| /* |
| * QEMU S390x KVM implementation |
| * |
| * Copyright (c) 2009 Alexander Graf <agraf@suse.de> |
| * Copyright IBM Corp. 2012 |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include <sys/ioctl.h> |
| |
| #include <linux/kvm.h> |
| #include <asm/ptrace.h> |
| |
| #include "cpu.h" |
| #include "s390x-internal.h" |
| #include "kvm_s390x.h" |
| #include "sysemu/kvm_int.h" |
| #include "qemu/cutils.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "qemu/timer.h" |
| #include "qemu/units.h" |
| #include "qemu/main-loop.h" |
| #include "qemu/mmap-alloc.h" |
| #include "qemu/log.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/hw_accel.h" |
| #include "sysemu/runstate.h" |
| #include "sysemu/device_tree.h" |
| #include "exec/gdbstub.h" |
| #include "exec/ram_addr.h" |
| #include "trace.h" |
| #include "hw/s390x/s390-pci-inst.h" |
| #include "hw/s390x/s390-pci-bus.h" |
| #include "hw/s390x/ipl.h" |
| #include "hw/s390x/ebcdic.h" |
| #include "exec/memattrs.h" |
| #include "hw/s390x/s390-virtio-ccw.h" |
| #include "hw/s390x/s390-virtio-hcall.h" |
| #include "hw/s390x/pv.h" |
| |
| #ifndef DEBUG_KVM |
| #define DEBUG_KVM 0 |
| #endif |
| |
| #define DPRINTF(fmt, ...) do { \ |
| if (DEBUG_KVM) { \ |
| fprintf(stderr, fmt, ## __VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| #define kvm_vm_check_mem_attr(s, attr) \ |
| kvm_vm_check_attr(s, KVM_S390_VM_MEM_CTRL, attr) |
| |
| #define IPA0_DIAG 0x8300 |
| #define IPA0_SIGP 0xae00 |
| #define IPA0_B2 0xb200 |
| #define IPA0_B9 0xb900 |
| #define IPA0_EB 0xeb00 |
| #define IPA0_E3 0xe300 |
| |
| #define PRIV_B2_SCLP_CALL 0x20 |
| #define PRIV_B2_CSCH 0x30 |
| #define PRIV_B2_HSCH 0x31 |
| #define PRIV_B2_MSCH 0x32 |
| #define PRIV_B2_SSCH 0x33 |
| #define PRIV_B2_STSCH 0x34 |
| #define PRIV_B2_TSCH 0x35 |
| #define PRIV_B2_TPI 0x36 |
| #define PRIV_B2_SAL 0x37 |
| #define PRIV_B2_RSCH 0x38 |
| #define PRIV_B2_STCRW 0x39 |
| #define PRIV_B2_STCPS 0x3a |
| #define PRIV_B2_RCHP 0x3b |
| #define PRIV_B2_SCHM 0x3c |
| #define PRIV_B2_CHSC 0x5f |
| #define PRIV_B2_SIGA 0x74 |
| #define PRIV_B2_XSCH 0x76 |
| |
| #define PRIV_EB_SQBS 0x8a |
| #define PRIV_EB_PCISTB 0xd0 |
| #define PRIV_EB_SIC 0xd1 |
| |
| #define PRIV_B9_EQBS 0x9c |
| #define PRIV_B9_CLP 0xa0 |
| #define PRIV_B9_PCISTG 0xd0 |
| #define PRIV_B9_PCILG 0xd2 |
| #define PRIV_B9_RPCIT 0xd3 |
| |
| #define PRIV_E3_MPCIFC 0xd0 |
| #define PRIV_E3_STPCIFC 0xd4 |
| |
| #define DIAG_TIMEREVENT 0x288 |
| #define DIAG_IPL 0x308 |
| #define DIAG_SET_CONTROL_PROGRAM_CODES 0x318 |
| #define DIAG_KVM_HYPERCALL 0x500 |
| #define DIAG_KVM_BREAKPOINT 0x501 |
| |
| #define ICPT_INSTRUCTION 0x04 |
| #define ICPT_PROGRAM 0x08 |
| #define ICPT_EXT_INT 0x14 |
| #define ICPT_WAITPSW 0x1c |
| #define ICPT_SOFT_INTERCEPT 0x24 |
| #define ICPT_CPU_STOP 0x28 |
| #define ICPT_OPEREXC 0x2c |
| #define ICPT_IO 0x40 |
| #define ICPT_PV_INSTR 0x68 |
| #define ICPT_PV_INSTR_NOTIFICATION 0x6c |
| |
| #define NR_LOCAL_IRQS 32 |
| /* |
| * Needs to be big enough to contain max_cpus emergency signals |
| * and in addition NR_LOCAL_IRQS interrupts |
| */ |
| #define VCPU_IRQ_BUF_SIZE(max_cpus) (sizeof(struct kvm_s390_irq) * \ |
| (max_cpus + NR_LOCAL_IRQS)) |
| /* |
| * KVM does only support memory slots up to KVM_MEM_MAX_NR_PAGES pages |
| * as the dirty bitmap must be managed by bitops that take an int as |
| * position indicator. This would end at an unaligned address |
| * (0x7fffff00000). As future variants might provide larger pages |
| * and to make all addresses properly aligned, let us split at 4TB. |
| */ |
| #define KVM_SLOT_MAX_BYTES (4UL * TiB) |
| |
| static CPUWatchpoint hw_watchpoint; |
| /* |
| * We don't use a list because this structure is also used to transmit the |
| * hardware breakpoints to the kernel. |
| */ |
| static struct kvm_hw_breakpoint *hw_breakpoints; |
| static int nb_hw_breakpoints; |
| |
| const KVMCapabilityInfo kvm_arch_required_capabilities[] = { |
| KVM_CAP_LAST_INFO |
| }; |
| |
| static int cap_sync_regs; |
| static int cap_async_pf; |
| static int cap_mem_op; |
| static int cap_mem_op_extension; |
| static int cap_s390_irq; |
| static int cap_ri; |
| static int cap_hpage_1m; |
| static int cap_vcpu_resets; |
| static int cap_protected; |
| static int cap_zpci_op; |
| static int cap_protected_dump; |
| |
| static bool mem_op_storage_key_support; |
| |
| static int active_cmma; |
| |
| static int kvm_s390_query_mem_limit(uint64_t *memory_limit) |
| { |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_MEM_CTRL, |
| .attr = KVM_S390_VM_MEM_LIMIT_SIZE, |
| .addr = (uint64_t) memory_limit, |
| }; |
| |
| return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); |
| } |
| |
| int kvm_s390_set_mem_limit(uint64_t new_limit, uint64_t *hw_limit) |
| { |
| int rc; |
| |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_MEM_CTRL, |
| .attr = KVM_S390_VM_MEM_LIMIT_SIZE, |
| .addr = (uint64_t) &new_limit, |
| }; |
| |
| if (!kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_LIMIT_SIZE)) { |
| return 0; |
| } |
| |
| rc = kvm_s390_query_mem_limit(hw_limit); |
| if (rc) { |
| return rc; |
| } else if (*hw_limit < new_limit) { |
| return -E2BIG; |
| } |
| |
| return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); |
| } |
| |
| int kvm_s390_cmma_active(void) |
| { |
| return active_cmma; |
| } |
| |
| static bool kvm_s390_cmma_available(void) |
| { |
| static bool initialized, value; |
| |
| if (!initialized) { |
| initialized = true; |
