64NaN( a, b ); |
| float_raise( float_flag_invalid ); |
| return float64_default_nan; |
| } |
| return packFloat64( zSign, 0x7FF, 0 ); |
| } |
| if ( bExp == 0x7FF ) { |
| if ( bSig ) return propagateFloat64NaN( a, b ); |
| return packFloat64( zSign, 0, 0 ); |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| if ( ( aExp | aSig ) == 0 ) { |
| float_raise( float_flag_invalid ); |
| return float64_default_nan; |
| } |
| float_raise( float_flag_divbyzero ); |
| return packFloat64( zSign, 0x7FF, 0 ); |
| } |
| normalizeFloat64Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloat64( zSign, 0, 0 ); |
| normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
| } |
| zExp = aExp - bExp + 0x3FD; |
| aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<10; |
| bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; |
| if ( bSig <= ( aSig + aSig ) ) { |
| aSig >>= 1; |
| ++zExp; |
| } |
| zSig = estimateDiv128To64( aSig, 0, bSig ); |
| if ( ( zSig & 0x1FF ) <= 2 ) { |
| mul64To128( bSig, zSig, &term0, &term1 ); |
| sub128( aSig, 0, term0, term1, &rem0, &rem1 ); |
| while ( (sbits64) rem0 < 0 ) { |
| --zSig; |
| add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); |
| } |
| zSig |= ( rem1 != 0 ); |
| } |
| return roundAndPackFloat64( zSign, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the remainder of the double-precision floating-point value `a' |
| with respect to the corresponding value `b'. The operation is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 float64_rem( float64 a, float64 b ) |
| { |
| flag aSign, bSign, zSign; |
| int16 aExp, bExp, expDiff; |
| bits64 aSig, bSig; |
| bits64 q, alternateASig; |
| sbits64 sigMean; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| bSig = extractFloat64Frac( b ); |
| bExp = extractFloat64Exp( b ); |
| bSign = extractFloat64Sign( b ); |
| if ( aExp == 0x7FF ) { |
| if ( aSig || ( ( bExp == 0x7FF ) && bSig ) ) { |
| return propagateFloat64NaN( a, b ); |
| } |
| float_raise( float_flag_invalid ); |
| return float64_default_nan; |
| } |
| if ( bExp == 0x7FF ) { |
| if ( bSig ) return propagateFloat64NaN( a, b ); |
| return a; |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| float_raise( float_flag_invalid ); |
| return float64_default_nan; |
| } |
| normalizeFloat64Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return a; |
| normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
| } |
| expDiff = aExp - bExp; |
| aSig = ( aSig | LIT64( 0x0010000000000000 ) )<<11; |
| bSig = ( bSig | LIT64( 0x0010000000000000 ) )<<11; |
| if ( expDiff < 0 ) { |
| if ( expDiff < -1 ) return a; |
| aSig >>= 1; |
| } |
| q = ( bSig <= aSig ); |
| if ( q ) aSig -= bSig; |
| expDiff -= 64; |
| while ( 0 < expDiff ) { |
| q = estimateDiv128To64( aSig, 0, bSig ); |
| q = ( 2 < q ) ? q - 2 : 0; |
| aSig = - ( ( bSig>>2 ) * q ); |
| expDiff -= 62; |
| } |
| expDiff += 64; |
| if ( 0 < expDiff ) { |
| q = estimateDiv128To64( aSig, 0, bSig ); |
| q = ( 2 < q ) ? q - 2 : 0; |
| q >>= 64 - expDiff; |
| bSig >>= 2; |
| aSig = ( ( aSig>>1 )<<( expDiff - 1 ) ) - bSig * q; |
| } |
| else { |
| aSig >>= 2; |
| bSig >>= 2; |
| } |
| do { |
| alternateASig = aSig; |
| ++q; |
| aSig -= bSig; |
| } while ( 0 <= (sbits64) aSig ); |
| sigMean = aSig + alternateASig; |
| if ( ( sigMean < 0 ) || ( ( sigMean == 0 ) && ( q & 1 ) ) ) { |
| aSig = alternateASig; |
| } |
| zSign = ( (sbits64) aSig < 0 ); |
| if ( zSign ) aSig = - aSig; |
| return normalizeRoundAndPackFloat64( aSign ^ zSign, bExp, aSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the square root of the double-precision floating-point value `a'. |
| The operation is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 float64_sqrt( float64 a ) |
| { |
| flag aSign; |
| int16 aExp, zExp; |
| bits64 aSig, zSig; |
| bits64 rem0, rem1, term0, term1; //, shiftedRem; |
| //float64 z; |
| |
| aSig = extractFloat64Frac( a ); |
| aExp = extractFloat64Exp( a ); |
| aSign = extractFloat64Sign( a ); |
| if ( aExp == 0x7FF ) { |
| if ( aSig ) return propagateFloat64NaN( a, a ); |
| if ( ! aSign ) return a; |
| float_raise( float_flag_invalid ); |
| return float64_default_nan; |
| } |
| if ( aSign ) { |
| if ( ( aExp | aSig ) == 0 ) return a; |
| float_raise( float_flag_invalid ); |
| return float64_default_nan; |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return 0; |
| normalizeFloat64Subnormal( aSig, &aExp, &aSig ); |
| } |
| zExp = ( ( aExp - 0x3FF )>>1 ) + 0x3FE; |
| aSig |= LIT64( 0x0010000000000000 ); |
| zSig = estimateSqrt32( aExp, aSig>>21 ); |
| zSig <<= 31; |
| aSig <<= 9 - ( aExp & 1 ); |
| zSig = estimateDiv128To64( aSig, 0, zSig ) + zSig + 2; |
| if ( ( zSig & 0x3FF ) <= 5 ) { |
| if ( zSig < 2 ) { |
| zSig = LIT64( 0xFFFFFFFFFFFFFFFF ); |
| } |
| else { |
| aSig <<= 2; |
| mul64To128( zSig, zSig, &term0, &term1 ); |
| sub128( aSig, 0, term0, term1, &rem0, &rem1 ); |
| while ( (sbits64) rem0 < 0 ) { |
| --zSig; |
| shortShift128Left( 0, zSig, 1, &term0, &term1 ); |
| term1 |= 1; |
| add128( rem0, rem1, term0, term1, &rem0, &rem1 ); |
| } |
| zSig |= ( ( rem0 | rem1 ) != 0 ); |
| } |
| } |
| shift64RightJamming( zSig, 1, &zSig ); |
| return roundAndPackFloat64( 0, zExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the double-precision floating-point value `a' is equal to the |
| corresponding value `b', and 0 otherwise. The comparison is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float64_eq( float64 a, float64 b ) |
| { |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { |
| float_raise( float_flag_invalid ); |
| } |
| return 0; |
| } |
| return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the double-precision floating-point value `a' is less than or |
| equal to the corresponding value `b', and 0 otherwise. The comparison is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float64_le( float64 a, float64 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| float_raise( float_flag_invalid ); |
| return 0; |
| } |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); |
| return ( a == b ) || ( aSign ^ ( a < b ) ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the double-precision floating-point value `a' is less than |
| the corresponding value `b', and 0 otherwise. The comparison is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float64_lt( float64 a, float64 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| float_raise( float_flag_invalid ); |
| return 0; |
| } |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); |
| return ( a != b ) && ( aSign ^ ( a < b ) ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the double-precision floating-point value `a' is equal to the |
| corresponding value `b', and 0 otherwise. The invalid exception is raised |
| if either operand is a NaN. Otherwise, the comparison is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float64_eq_signaling( float64 a, float64 b ) |
| { |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| float_raise( float_flag_invalid ); |
| return 0; |
| } |
| return ( a == b ) || ( (bits64) ( ( a | b )<<1 ) == 0 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the double-precision floating-point value `a' is less than or |
| equal to the corresponding value `b', and 0 otherwise. Quiet NaNs do not |
| cause an exception. Otherwise, the comparison is performed according to the |
| IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float64_le_quiet( float64 a, float64 b ) |
| { |
| flag aSign, bSign; |
| //int16 aExp, bExp; |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { |
| float_raise( float_flag_invalid ); |
| } |
| return 0; |
| } |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| if ( aSign != bSign ) return aSign || ( (bits64) ( ( a | b )<<1 ) == 0 ); |
| return ( a == b ) || ( aSign ^ ( a < b ) ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the double-precision floating-point value `a' is less than |
| the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause an |
| exception. Otherwise, the comparison is performed according to the IEC/IEEE |
| Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag float64_lt_quiet( float64 a, float64 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloat64Exp( a ) == 0x7FF ) && extractFloat64Frac( a ) ) |