| value = kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_ENABLE_CMMA) && |
| kvm_vm_check_mem_attr(kvm_state, KVM_S390_VM_MEM_CLR_CMMA); |
| } |
| return value; |
| } |
| |
| void kvm_s390_cmma_reset(void) |
| { |
| int rc; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_MEM_CTRL, |
| .attr = KVM_S390_VM_MEM_CLR_CMMA, |
| }; |
| |
| if (!kvm_s390_cmma_active()) { |
| return; |
| } |
| |
| rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); |
| trace_kvm_clear_cmma(rc); |
| } |
| |
| static void kvm_s390_enable_cmma(void) |
| { |
| int rc; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_MEM_CTRL, |
| .attr = KVM_S390_VM_MEM_ENABLE_CMMA, |
| }; |
| |
| if (cap_hpage_1m) { |
| warn_report("CMM will not be enabled because it is not " |
| "compatible with huge memory backings."); |
| return; |
| } |
| rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); |
| active_cmma = !rc; |
| trace_kvm_enable_cmma(rc); |
| } |
| |
| static void kvm_s390_set_attr(uint64_t attr) |
| { |
| struct kvm_device_attr attribute = { |
| .group = KVM_S390_VM_CRYPTO, |
| .attr = attr, |
| }; |
| |
| int ret = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attribute); |
| |
| if (ret) { |
| error_report("Failed to set crypto device attribute %lu: %s", |
| attr, strerror(-ret)); |
| } |
| } |
| |
| static void kvm_s390_init_aes_kw(void) |
| { |
| uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_AES_KW; |
| |
| if (object_property_get_bool(OBJECT(qdev_get_machine()), "aes-key-wrap", |
| NULL)) { |
| attr = KVM_S390_VM_CRYPTO_ENABLE_AES_KW; |
| } |
| |
| if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { |
| kvm_s390_set_attr(attr); |
| } |
| } |
| |
| static void kvm_s390_init_dea_kw(void) |
| { |
| uint64_t attr = KVM_S390_VM_CRYPTO_DISABLE_DEA_KW; |
| |
| if (object_property_get_bool(OBJECT(qdev_get_machine()), "dea-key-wrap", |
| NULL)) { |
| attr = KVM_S390_VM_CRYPTO_ENABLE_DEA_KW; |
| } |
| |
| if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { |
| kvm_s390_set_attr(attr); |
| } |
| } |
| |
| void kvm_s390_crypto_reset(void) |
| { |
| if (s390_has_feat(S390_FEAT_MSA_EXT_3)) { |
| kvm_s390_init_aes_kw(); |
| kvm_s390_init_dea_kw(); |
| } |
| } |
| |
| void kvm_s390_set_max_pagesize(uint64_t pagesize, Error **errp) |
| { |
| if (pagesize == 4 * KiB) { |
| return; |
| } |
| |
| if (!hpage_1m_allowed()) { |
| error_setg(errp, "This QEMU machine does not support huge page " |
| "mappings"); |
| return; |
| } |
| |
| if (pagesize != 1 * MiB) { |
| error_setg(errp, "Memory backing with 2G pages was specified, " |
| "but KVM does not support this memory backing"); |
| return; |
| } |
| |
| if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_HPAGE_1M, 0)) { |
| error_setg(errp, "Memory backing with 1M pages was specified, " |
| "but KVM does not support this memory backing"); |
| return; |
| } |
| |
| cap_hpage_1m = 1; |
| } |
| |
| int kvm_s390_get_hpage_1m(void) |
| { |
| return cap_hpage_1m; |
| } |
| |
| static void ccw_machine_class_foreach(ObjectClass *oc, void *opaque) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| |
| mc->default_cpu_type = S390_CPU_TYPE_NAME("host"); |
| } |
| |
| int kvm_arch_init(MachineState *ms, KVMState *s) |
| { |
| object_class_foreach(ccw_machine_class_foreach, TYPE_S390_CCW_MACHINE, |
| false, NULL); |
| |
| if (!kvm_check_extension(kvm_state, KVM_CAP_DEVICE_CTRL)) { |
| error_report("KVM is missing capability KVM_CAP_DEVICE_CTRL - " |
| "please use kernel 3.15 or newer"); |
| return -1; |
| } |
| if (!kvm_check_extension(s, KVM_CAP_S390_COW)) { |
| error_report("KVM is missing capability KVM_CAP_S390_COW - " |
| "unsupported environment"); |
| return -1; |
| } |
| |
| cap_sync_regs = kvm_check_extension(s, KVM_CAP_SYNC_REGS); |
| cap_async_pf = kvm_check_extension(s, KVM_CAP_ASYNC_PF); |
| cap_mem_op = kvm_check_extension(s, KVM_CAP_S390_MEM_OP); |
| cap_mem_op_extension = kvm_check_extension(s, KVM_CAP_S390_MEM_OP_EXTENSION); |
| mem_op_storage_key_support = cap_mem_op_extension > 0; |
| cap_s390_irq = kvm_check_extension(s, KVM_CAP_S390_INJECT_IRQ); |
| cap_vcpu_resets = kvm_check_extension(s, KVM_CAP_S390_VCPU_RESETS); |
| cap_protected = kvm_check_extension(s, KVM_CAP_S390_PROTECTED); |
| cap_zpci_op = kvm_check_extension(s, KVM_CAP_S390_ZPCI_OP); |
| cap_protected_dump = kvm_check_extension(s, KVM_CAP_S390_PROTECTED_DUMP); |
| |
| kvm_vm_enable_cap(s, KVM_CAP_S390_USER_SIGP, 0); |
| kvm_vm_enable_cap(s, KVM_CAP_S390_VECTOR_REGISTERS, 0); |
| kvm_vm_enable_cap(s, KVM_CAP_S390_USER_STSI, 0); |
| if (ri_allowed()) { |
| if (kvm_vm_enable_cap(s, KVM_CAP_S390_RI, 0) == 0) { |
| cap_ri = 1; |
| } |
| } |
| if (cpu_model_allowed()) { |
| kvm_vm_enable_cap(s, KVM_CAP_S390_GS, 0); |
| } |
| |
| /* |
| * The migration interface for ais was introduced with kernel 4.13 |
| * but the capability itself had been active since 4.12. As migration |
| * support is considered necessary, we only try to enable this for |
| * newer machine types if KVM_CAP_S390_AIS_MIGRATION is available. |
| */ |
| if (cpu_model_allowed() && kvm_kernel_irqchip_allowed() && |
| kvm_check_extension(s, KVM_CAP_S390_AIS_MIGRATION)) { |
| kvm_vm_enable_cap(s, KVM_CAP_S390_AIS, 0); |
| } |
| |
| kvm_set_max_memslot_size(KVM_SLOT_MAX_BYTES); |
| return 0; |
| } |
| |
| int kvm_arch_irqchip_create(KVMState *s) |
| { |
| return 0; |
| } |
| |
| unsigned long kvm_arch_vcpu_id(CPUState *cpu) |
| { |
| return cpu->cpu_index; |
| } |
| |
| int kvm_arch_init_vcpu(CPUState *cs) |
| { |
| unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; |
| S390CPU *cpu = S390_CPU(cs); |
| kvm_s390_set_cpu_state(cpu, cpu->env.cpu_state); |
| cpu->irqstate = g_malloc0(VCPU_IRQ_BUF_SIZE(max_cpus)); |
| return 0; |
| } |
| |
| int kvm_arch_destroy_vcpu(CPUState *cs) |
| { |
| S390CPU *cpu = S390_CPU(cs); |
| |
| g_free(cpu->irqstate); |
| cpu->irqstate = NULL; |
| |
| return 0; |
| } |
| |
| static void kvm_s390_reset_vcpu(S390CPU *cpu, unsigned long type) |
| { |
| CPUState *cs = CPU(cpu); |
| |
| /* |
| * The reset call is needed here to reset in-kernel vcpu data that |
| * we can't access directly from QEMU (i.e. with older kernels |
| * which don't support sync_regs/ONE_REG). Before this ioctl |
| * cpu_synchronize_state() is called in common kvm code |
| * (kvm-all). |
| */ |
| if (kvm_vcpu_ioctl(cs, type)) { |
| error_report("CPU reset failed on CPU %i type %lx", |
| cs->cpu_index, type); |
| } |
| } |
| |
| void kvm_s390_reset_vcpu_initial(S390CPU *cpu) |
| { |
| kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); |
| } |
| |
| void kvm_s390_reset_vcpu_clear(S390CPU *cpu) |
| { |
| if (cap_vcpu_resets) { |
| kvm_s390_reset_vcpu(cpu, KVM_S390_CLEAR_RESET); |
| } else { |
| kvm_s390_reset_vcpu(cpu, KVM_S390_INITIAL_RESET); |
| } |
| } |
| |
| void kvm_s390_reset_vcpu_normal(S390CPU *cpu) |
| { |
| if (cap_vcpu_resets) { |
| kvm_s390_reset_vcpu(cpu, KVM_S390_NORMAL_RESET); |
| } |
| } |
| |
| static int can_sync_regs(CPUState *cs, int regs) |
| { |
| return cap_sync_regs && (cs->kvm_run->kvm_valid_regs & regs) == regs; |
| } |
| |
| int kvm_arch_put_registers(CPUState *cs, int level) |
| { |
| S390CPU *cpu = S390_CPU(cs); |
| CPUS390XState *env = &cpu->env; |
| struct kvm_sregs sregs; |
| struct kvm_regs regs; |
| struct kvm_fpu fpu = {}; |
| int r; |
| int i; |
| |
| /* always save the PSW and the GPRS*/ |
| cs->kvm_run->psw_addr = env->psw.addr; |
| cs->kvm_run->psw_mask = env->psw.mask; |
| |
| if (can_sync_regs(cs, KVM_SYNC_GPRS)) { |
| for (i = 0; i < 16; i++) { |
| cs->kvm_run->s.regs.gprs[i] = env->regs[i]; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GPRS; |
| } |
| } else { |
| for (i = 0; i < 16; i++) { |
| regs.gprs[i] = env->regs[i]; |
| } |
| r = kvm_vcpu_ioctl(cs, KVM_SET_REGS, ®s); |
| if (r < 0) { |
| return r; |
| } |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_VRS)) { |
| for (i = 0; i < 32; i++) { |
| cs->kvm_run->s.regs.vrs[i][0] = env->vregs[i][0]; |
| cs->kvm_run->s.regs.vrs[i][1] = env->vregs[i][1]; |
| } |
| cs->kvm_run->s.regs.fpc = env->fpc; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_VRS; |
| } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { |
| for (i = 0; i < 16; i++) { |
| cs->kvm_run->s.regs.fprs[i] = *get_freg(env, i); |
| } |
| cs->kvm_run->s.regs.fpc = env->fpc; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_FPRS; |
| } else { |
| /* Floating point */ |
| for (i = 0; i < 16; i++) { |
| fpu.fprs[i] = *get_freg(env, i); |
| } |
| fpu.fpc = env->fpc; |
| |
| r = kvm_vcpu_ioctl(cs, KVM_SET_FPU, &fpu); |
| if (r < 0) { |
| return r; |
| } |
| } |
| |
| /* Do we need to save more than that? */ |
| if (level == KVM_PUT_RUNTIME_STATE) { |
| return 0; |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { |
| cs->kvm_run->s.regs.cputm = env->cputm; |
| cs->kvm_run->s.regs.ckc = env->ckc; |
| cs->kvm_run->s.regs.todpr = env->todpr; |
| cs->kvm_run->s.regs.gbea = env->gbea; |
| cs->kvm_run->s.regs.pp = env->pp; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ARCH0; |
| } else { |
| /* |
| * These ONE_REGS are not protected by a capability. As they are only |
| * necessary for migration we just trace a possible error, but don't |
| * return with an error return code. |
| */ |
| kvm_set_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); |
| kvm_set_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); |
| kvm_set_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); |
| kvm_set_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); |
| kvm_set_one_reg(cs, KVM_REG_S390_PP, &env->pp); |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_RICCB)) { |
| memcpy(cs->kvm_run->s.regs.riccb, env->riccb, 64); |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_RICCB; |
| } |
| |
| /* pfault parameters */ |
| if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { |
| cs->kvm_run->s.regs.pft = env->pfault_token; |
| cs->kvm_run->s.regs.pfs = env->pfault_select; |
| cs->kvm_run->s.regs.pfc = env->pfault_compare; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PFAULT; |
| } else if (cap_async_pf) { |
| r = kvm_set_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); |
| if (r < 0) { |
| return r; |
| } |
| r = kvm_set_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); |
| if (r < 0) { |
| return r; |
| } |
| r = kvm_set_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); |
| if (r < 0) { |
| return r; |
| } |
| } |
| |
| /* access registers and control registers*/ |
| if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { |
| for (i = 0; i < 16; i++) { |
| cs->kvm_run->s.regs.acrs[i] = env->aregs[i]; |
| cs->kvm_run->s.regs.crs[i] = env->cregs[i]; |
| } |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ACRS; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_CRS; |
| } else { |
| for (i = 0; i < 16; i++) { |
| sregs.acrs[i] = env->aregs[i]; |
| sregs.crs[i] = env->cregs[i]; |
| } |
| r = kvm_vcpu_ioctl(cs, KVM_SET_SREGS, &sregs); |
| if (r < 0) { |
| return r; |