| || ( ( extractFloat64Exp( b ) == 0x7FF ) && extractFloat64Frac( b ) ) |
| ) { |
| if ( float64_is_signaling_nan( a ) || float64_is_signaling_nan( b ) ) { |
| float_raise( float_flag_invalid ); |
| } |
| return 0; |
| } |
| aSign = extractFloat64Sign( a ); |
| bSign = extractFloat64Sign( b ); |
| if ( aSign != bSign ) return aSign && ( (bits64) ( ( a | b )<<1 ) != 0 ); |
| return ( a != b ) && ( aSign ^ ( a < b ) ); |
| |
| } |
| |
| #ifdef FLOATX80 |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the extended double-precision floating- |
| point value `a' to the 32-bit two's complement integer format. The |
| conversion is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic---which means in particular that the conversion |
| is rounded according to the current rounding mode. If `a' is a NaN, the |
| largest positive integer is returned. Otherwise, if the conversion |
| overflows, the largest integer with the same sign as `a' is returned. |
| ------------------------------------------------------------------------------- |
| */ |
| int32 floatx80_to_int32( floatx80 a ) |
| { |
| flag aSign; |
| int32 aExp, shiftCount; |
| bits64 aSig; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; |
| shiftCount = 0x4037 - aExp; |
| if ( shiftCount <= 0 ) shiftCount = 1; |
| shift64RightJamming( aSig, shiftCount, &aSig ); |
| return roundAndPackInt32( aSign, aSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the extended double-precision floating- |
| point value `a' to the 32-bit two's complement integer format. The |
| conversion is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic, except that the conversion is always rounded |
| toward zero. If `a' is a NaN, the largest positive integer is returned. |
| Otherwise, if the conversion overflows, the largest integer with the same |
| sign as `a' is returned. |
| ------------------------------------------------------------------------------- |
| */ |
| int32 floatx80_to_int32_round_to_zero( floatx80 a ) |
| { |
| flag aSign; |
| int32 aExp, shiftCount; |
| bits64 aSig, savedASig; |
| int32 z; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| shiftCount = 0x403E - aExp; |
| if ( shiftCount < 32 ) { |
| if ( ( aExp == 0x7FFF ) && (bits64) ( aSig<<1 ) ) aSign = 0; |
| goto invalid; |
| } |
| else if ( 63 < shiftCount ) { |
| if ( aExp || aSig ) float_exception_flags |= float_flag_inexact; |
| return 0; |
| } |
| savedASig = aSig; |
| aSig >>= shiftCount; |
| z = aSig; |
| if ( aSign ) z = - z; |
| if ( ( z < 0 ) ^ aSign ) { |
| invalid: |
| float_exception_flags |= float_flag_invalid; |
| return aSign ? 0x80000000 : 0x7FFFFFFF; |
| } |
| if ( ( aSig<<shiftCount ) != savedASig ) { |
| float_exception_flags |= float_flag_inexact; |
| } |
| return z; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the extended double-precision floating- |
| point value `a' to the single-precision floating-point format. The |
| conversion is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float32 floatx80_to_float32( floatx80 a ) |
| { |
| flag aSign; |
| int32 aExp; |
| bits64 aSig; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( aSig<<1 ) ) { |
| return commonNaNToFloat32( floatx80ToCommonNaN( a ) ); |
| } |
| return packFloat32( aSign, 0xFF, 0 ); |
| } |
| shift64RightJamming( aSig, 33, &aSig ); |
| if ( aExp || aSig ) aExp -= 0x3F81; |
| return roundAndPackFloat32( aSign, aExp, aSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of converting the extended double-precision floating- |
| point value `a' to the double-precision floating-point format. The |
| conversion is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| float64 floatx80_to_float64( floatx80 a ) |
| { |
| flag aSign; |
| int32 aExp; |
| bits64 aSig, zSig; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( aSig<<1 ) ) { |
| return commonNaNToFloat64( floatx80ToCommonNaN( a ) ); |
| } |
| return packFloat64( aSign, 0x7FF, 0 ); |
| } |
| shift64RightJamming( aSig, 1, &zSig ); |
| if ( aExp || aSig ) aExp -= 0x3C01; |
| return roundAndPackFloat64( aSign, aExp, zSig ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Rounds the extended double-precision floating-point value `a' to an integer, |