| } |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_GSCB)) { |
| memcpy(cs->kvm_run->s.regs.gscb, env->gscb, 32); |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_GSCB; |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_BPBC)) { |
| cs->kvm_run->s.regs.bpbc = env->bpbc; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_BPBC; |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { |
| cs->kvm_run->s.regs.etoken = env->etoken; |
| cs->kvm_run->s.regs.etoken_extension = env->etoken_extension; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_ETOKEN; |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { |
| cs->kvm_run->s.regs.diag318 = env->diag318_info; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; |
| } |
| |
| /* Finally the prefix */ |
| if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { |
| cs->kvm_run->s.regs.prefix = env->psa; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_PREFIX; |
| } else { |
| /* prefix is only supported via sync regs */ |
| } |
| return 0; |
| } |
| |
| int kvm_arch_get_registers(CPUState *cs) |
| { |
| S390CPU *cpu = S390_CPU(cs); |
| CPUS390XState *env = &cpu->env; |
| struct kvm_sregs sregs; |
| struct kvm_regs regs; |
| struct kvm_fpu fpu; |
| int i, r; |
| |
| /* get the PSW */ |
| env->psw.addr = cs->kvm_run->psw_addr; |
| env->psw.mask = cs->kvm_run->psw_mask; |
| |
| /* the GPRS */ |
| if (can_sync_regs(cs, KVM_SYNC_GPRS)) { |
| for (i = 0; i < 16; i++) { |
| env->regs[i] = cs->kvm_run->s.regs.gprs[i]; |
| } |
| } else { |
| r = kvm_vcpu_ioctl(cs, KVM_GET_REGS, ®s); |
| if (r < 0) { |
| return r; |
| } |
| for (i = 0; i < 16; i++) { |
| env->regs[i] = regs.gprs[i]; |
| } |
| } |
| |
| /* The ACRS and CRS */ |
| if (can_sync_regs(cs, KVM_SYNC_ACRS | KVM_SYNC_CRS)) { |
| for (i = 0; i < 16; i++) { |
| env->aregs[i] = cs->kvm_run->s.regs.acrs[i]; |
| env->cregs[i] = cs->kvm_run->s.regs.crs[i]; |
| } |
| } else { |
| r = kvm_vcpu_ioctl(cs, KVM_GET_SREGS, &sregs); |
| if (r < 0) { |
| return r; |
| } |
| for (i = 0; i < 16; i++) { |
| env->aregs[i] = sregs.acrs[i]; |
| env->cregs[i] = sregs.crs[i]; |
| } |
| } |
| |
| /* Floating point and vector registers */ |
| if (can_sync_regs(cs, KVM_SYNC_VRS)) { |
| for (i = 0; i < 32; i++) { |
| env->vregs[i][0] = cs->kvm_run->s.regs.vrs[i][0]; |
| env->vregs[i][1] = cs->kvm_run->s.regs.vrs[i][1]; |
| } |
| env->fpc = cs->kvm_run->s.regs.fpc; |
| } else if (can_sync_regs(cs, KVM_SYNC_FPRS)) { |
| for (i = 0; i < 16; i++) { |
| *get_freg(env, i) = cs->kvm_run->s.regs.fprs[i]; |
| } |
| env->fpc = cs->kvm_run->s.regs.fpc; |
| } else { |
| r = kvm_vcpu_ioctl(cs, KVM_GET_FPU, &fpu); |
| if (r < 0) { |
| return r; |
| } |
| for (i = 0; i < 16; i++) { |
| *get_freg(env, i) = fpu.fprs[i]; |
| } |
| env->fpc = fpu.fpc; |
| } |
| |
| /* The prefix */ |
| if (can_sync_regs(cs, KVM_SYNC_PREFIX)) { |
| env->psa = cs->kvm_run->s.regs.prefix; |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_ARCH0)) { |
| env->cputm = cs->kvm_run->s.regs.cputm; |
| env->ckc = cs->kvm_run->s.regs.ckc; |
| env->todpr = cs->kvm_run->s.regs.todpr; |
| env->gbea = cs->kvm_run->s.regs.gbea; |
| env->pp = cs->kvm_run->s.regs.pp; |
| } else { |
| /* |
| * These ONE_REGS are not protected by a capability. As they are only |
| * necessary for migration we just trace a possible error, but don't |
| * return with an error return code. |
| */ |
| kvm_get_one_reg(cs, KVM_REG_S390_CPU_TIMER, &env->cputm); |
| kvm_get_one_reg(cs, KVM_REG_S390_CLOCK_COMP, &env->ckc); |
| kvm_get_one_reg(cs, KVM_REG_S390_TODPR, &env->todpr); |
| kvm_get_one_reg(cs, KVM_REG_S390_GBEA, &env->gbea); |
| kvm_get_one_reg(cs, KVM_REG_S390_PP, &env->pp); |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_RICCB)) { |
| memcpy(env->riccb, cs->kvm_run->s.regs.riccb, 64); |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_GSCB)) { |
| memcpy(env->gscb, cs->kvm_run->s.regs.gscb, 32); |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_BPBC)) { |
| env->bpbc = cs->kvm_run->s.regs.bpbc; |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_ETOKEN)) { |
| env->etoken = cs->kvm_run->s.regs.etoken; |
| env->etoken_extension = cs->kvm_run->s.regs.etoken_extension; |
| } |
| |
| /* pfault parameters */ |
| if (can_sync_regs(cs, KVM_SYNC_PFAULT)) { |
| env->pfault_token = cs->kvm_run->s.regs.pft; |
| env->pfault_select = cs->kvm_run->s.regs.pfs; |
| env->pfault_compare = cs->kvm_run->s.regs.pfc; |
| } else if (cap_async_pf) { |
| r = kvm_get_one_reg(cs, KVM_REG_S390_PFTOKEN, &env->pfault_token); |
| if (r < 0) { |
| return r; |
| } |
| r = kvm_get_one_reg(cs, KVM_REG_S390_PFCOMPARE, &env->pfault_compare); |
| if (r < 0) { |
| return r; |
| } |
| r = kvm_get_one_reg(cs, KVM_REG_S390_PFSELECT, &env->pfault_select); |
| if (r < 0) { |
| return r; |
| } |
| } |
| |
| if (can_sync_regs(cs, KVM_SYNC_DIAG318)) { |
| env->diag318_info = cs->kvm_run->s.regs.diag318; |
| } |
| |
| return 0; |
| } |
| |
| int kvm_s390_get_clock(uint8_t *tod_high, uint64_t *tod_low) |
| { |
| int r; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_TOD, |
| .attr = KVM_S390_VM_TOD_LOW, |
| .addr = (uint64_t)tod_low, |
| }; |
| |
| r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); |
| if (r) { |
| return r; |
| } |
| |
| attr.attr = KVM_S390_VM_TOD_HIGH; |
| attr.addr = (uint64_t)tod_high; |
| return kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); |
| } |
| |
| int kvm_s390_get_clock_ext(uint8_t *tod_high, uint64_t *tod_low) |
| { |
| int r; |