| and returns the result as an extended quadruple-precision floating-point |
| value. The operation is performed according to the IEC/IEEE Standard for |
| Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 floatx80_round_to_int( floatx80 a ) |
| { |
| flag aSign; |
| int32 aExp; |
| bits64 lastBitMask, roundBitsMask; |
| int8 roundingMode; |
| floatx80 z; |
| |
| aExp = extractFloatx80Exp( a ); |
| if ( 0x403E <= aExp ) { |
| if ( ( aExp == 0x7FFF ) && (bits64) ( extractFloatx80Frac( a )<<1 ) ) { |
| return propagateFloatx80NaN( a, a ); |
| } |
| return a; |
| } |
| if ( aExp <= 0x3FFE ) { |
| if ( ( aExp == 0 ) |
| && ( (bits64) ( extractFloatx80Frac( a )<<1 ) == 0 ) ) { |
| return a; |
| } |
| float_exception_flags |= float_flag_inexact; |
| aSign = extractFloatx80Sign( a ); |
| switch ( float_rounding_mode ) { |
| case float_round_nearest_even: |
| if ( ( aExp == 0x3FFE ) && (bits64) ( extractFloatx80Frac( a )<<1 ) |
| ) { |
| return |
| packFloatx80( aSign, 0x3FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| break; |
| case float_round_down: |
| return |
| aSign ? |
| packFloatx80( 1, 0x3FFF, LIT64( 0x8000000000000000 ) ) |
| : packFloatx80( 0, 0, 0 ); |
| case float_round_up: |
| return |
| aSign ? packFloatx80( 1, 0, 0 ) |
| : packFloatx80( 0, 0x3FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| return packFloatx80( aSign, 0, 0 ); |
| } |
| lastBitMask = 1; |
| lastBitMask <<= 0x403E - aExp; |
| roundBitsMask = lastBitMask - 1; |
| z = a; |
| roundingMode = float_rounding_mode; |
| if ( roundingMode == float_round_nearest_even ) { |
| z.low += lastBitMask>>1; |
| if ( ( z.low & roundBitsMask ) == 0 ) z.low &= ~ lastBitMask; |
| } |
| else if ( roundingMode != float_round_to_zero ) { |
| if ( extractFloatx80Sign( z ) ^ ( roundingMode == float_round_up ) ) { |
| z.low += roundBitsMask; |
| } |
| } |
| z.low &= ~ roundBitsMask; |
| if ( z.low == 0 ) { |
| ++z.high; |
| z.low = LIT64( 0x8000000000000000 ); |
| } |
| if ( z.low != a.low ) float_exception_flags |= float_flag_inexact; |
| return z; |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of adding the absolute values of the extended double- |
| precision floating-point values `a' and `b'. If `zSign' is true, the sum is |
| negated before being returned. `zSign' is ignored if the result is a NaN. |
| The addition is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| static floatx80 addFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) |
| { |
| int32 aExp, bExp, zExp; |
| bits64 aSig, bSig, zSig0, zSig1; |
| int32 expDiff; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| expDiff = aExp - bExp; |
| if ( 0 < expDiff ) { |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); |
| return a; |
| } |
| if ( bExp == 0 ) --expDiff; |
| shift64ExtraRightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); |
| zExp = aExp; |
| } |
| else if ( expDiff < 0 ) { |
| if ( bExp == 0x7FFF ) { |
| if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); |
| return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| if ( aExp == 0 ) ++expDiff; |
| shift64ExtraRightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); |
| zExp = bExp; |
| } |
| else { |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( ( aSig | bSig )<<1 ) ) { |
| return propagateFloatx80NaN( a, b ); |
| } |
| return a; |
| } |
| zSig1 = 0; |
| zSig0 = aSig + bSig; |
| if ( aExp == 0 ) { |
| normalizeFloatx80Subnormal( zSig0, &zExp, &zSig0 ); |
| goto roundAndPack; |
| } |
| zExp = aExp; |
| goto shiftRight1; |
| } |
| |
| zSig0 = aSig + bSig; |
| |
| if ( (sbits64) zSig0 < 0 ) goto roundAndPack; |
| shiftRight1: |
| shift64ExtraRightJamming( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
| zSig0 |= LIT64( 0x8000000000000000 ); |
| ++zExp; |
| roundAndPack: |
| return |
| roundAndPackFloatx80( |
| floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of subtracting the absolute values of the extended |
| double-precision floating-point values `a' and `b'. If `zSign' is true, |
| the difference is negated before being returned. `zSign' is ignored if the |