| struct kvm_s390_vm_tod_clock gtod; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_TOD, |
| .attr = KVM_S390_VM_TOD_EXT, |
| .addr = (uint64_t)>od, |
| }; |
| |
| r = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); |
| *tod_high = gtod.epoch_idx; |
| *tod_low = gtod.tod; |
| |
| return r; |
| } |
| |
| int kvm_s390_set_clock(uint8_t tod_high, uint64_t tod_low) |
| { |
| int r; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_TOD, |
| .attr = KVM_S390_VM_TOD_LOW, |
| .addr = (uint64_t)&tod_low, |
| }; |
| |
| r = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); |
| if (r) { |
| return r; |
| } |
| |
| attr.attr = KVM_S390_VM_TOD_HIGH; |
| attr.addr = (uint64_t)&tod_high; |
| return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); |
| } |
| |
| int kvm_s390_set_clock_ext(uint8_t tod_high, uint64_t tod_low) |
| { |
| struct kvm_s390_vm_tod_clock gtod = { |
| .epoch_idx = tod_high, |
| .tod = tod_low, |
| }; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_TOD, |
| .attr = KVM_S390_VM_TOD_EXT, |
| .addr = (uint64_t)>od, |
| }; |
| |
| return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); |
| } |
| |
| /** |
| * kvm_s390_mem_op: |
| * @addr: the logical start address in guest memory |
| * @ar: the access register number |
| * @hostbuf: buffer in host memory. NULL = do only checks w/o copying |
| * @len: length that should be transferred |
| * @is_write: true = write, false = read |
| * Returns: 0 on success, non-zero if an exception or error occurred |
| * |
| * Use KVM ioctl to read/write from/to guest memory. An access exception |
| * is injected into the vCPU in case of translation errors. |
| */ |
| int kvm_s390_mem_op(S390CPU *cpu, vaddr addr, uint8_t ar, void *hostbuf, |
| int len, bool is_write) |
| { |
| struct kvm_s390_mem_op mem_op = { |
| .gaddr = addr, |
| .flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION, |
| .size = len, |
| .op = is_write ? KVM_S390_MEMOP_LOGICAL_WRITE |
| : KVM_S390_MEMOP_LOGICAL_READ, |
| .buf = (uint64_t)hostbuf, |
| .ar = ar, |
| .key = (cpu->env.psw.mask & PSW_MASK_KEY) >> PSW_SHIFT_KEY, |
| }; |
| int ret; |
| |
| if (!cap_mem_op) { |
| return -ENOSYS; |
| } |
| if (!hostbuf) { |
| mem_op.flags |= KVM_S390_MEMOP_F_CHECK_ONLY; |
| } |
| if (mem_op_storage_key_support) { |
| mem_op.flags |= KVM_S390_MEMOP_F_SKEY_PROTECTION; |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); |
| if (ret < 0) { |
| warn_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); |
| } |
| return ret; |
| } |
| |
| int kvm_s390_mem_op_pv(S390CPU *cpu, uint64_t offset, void *hostbuf, |
| int len, bool is_write) |
| { |
| struct kvm_s390_mem_op mem_op = { |
| .sida_offset = offset, |
| .size = len, |
| .op = is_write ? KVM_S390_MEMOP_SIDA_WRITE |
| : KVM_S390_MEMOP_SIDA_READ, |
| .buf = (uint64_t)hostbuf, |
| }; |
| int ret; |
| |
| if (!cap_mem_op || !cap_protected) { |
| return -ENOSYS; |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_S390_MEM_OP, &mem_op); |
| if (ret < 0) { |
| error_report("KVM_S390_MEM_OP failed: %s", strerror(-ret)); |
| abort(); |
| } |
| return ret; |
| } |
| |
| static uint8_t const *sw_bp_inst; |
| static uint8_t sw_bp_ilen; |
| |
| static void determine_sw_breakpoint_instr(void) |
| { |
| /* DIAG 501 is used for sw breakpoints with old kernels */ |
| static const uint8_t diag_501[] = {0x83, 0x24, 0x05, 0x01}; |
| /* Instruction 0x0000 is used for sw breakpoints with recent kernels */ |
| static const uint8_t instr_0x0000[] = {0x00, 0x00}; |
| |
| if (sw_bp_inst) { |
| return; |
| } |
| if (kvm_vm_enable_cap(kvm_state, KVM_CAP_S390_USER_INSTR0, 0)) { |
| sw_bp_inst = diag_501; |
| sw_bp_ilen = sizeof(diag_501); |
| DPRINTF("KVM: will use 4-byte sw breakpoints.\n"); |
| } else { |
| sw_bp_inst = instr_0x0000; |
| sw_bp_ilen = sizeof(instr_0x0000); |
| DPRINTF("KVM: will use 2-byte sw breakpoints.\n"); |
| } |
| } |
| |
| int kvm_arch_insert_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| determine_sw_breakpoint_instr(); |
| |
| if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, |
| sw_bp_ilen, 0) || |
| cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)sw_bp_inst, sw_bp_ilen, 1)) { |
| return -EINVAL; |
| } |
| return 0; |
| } |
| |
| int kvm_arch_remove_sw_breakpoint(CPUState *cs, struct kvm_sw_breakpoint *bp) |
| { |
| uint8_t t[MAX_ILEN]; |
| |
| if (cpu_memory_rw_debug(cs, bp->pc, t, sw_bp_ilen, 0)) { |
| return -EINVAL; |
| } else if (memcmp(t, sw_bp_inst, sw_bp_ilen)) { |
| return -EINVAL; |
| } else if (cpu_memory_rw_debug(cs, bp->pc, (uint8_t *)&bp->saved_insn, |
| sw_bp_ilen, 1)) { |
| return -EINVAL; |
| } |
| |
| return 0; |
| } |
| |
| static struct kvm_hw_breakpoint *find_hw_breakpoint(target_ulong addr, |
| int len, int type) |
| { |
| int n; |
| |
| for (n = 0; n < nb_hw_breakpoints; n++) { |
| if (hw_breakpoints[n].addr == addr && hw_breakpoints[n].type == type && |
| (hw_breakpoints[n].len == len || len == -1)) { |
| return &hw_breakpoints[n]; |
| } |
| } |
| |
| return NULL; |
| } |
| |
| static int insert_hw_breakpoint(target_ulong addr, int len, int type) |
| { |
| int size; |
| |
| if (find_hw_breakpoint(addr, len, type)) { |
| return -EEXIST; |
| } |
| |
| size = (nb_hw_breakpoints + 1) * sizeof(struct kvm_hw_breakpoint); |
| |
| if (!hw_breakpoints) { |
| nb_hw_breakpoints = 0; |
| hw_breakpoints = (struct kvm_hw_breakpoint *)g_try_malloc(size); |
| } else { |
| hw_breakpoints = |
| (struct kvm_hw_breakpoint *)g_try_realloc(hw_breakpoints, size); |
| } |
| |
| if (!hw_breakpoints) { |
| nb_hw_breakpoints = 0; |
| return -ENOMEM; |
| } |
| |
| hw_breakpoints[nb_hw_breakpoints].addr = addr; |
| hw_breakpoints[nb_hw_breakpoints].len = len; |
| hw_breakpoints[nb_hw_breakpoints].type = type; |
| |
| nb_hw_breakpoints++; |
| |
| return 0; |
| } |
| |
| int kvm_arch_insert_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| switch (type) { |
| case GDB_BREAKPOINT_HW: |
| type = KVM_HW_BP; |
| break; |
| case GDB_WATCHPOINT_WRITE: |
| if (len < 1) { |
| return -EINVAL; |
| } |
| type = KVM_HW_WP_WRITE; |
| break; |
| default: |
| return -ENOSYS; |
| } |
| return insert_hw_breakpoint(addr, len, type); |
| } |
| |
| int kvm_arch_remove_hw_breakpoint(target_ulong addr, |
| target_ulong len, int type) |
| { |
| int size; |
| struct kvm_hw_breakpoint *bp = find_hw_breakpoint(addr, len, type); |
| |
| if (bp == NULL) { |
| return -ENOENT; |
| } |
| |
| nb_hw_breakpoints--; |
| if (nb_hw_breakpoints > 0) { |
| /* |
| * In order to trim the array, move the last element to the position to |
| * be removed - if necessary. |
| */ |
| if (bp != &hw_breakpoints[nb_hw_breakpoints]) { |
| *bp = hw_breakpoints[nb_hw_breakpoints]; |
| } |
| size = nb_hw_breakpoints * sizeof(struct kvm_hw_breakpoint); |
| hw_breakpoints = |
| g_realloc(hw_breakpoints, size); |
| } else { |
| g_free(hw_breakpoints); |
| hw_breakpoints = NULL; |
| } |
| |
| return 0; |
| } |
| |
| void kvm_arch_remove_all_hw_breakpoints(void) |
| { |
| nb_hw_breakpoints = 0; |
| g_free(hw_breakpoints); |
| hw_breakpoints = NULL; |
| } |
| |
| void kvm_arch_update_guest_debug(CPUState *cpu, struct kvm_guest_debug *dbg) |
| { |
| int i; |
| |
| if (nb_hw_breakpoints > 0) { |
| dbg->arch.nr_hw_bp = nb_hw_breakpoints; |
| dbg->arch.hw_bp = hw_breakpoints; |
| |
| for (i = 0; i < nb_hw_breakpoints; ++i) { |
| hw_breakpoints[i].phys_addr = s390_cpu_get_phys_addr_debug(cpu, |
| hw_breakpoints[i].addr); |
| } |
| dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP; |
| } else { |
| dbg->arch.nr_hw_bp = 0; |
| dbg->arch.hw_bp = NULL; |
| } |
| } |
| |
| void kvm_arch_pre_run(CPUState *cpu, struct kvm_run *run) |
| { |
| } |
| |
| MemTxAttrs kvm_arch_post_run(CPUState *cs, struct kvm_run *run) |
| { |
| return MEMTXATTRS_UNSPECIFIED; |
| } |
| |
| int kvm_arch_process_async_events(CPUState *cs) |
| { |
| return cs->halted; |
| } |
| |
| static int s390_kvm_irq_to_interrupt(struct kvm_s390_irq *irq, |
| struct kvm_s390_interrupt *interrupt) |
| { |
| int r = 0; |
| |
| interrupt->type = irq->type; |
| switch (irq->type) { |
| case KVM_S390_INT_VIRTIO: |
| interrupt->parm = irq->u.ext.ext_params; |
| /* fall through */ |
| case KVM_S390_INT_PFAULT_INIT: |
| case KVM_S390_INT_PFAULT_DONE: |
| interrupt->parm64 = irq->u.ext.ext_params2; |
| break; |
| case KVM_S390_PROGRAM_INT: |
| interrupt->parm = irq->u.pgm.code; |
| break; |
| case KVM_S390_SIGP_SET_PREFIX: |
| interrupt->parm = irq->u.prefix.address; |
| break; |
| case KVM_S390_INT_SERVICE: |
| interrupt->parm = irq->u.ext.ext_params; |
| break; |
| case KVM_S390_MCHK: |
| interrupt->parm = irq->u.mchk.cr14; |
| interrupt->parm64 = irq->u.mchk.mcic; |
| break; |
| case KVM_S390_INT_EXTERNAL_CALL: |
| interrupt->parm = irq->u.extcall.code; |
| break; |
| case KVM_S390_INT_EMERGENCY: |
| interrupt->parm = irq->u.emerg.code; |
| break; |
| case KVM_S390_SIGP_STOP: |
| case KVM_S390_RESTART: |
| break; /* These types have no parameters */ |
| case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX: |
| interrupt->parm = irq->u.io.subchannel_id << 16; |
| interrupt->parm |= irq->u.io.subchannel_nr; |
| interrupt->parm64 = (uint64_t)irq->u.io.io_int_parm << 32; |
| interrupt->parm64 |= irq->u.io.io_int_word; |
| break; |
| default: |
| r = -EINVAL; |
| break; |
| } |
| return r; |
| } |
| |
| static void inject_vcpu_irq_legacy(CPUState *cs, struct kvm_s390_irq *irq) |
| { |
| struct kvm_s390_interrupt kvmint = {}; |
| int r; |
| |
| r = s390_kvm_irq_to_interrupt(irq, &kvmint); |
| if (r < 0) { |
| fprintf(stderr, "%s called with bogus interrupt\n", __func__); |
| exit(1); |
| } |
| |
| r = kvm_vcpu_ioctl(cs, KVM_S390_INTERRUPT, &kvmint); |
| if (r < 0) { |
| fprintf(stderr, "KVM failed to inject interrupt\n"); |
| exit(1); |
| } |
| } |
| |
| void kvm_s390_vcpu_interrupt(S390CPU *cpu, struct kvm_s390_irq *irq) |
| { |
| CPUState *cs = CPU(cpu); |
| int r; |
| |
| if (cap_s390_irq) { |
| r = kvm_vcpu_ioctl(cs, KVM_S390_IRQ, irq); |
| if (!r) { |
| return; |
| } |
| error_report("KVM failed to inject interrupt %llx", irq->type); |
| exit(1); |
| } |
| |
| inject_vcpu_irq_legacy(cs, irq); |
| } |
| |
| void kvm_s390_floating_interrupt_legacy(struct kvm_s390_irq *irq) |
| { |
| struct kvm_s390_interrupt kvmint = {}; |
| int r; |
| |
| r = s390_kvm_irq_to_interrupt(irq, &kvmint); |
| if (r < 0) { |
| fprintf(stderr, "%s called with bogus interrupt\n", __func__); |
| exit(1); |
| } |
| |
| r = kvm_vm_ioctl(kvm_state, KVM_S390_INTERRUPT, &kvmint); |
| if (r < 0) { |
| fprintf(stderr, "KVM failed to inject interrupt\n"); |
| exit(1); |
| } |
| } |
| |
| void kvm_s390_program_interrupt(S390CPU *cpu, uint16_t code) |
| { |
| struct kvm_s390_irq irq = { |
| .type = KVM_S390_PROGRAM_INT, |
| .u.pgm.code = code, |
| }; |
| qemu_log_mask(CPU_LOG_INT, "program interrupt at %#" PRIx64 "\n", |
| cpu->env.psw.addr); |
| kvm_s390_vcpu_interrupt(cpu, &irq); |
| } |
| |
| void kvm_s390_access_exception(S390CPU *cpu, uint16_t code, uint64_t te_code) |
| { |
| struct kvm_s390_irq irq = { |