| result is a NaN. The subtraction is performed according to the IEC/IEEE |
| Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| static floatx80 subFloatx80Sigs( floatx80 a, floatx80 b, flag zSign ) |
| { |
| int32 aExp, bExp, zExp; |
| bits64 aSig, bSig, zSig0, zSig1; |
| int32 expDiff; |
| floatx80 z; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| expDiff = aExp - bExp; |
| if ( 0 < expDiff ) goto aExpBigger; |
| if ( expDiff < 0 ) goto bExpBigger; |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( ( aSig | bSig )<<1 ) ) { |
| return propagateFloatx80NaN( a, b ); |
| } |
| float_raise( float_flag_invalid ); |
| z.low = floatx80_default_nan_low; |
| z.high = floatx80_default_nan_high; |
| return z; |
| } |
| if ( aExp == 0 ) { |
| aExp = 1; |
| bExp = 1; |
| } |
| zSig1 = 0; |
| if ( bSig < aSig ) goto aBigger; |
| if ( aSig < bSig ) goto bBigger; |
| return packFloatx80( float_rounding_mode == float_round_down, 0, 0 ); |
| bExpBigger: |
| if ( bExp == 0x7FFF ) { |
| if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); |
| return packFloatx80( zSign ^ 1, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| if ( aExp == 0 ) ++expDiff; |
| shift128RightJamming( aSig, 0, - expDiff, &aSig, &zSig1 ); |
| bBigger: |
| sub128( bSig, 0, aSig, zSig1, &zSig0, &zSig1 ); |
| zExp = bExp; |
| zSign ^= 1; |
| goto normalizeRoundAndPack; |
| aExpBigger: |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); |
| return a; |
| } |
| if ( bExp == 0 ) --expDiff; |
| shift128RightJamming( bSig, 0, expDiff, &bSig, &zSig1 ); |
| aBigger: |
| sub128( aSig, 0, bSig, zSig1, &zSig0, &zSig1 ); |
| zExp = aExp; |
| normalizeRoundAndPack: |
| return |
| normalizeRoundAndPackFloatx80( |
| floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of adding the extended double-precision floating-point |
| values `a' and `b'. The operation is performed according to the IEC/IEEE |
| Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 floatx80_add( floatx80 a, floatx80 b ) |
| { |
| flag aSign, bSign; |
| |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign == bSign ) { |
| return addFloatx80Sigs( a, b, aSign ); |
| } |
| else { |
| return subFloatx80Sigs( a, b, aSign ); |
| } |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of subtracting the extended double-precision floating- |
| point values `a' and `b'. The operation is performed according to the |
| IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 floatx80_sub( floatx80 a, floatx80 b ) |
| { |
| flag aSign, bSign; |
| |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign == bSign ) { |
| return subFloatx80Sigs( a, b, aSign ); |
| } |
| else { |
| return addFloatx80Sigs( a, b, aSign ); |
| } |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of multiplying the extended double-precision floating- |
| point values `a' and `b'. The operation is performed according to the |
| IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 floatx80_mul( floatx80 a, floatx80 b ) |
| { |
| flag aSign, bSign, zSign; |
| int32 aExp, bExp, zExp; |
| bits64 aSig, bSig, zSig0, zSig1; |
| floatx80 z; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| bSign = extractFloatx80Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( aSig<<1 ) |
| || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { |
| return propagateFloatx80NaN( a, b ); |
| } |
| if ( ( bExp | bSig ) == 0 ) goto invalid; |
| return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| if ( bExp == 0x7FFF ) { |
| if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); |
| if ( ( aExp | aSig ) == 0 ) { |
| invalid: |
| float_raise( float_flag_invalid ); |
| z.low = floatx80_default_nan_low; |
| z.high = floatx80_default_nan_high; |
| return z; |
| } |
| return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); |
| normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) return packFloatx80( zSign, 0, 0 ); |
| normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); |
| } |
| zExp = aExp + bExp - 0x3FFE; |
| mul64To128( aSig, bSig, &zSig0, &zSig1 ); |
| if ( 0 < (sbits64) zSig0 ) { |
| shortShift128Left( zSig0, zSig1, 1, &zSig0, &zSig1 ); |
| --zExp; |
| } |
| return |
| roundAndPackFloatx80( |
| floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the result of dividing the extended double-precision floating-point |
| value `a' by the corresponding value `b'. The operation is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 floatx80_div( floatx80 a, floatx80 b ) |
| { |
| flag aSign, bSign, zSign; |
| int32 aExp, bExp, zExp; |
| bits64 aSig, bSig, zSig0, zSig1; |
| bits64 rem0, rem1, rem2, term0, term1, term2; |
| floatx80 z; |
| |
| aSig = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| bSign = extractFloatx80Sign( b ); |
| zSign = aSign ^ bSign; |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( aSig<<1 ) ) return propagateFloatx80NaN( a, b ); |
| if ( bExp == 0x7FFF ) { |
| if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); |
| goto invalid; |
| } |
| return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| if ( bExp == 0x7FFF ) { |
| if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); |
| return packFloatx80( zSign, 0, 0 ); |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| if ( ( aExp | aSig ) == 0 ) { |
| invalid: |
| float_raise( float_flag_invalid ); |
| z.low = floatx80_default_nan_low; |
| z.high = floatx80_default_nan_high; |
| return z; |
| } |
| float_raise( float_flag_divbyzero ); |
| return packFloatx80( zSign, 0x7FFF, LIT64( 0x8000000000000000 ) ); |
| } |
| normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( aSig == 0 ) return packFloatx80( zSign, 0, 0 ); |
| normalizeFloatx80Subnormal( aSig, &aExp, &aSig ); |
| } |
| zExp = aExp - bExp + 0x3FFE; |
| rem1 = 0; |
| if ( bSig <= aSig ) { |
| shift128Right( aSig, 0, 1, &aSig, &rem1 ); |
| ++zExp; |
| } |
| zSig0 = estimateDiv128To64( aSig, rem1, bSig ); |
| mul64To128( bSig, zSig0, &term0, &term1 ); |
| sub128( aSig, rem1, term0, term1, &rem0, &rem1 ); |
| while ( (sbits64) rem0 < 0 ) { |
| --zSig0; |
| add128( rem0, rem1, 0, bSig, &rem0, &rem1 ); |
| } |
| zSig1 = estimateDiv128To64( rem1, 0, bSig ); |
| if ( (bits64) ( zSig1<<1 ) <= 8 ) { |
| mul64To128( bSig, zSig1, &term1, &term2 ); |
| sub128( rem1, 0, term1, term2, &rem1, &rem2 ); |
| while ( (sbits64) rem1 < 0 ) { |
| --zSig1; |
| add128( rem1, rem2, 0, bSig, &rem1, &rem2 ); |
| } |
| zSig1 |= ( ( rem1 | rem2 ) != 0 ); |
| } |
| return |
| roundAndPackFloatx80( |
| floatx80_rounding_precision, zSign, zExp, zSig0, zSig1 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the remainder of the extended double-precision floating-point value |
| `a' with respect to the corresponding value `b'. The operation is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 floatx80_rem( floatx80 a, floatx80 b ) |
| { |
| flag aSign, bSign, zSign; |
| int32 aExp, bExp, expDiff; |
| bits64 aSig0, aSig1, bSig; |
| bits64 q, term0, term1, alternateASig0, alternateASig1; |
| floatx80 z; |
| |
| aSig0 = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| bSig = extractFloatx80Frac( b ); |
| bExp = extractFloatx80Exp( b ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( aSig0<<1 ) |
| || ( ( bExp == 0x7FFF ) && (bits64) ( bSig<<1 ) ) ) { |
| return propagateFloatx80NaN( a, b ); |
| } |
| goto invalid; |
| } |
| if ( bExp == 0x7FFF ) { |
| if ( (bits64) ( bSig<<1 ) ) return propagateFloatx80NaN( a, b ); |
| return a; |
| } |
| if ( bExp == 0 ) { |
| if ( bSig == 0 ) { |
| invalid: |
| float_raise( float_flag_invalid ); |
| z.low = floatx80_default_nan_low; |
| z.high = floatx80_default_nan_high; |
| return z; |
| } |
| normalizeFloatx80Subnormal( bSig, &bExp, &bSig ); |
| } |
| if ( aExp == 0 ) { |
| if ( (bits64) ( aSig0<<1 ) == 0 ) return a; |
| normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
| } |
| bSig |= LIT64( 0x8000000000000000 ); |
| zSign = aSign; |
| expDiff = aExp - bExp; |
| aSig1 = 0; |
| if ( expDiff < 0 ) { |
| if ( expDiff < -1 ) return a; |
| shift128Right( aSig0, 0, 1, &aSig0, &aSig1 ); |
| expDiff = 0; |
| } |
| q = ( bSig <= aSig0 ); |
| if ( q ) aSig0 -= bSig; |
| expDiff -= 64; |
| while ( 0 < expDiff ) { |
| q = estimateDiv128To64( aSig0, aSig1, bSig ); |
| q = ( 2 < q ) ? q - 2 : 0; |
| mul64To128( bSig, q, &term0, &term1 ); |
| sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); |
| shortShift128Left( aSig0, aSig1, 62, &aSig0, &aSig1 ); |
| expDiff -= 62; |
| } |
| expDiff += 64; |
| if ( 0 < expDiff ) { |
| q = estimateDiv128To64( aSig0, aSig1, bSig ); |
| q = ( 2 < q ) ? q - 2 : 0; |
| q >>= 64 - expDiff; |
| mul64To128( bSig, q<<( 64 - expDiff ), &term0, &term1 ); |
| sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); |
| shortShift128Left( 0, bSig, 64 - expDiff, &term0, &term1 ); |
| while ( le128( term0, term1, aSig0, aSig1 ) ) { |
| ++q; |
| sub128( aSig0, aSig1, term0, term1, &aSig0, &aSig1 ); |
| } |
| } |
| else { |
| term1 = 0; |
| term0 = bSig; |
| } |
| sub128( term0, term1, aSig0, aSig1, &alternateASig0, &alternateASig1 ); |
| if ( lt128( alternateASig0, alternateASig1, aSig0, aSig1 ) |
| || ( eq128( alternateASig0, alternateASig1, aSig0, aSig1 ) |
| && ( q & 1 ) ) |
| ) { |
| aSig0 = alternateASig0; |
| aSig1 = alternateASig1; |
| zSign = ! zSign; |
| } |
| return |
| normalizeRoundAndPackFloatx80( |
| 80, zSign, bExp + expDiff, aSig0, aSig1 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns the square root of the extended double-precision floating-point |
| value `a'. The operation is performed according to the IEC/IEEE Standard |
| for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| floatx80 floatx80_sqrt( floatx80 a ) |
| { |
| flag aSign; |
| int32 aExp, zExp; |
| bits64 aSig0, aSig1, zSig0, zSig1; |
| bits64 rem0, rem1, rem2, rem3, term0, term1, term2, term3; |
| bits64 shiftedRem0, shiftedRem1; |
| floatx80 z; |
| |
| aSig0 = extractFloatx80Frac( a ); |
| aExp = extractFloatx80Exp( a ); |
| aSign = extractFloatx80Sign( a ); |
| if ( aExp == 0x7FFF ) { |
| if ( (bits64) ( aSig0<<1 ) ) return propagateFloatx80NaN( a, a ); |
| if ( ! aSign ) return a; |
| goto invalid; |
| } |
| if ( aSign ) { |
| if ( ( aExp | aSig0 ) == 0 ) return a; |
| invalid: |
| float_raise( float_flag_invalid ); |
| z.low = floatx80_default_nan_low; |
| z.high = floatx80_default_nan_high; |
| return z; |
| } |
| if ( aExp == 0 ) { |
| if ( aSig0 == 0 ) return packFloatx80( 0, 0, 0 ); |
| normalizeFloatx80Subnormal( aSig0, &aExp, &aSig0 ); |
| } |
| zExp = ( ( aExp - 0x3FFF )>>1 ) + 0x3FFF; |
| zSig0 = estimateSqrt32( aExp, aSig0>>32 ); |
| zSig0 <<= 31; |
| aSig1 = 0; |
| shift128Right( aSig0, 0, ( aExp & 1 ) + 2, &aSig0, &aSig1 ); |
| zSig0 = estimateDiv128To64( aSig0, aSig1, zSig0 ) + zSig0 + 4; |
| if ( 0 <= (sbits64) zSig0 ) zSig0 = LIT64( 0xFFFFFFFFFFFFFFFF ); |
| shortShift128Left( aSig0, aSig1, 2, &aSig0, &aSig1 ); |
| mul64To128( zSig0, zSig0, &term0, &term1 ); |
| sub128( aSig0, aSig1, term0, term1, &rem0, &rem1 ); |
| while ( (sbits64) rem0 < 0 ) { |
| --zSig0; |
| shortShift128Left( 0, zSig0, 1, &term0, &term1 ); |
| term1 |= 1; |
| add128( rem0, rem1, term0, term1, &rem0, &rem1 ); |
| } |
| shortShift128Left( rem0, rem1, 63, &shiftedRem0, &shiftedRem1 ); |
| zSig1 = estimateDiv128To64( shiftedRem0, shiftedRem1, zSig0 ); |
| if ( (bits64) ( zSig1<<1 ) <= 10 ) { |
| if ( zSig1 == 0 ) zSig1 = 1; |
| mul64To128( zSig0, zSig1, &term1, &term2 ); |
| shortShift128Left( term1, term2, 1, &term1, &term2 ); |
| sub128( rem1, 0, term1, term2, &rem1, &rem2 ); |
| mul64To128( zSig1, zSig1, &term2, &term3 ); |
| sub192( rem1, rem2, 0, 0, term2, term3, &rem1, &rem2, &rem3 ); |
| while ( (sbits64) rem1 < 0 ) { |
| --zSig1; |
| shortShift192Left( 0, zSig0, zSig1, 1, &term1, &term2, &term3 ); |
| term3 |= 1; |
| add192( |
| rem1, rem2, rem3, term1, term2, term3, &rem1, &rem2, &rem3 ); |
| } |
| zSig1 |= ( ( rem1 | rem2 | rem3 ) != 0 ); |
| } |
| return |
| roundAndPackFloatx80( |
| floatx80_rounding_precision, 0, zExp, zSig0, zSig1 ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the extended double-precision floating-point value `a' is |
| equal to the corresponding value `b', and 0 otherwise. The comparison is |
| performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag floatx80_eq( floatx80 a, floatx80 b ) |
| { |
| |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| if ( floatx80_is_signaling_nan( a ) |
| || floatx80_is_signaling_nan( b ) ) { |
| float_raise( float_flag_invalid ); |
| } |
| return 0; |
| } |
| return |
| ( a.low == b.low ) |
| && ( ( a.high == b.high ) |
| || ( ( a.low == 0 ) |
| && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) |
| ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the extended double-precision floating-point value `a' is |
| less than or equal to the corresponding value `b', and 0 otherwise. The |
| comparison is performed according to the IEC/IEEE Standard for Binary |
| Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag floatx80_le( floatx80 a, floatx80 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| float_raise( float_flag_invalid ); |
| return 0; |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| == 0 ); |
| } |
| return |
| aSign ? le128( b.high, b.low, a.high, a.low ) |
| : le128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the extended double-precision floating-point value `a' is |
| less than the corresponding value `b', and 0 otherwise. The comparison |
| is performed according to the IEC/IEEE Standard for Binary Floating-point |
| Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag floatx80_lt( floatx80 a, floatx80 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| float_raise( float_flag_invalid ); |
| return 0; |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| != 0 ); |
| } |
| return |
| aSign ? lt128( b.high, b.low, a.high, a.low ) |
| : lt128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the extended double-precision floating-point value `a' is equal |
| to the corresponding value `b', and 0 otherwise. The invalid exception is |
| raised if either operand is a NaN. Otherwise, the comparison is performed |
| according to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag floatx80_eq_signaling( floatx80 a, floatx80 b ) |
| { |
| |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| float_raise( float_flag_invalid ); |
| return 0; |
| } |
| return |
| ( a.low == b.low ) |
| && ( ( a.high == b.high ) |
| || ( ( a.low == 0 ) |
| && ( (bits16) ( ( a.high | b.high )<<1 ) == 0 ) ) |
| ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the extended double-precision floating-point value `a' is less |
| than or equal to the corresponding value `b', and 0 otherwise. Quiet NaNs |
| do not cause an exception. Otherwise, the comparison is performed according |
| to the IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag floatx80_le_quiet( floatx80 a, floatx80 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| if ( floatx80_is_signaling_nan( a ) |
| || floatx80_is_signaling_nan( b ) ) { |
| float_raise( float_flag_invalid ); |
| } |
| return 0; |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| || ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| == 0 ); |
| } |
| return |
| aSign ? le128( b.high, b.low, a.high, a.low ) |
| : le128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| /* |
| ------------------------------------------------------------------------------- |
| Returns 1 if the extended double-precision floating-point value `a' is less |
| than the corresponding value `b', and 0 otherwise. Quiet NaNs do not cause |
| an exception. Otherwise, the comparison is performed according to the |
| IEC/IEEE Standard for Binary Floating-point Arithmetic. |
| ------------------------------------------------------------------------------- |
| */ |
| flag floatx80_lt_quiet( floatx80 a, floatx80 b ) |
| { |
| flag aSign, bSign; |
| |
| if ( ( ( extractFloatx80Exp( a ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( a )<<1 ) ) |
| || ( ( extractFloatx80Exp( b ) == 0x7FFF ) |
| && (bits64) ( extractFloatx80Frac( b )<<1 ) ) |
| ) { |
| if ( floatx80_is_signaling_nan( a ) |
| || floatx80_is_signaling_nan( b ) ) { |
| float_raise( float_flag_invalid ); |
| } |
| return 0; |
| } |
| aSign = extractFloatx80Sign( a ); |
| bSign = extractFloatx80Sign( b ); |
| if ( aSign != bSign ) { |
| return |
| aSign |
| && ( ( ( (bits16) ( ( a.high | b.high )<<1 ) ) | a.low | b.low ) |
| != 0 ); |
| } |
| return |
| aSign ? lt128( b.high, b.low, a.high, a.low ) |
| : lt128( a.high, a.low, b.high, b.low ); |
| |
| } |
| |
| #endif |
| |