| .type = KVM_S390_PROGRAM_INT, |
| .u.pgm.code = code, |
| .u.pgm.trans_exc_code = te_code, |
| .u.pgm.exc_access_id = te_code & 3, |
| }; |
| |
| kvm_s390_vcpu_interrupt(cpu, &irq); |
| } |
| |
| static void kvm_sclp_service_call(S390CPU *cpu, struct kvm_run *run, |
| uint16_t ipbh0) |
| { |
| CPUS390XState *env = &cpu->env; |
| uint64_t sccb; |
| uint32_t code; |
| int r; |
| |
| sccb = env->regs[ipbh0 & 0xf]; |
| code = env->regs[(ipbh0 & 0xf0) >> 4]; |
| |
| switch (run->s390_sieic.icptcode) { |
| case ICPT_PV_INSTR_NOTIFICATION: |
| g_assert(s390_is_pv()); |
| /* The notification intercepts are currently handled by KVM */ |
| error_report("unexpected SCLP PV notification"); |
| exit(1); |
| break; |
| case ICPT_PV_INSTR: |
| g_assert(s390_is_pv()); |
| sclp_service_call_protected(env, sccb, code); |
| /* Setting the CC is done by the Ultravisor. */ |
| break; |
| case ICPT_INSTRUCTION: |
| g_assert(!s390_is_pv()); |
| r = sclp_service_call(env, sccb, code); |
| if (r < 0) { |
| kvm_s390_program_interrupt(cpu, -r); |
| return; |
| } |
| setcc(cpu, r); |
| } |
| } |
| |
| static int handle_b2(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) |
| { |
| CPUS390XState *env = &cpu->env; |
| int rc = 0; |
| uint16_t ipbh0 = (run->s390_sieic.ipb & 0xffff0000) >> 16; |
| |
| switch (ipa1) { |
| case PRIV_B2_XSCH: |
| ioinst_handle_xsch(cpu, env->regs[1], RA_IGNORED); |
| break; |
| case PRIV_B2_CSCH: |
| ioinst_handle_csch(cpu, env->regs[1], RA_IGNORED); |
| break; |
| case PRIV_B2_HSCH: |
| ioinst_handle_hsch(cpu, env->regs[1], RA_IGNORED); |
| break; |
| case PRIV_B2_MSCH: |
| ioinst_handle_msch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); |
| break; |
| case PRIV_B2_SSCH: |
| ioinst_handle_ssch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); |
| break; |
| case PRIV_B2_STCRW: |
| ioinst_handle_stcrw(cpu, run->s390_sieic.ipb, RA_IGNORED); |
| break; |
| case PRIV_B2_STSCH: |
| ioinst_handle_stsch(cpu, env->regs[1], run->s390_sieic.ipb, RA_IGNORED); |
| break; |
| case PRIV_B2_TSCH: |
| /* We should only get tsch via KVM_EXIT_S390_TSCH. */ |
| fprintf(stderr, "Spurious tsch intercept\n"); |
| break; |
| case PRIV_B2_CHSC: |
| ioinst_handle_chsc(cpu, run->s390_sieic.ipb, RA_IGNORED); |
| break; |
| case PRIV_B2_TPI: |
| /* This should have been handled by kvm already. */ |
| fprintf(stderr, "Spurious tpi intercept\n"); |
| break; |
| case PRIV_B2_SCHM: |
| ioinst_handle_schm(cpu, env->regs[1], env->regs[2], |
| run->s390_sieic.ipb, RA_IGNORED); |
| break; |
| case PRIV_B2_RSCH: |
| ioinst_handle_rsch(cpu, env->regs[1], RA_IGNORED); |
| break; |
| case PRIV_B2_RCHP: |
| ioinst_handle_rchp(cpu, env->regs[1], RA_IGNORED); |
| break; |
| case PRIV_B2_STCPS: |
| /* We do not provide this instruction, it is suppressed. */ |
| break; |
| case PRIV_B2_SAL: |
| ioinst_handle_sal(cpu, env->regs[1], RA_IGNORED); |
| break; |
| case PRIV_B2_SIGA: |
| /* Not provided, set CC = 3 for subchannel not operational */ |
| setcc(cpu, 3); |
| break; |
| case PRIV_B2_SCLP_CALL: |
| kvm_sclp_service_call(cpu, run, ipbh0); |
| break; |
| default: |
| rc = -1; |
| DPRINTF("KVM: unhandled PRIV: 0xb2%x\n", ipa1); |
| break; |
| } |
| |
| return rc; |
| } |
| |
| static uint64_t get_base_disp_rxy(S390CPU *cpu, struct kvm_run *run, |
| uint8_t *ar) |
| { |
| CPUS390XState *env = &cpu->env; |
| uint32_t x2 = (run->s390_sieic.ipa & 0x000f); |
| uint32_t base2 = run->s390_sieic.ipb >> 28; |
| uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + |
| ((run->s390_sieic.ipb & 0xff00) << 4); |
| |
| if (disp2 & 0x80000) { |
| disp2 += 0xfff00000; |
| } |
| if (ar) { |
| *ar = base2; |
| } |
| |
| return (base2 ? env->regs[base2] : 0) + |
| (x2 ? env->regs[x2] : 0) + (long)(int)disp2; |
| } |
| |
| static uint64_t get_base_disp_rsy(S390CPU *cpu, struct kvm_run *run, |
| uint8_t *ar) |
| { |
| CPUS390XState *env = &cpu->env; |
| uint32_t base2 = run->s390_sieic.ipb >> 28; |
| uint32_t disp2 = ((run->s390_sieic.ipb & 0x0fff0000) >> 16) + |
| ((run->s390_sieic.ipb & 0xff00) << 4); |
| |
| if (disp2 & 0x80000) { |
| disp2 += 0xfff00000; |
| } |
| if (ar) { |
| *ar = base2; |
| } |
| |
| return (base2 ? env->regs[base2] : 0) + (long)(int)disp2; |
| } |
| |
| static int kvm_clp_service_call(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; |
| |
| if (s390_has_feat(S390_FEAT_ZPCI)) { |
| return clp_service_call(cpu, r2, RA_IGNORED); |
| } else { |
| return -1; |
| } |
| } |
| |
| static int kvm_pcilg_service_call(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; |
| uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; |
| |
| if (s390_has_feat(S390_FEAT_ZPCI)) { |
| return pcilg_service_call(cpu, r1, r2, RA_IGNORED); |
| } else { |
| return -1; |
| } |
| } |
| |
| static int kvm_pcistg_service_call(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; |
| uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; |
| |
| if (s390_has_feat(S390_FEAT_ZPCI)) { |
| return pcistg_service_call(cpu, r1, r2, RA_IGNORED); |
| } else { |
| return -1; |
| } |
| } |
| |
| static int kvm_stpcifc_service_call(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; |
| uint64_t fiba; |
| uint8_t ar; |
| |
| if (s390_has_feat(S390_FEAT_ZPCI)) { |
| fiba = get_base_disp_rxy(cpu, run, &ar); |
| |
| return stpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); |
| } else { |
| return -1; |
| } |
| } |
| |
| static int kvm_sic_service_call(S390CPU *cpu, struct kvm_run *run) |
| { |
| CPUS390XState *env = &cpu->env; |
| uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; |
| uint8_t r3 = run->s390_sieic.ipa & 0x000f; |
| uint8_t isc; |
| uint16_t mode; |
| int r; |
| |
| mode = env->regs[r1] & 0xffff; |
| isc = (env->regs[r3] >> 27) & 0x7; |
| r = css_do_sic(env, isc, mode); |
| if (r) { |
| kvm_s390_program_interrupt(cpu, -r); |
| } |
| |
| return 0; |
| } |
| |
| static int kvm_rpcit_service_call(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint8_t r1 = (run->s390_sieic.ipb & 0x00f00000) >> 20; |
| uint8_t r2 = (run->s390_sieic.ipb & 0x000f0000) >> 16; |
| |
| if (s390_has_feat(S390_FEAT_ZPCI)) { |
| return rpcit_service_call(cpu, r1, r2, RA_IGNORED); |
| } else { |
| return -1; |
| } |
| } |
| |
| static int kvm_pcistb_service_call(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; |
| uint8_t r3 = run->s390_sieic.ipa & 0x000f; |
| uint64_t gaddr; |
| uint8_t ar; |
| |
| if (s390_has_feat(S390_FEAT_ZPCI)) { |
| gaddr = get_base_disp_rsy(cpu, run, &ar); |
| |
| return pcistb_service_call(cpu, r1, r3, gaddr, ar, RA_IGNORED); |
| } else { |
| return -1; |
| } |
| } |
| |
| static int kvm_mpcifc_service_call(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint8_t r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; |
| uint64_t fiba; |
| uint8_t ar; |
| |
| if (s390_has_feat(S390_FEAT_ZPCI)) { |
| fiba = get_base_disp_rxy(cpu, run, &ar); |
| |
| return mpcifc_service_call(cpu, r1, fiba, ar, RA_IGNORED); |
| } else { |
| return -1; |
| } |
| } |
| |
| static int handle_b9(S390CPU *cpu, struct kvm_run *run, uint8_t ipa1) |
| { |
| int r = 0; |
| |
| switch (ipa1) { |
| case PRIV_B9_CLP: |
| r = kvm_clp_service_call(cpu, run); |
| break; |
| case PRIV_B9_PCISTG: |
| r = kvm_pcistg_service_call(cpu, run); |
| break; |
| case PRIV_B9_PCILG: |
| r = kvm_pcilg_service_call(cpu, run); |
| break; |
| case PRIV_B9_RPCIT: |
| r = kvm_rpcit_service_call(cpu, run); |
| break; |
| case PRIV_B9_EQBS: |
| /* just inject exception */ |
| r = -1; |
| break; |
| default: |
| r = -1; |
| DPRINTF("KVM: unhandled PRIV: 0xb9%x\n", ipa1); |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int handle_eb(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) |
| { |
| int r = 0; |
| |
| switch (ipbl) { |
| case PRIV_EB_PCISTB: |
| r = kvm_pcistb_service_call(cpu, run); |
| break; |
| case PRIV_EB_SIC: |
| r = kvm_sic_service_call(cpu, run); |
| break; |
| case PRIV_EB_SQBS: |
| /* just inject exception */ |
| r = -1; |
| break; |
| default: |
| r = -1; |
| DPRINTF("KVM: unhandled PRIV: 0xeb%x\n", ipbl); |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int handle_e3(S390CPU *cpu, struct kvm_run *run, uint8_t ipbl) |
| { |
| int r = 0; |
| |
| switch (ipbl) { |
| case PRIV_E3_MPCIFC: |
| r = kvm_mpcifc_service_call(cpu, run); |
| break; |
| case PRIV_E3_STPCIFC: |
| r = kvm_stpcifc_service_call(cpu, run); |
| break; |
| default: |
| r = -1; |
| DPRINTF("KVM: unhandled PRIV: 0xe3%x\n", ipbl); |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int handle_hypercall(S390CPU *cpu, struct kvm_run *run) |
| { |
| CPUS390XState *env = &cpu->env; |
| int ret; |
| |
| ret = s390_virtio_hypercall(env); |
| if (ret == -EINVAL) { |
| kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); |
| return 0; |
| } |
| |
| return ret; |
| } |
| |
| static void kvm_handle_diag_288(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint64_t r1, r3; |
| int rc; |
| |
| r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; |
| r3 = run->s390_sieic.ipa & 0x000f; |
| rc = handle_diag_288(&cpu->env, r1, r3); |
| if (rc) { |
| kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); |
| } |
| } |
| |
| static void kvm_handle_diag_308(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint64_t r1, r3; |
| |
| r1 = (run->s390_sieic.ipa & 0x00f0) >> 4; |
| r3 = run->s390_sieic.ipa & 0x000f; |
| handle_diag_308(&cpu->env, r1, r3, RA_IGNORED); |
| } |
| |
| static int handle_sw_breakpoint(S390CPU *cpu, struct kvm_run *run) |
| { |
| CPUS390XState *env = &cpu->env; |
| unsigned long pc; |
| |
| pc = env->psw.addr - sw_bp_ilen; |
| if (kvm_find_sw_breakpoint(CPU(cpu), pc)) { |
| env->psw.addr = pc; |
| return EXCP_DEBUG; |
| } |
| |
| return -ENOENT; |
| } |
| |
| void kvm_s390_set_diag318(CPUState *cs, uint64_t diag318_info) |
| { |
| CPUS390XState *env = &S390_CPU(cs)->env; |
| |
| /* Feat bit is set only if KVM supports sync for diag318 */ |
| if (s390_has_feat(S390_FEAT_DIAG_318)) { |
| env->diag318_info = diag318_info; |
| cs->kvm_run->s.regs.diag318 = diag318_info; |
| cs->kvm_run->kvm_dirty_regs |= KVM_SYNC_DIAG318; |
| /* |
| * diag 318 info is zeroed during a clear reset and |
| * diag 308 IPL subcodes. |
| */ |
| } |
| } |
| |
| static void handle_diag_318(S390CPU *cpu, struct kvm_run *run) |
| { |
| uint64_t reg = (run->s390_sieic.ipa & 0x00f0) >> 4; |
| uint64_t diag318_info = run->s.regs.gprs[reg]; |
| CPUState *t; |
| |
| /* |
| * DIAG 318 can only be enabled with KVM support. As such, let's |
| * ensure a guest cannot execute this instruction erroneously. |
| */ |
| if (!s390_has_feat(S390_FEAT_DIAG_318)) { |
| kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); |
| return; |
| } |
| |
| CPU_FOREACH(t) { |
| run_on_cpu(t, s390_do_cpu_set_diag318, |
| RUN_ON_CPU_HOST_ULONG(diag318_info)); |
| } |
| } |
| |
| #define DIAG_KVM_CODE_MASK 0x000000000000ffff |
| |
| static int handle_diag(S390CPU *cpu, struct kvm_run *run, uint32_t ipb) |
| { |
| int r = 0; |
| uint16_t func_code; |
| |
| /* |
| * For any diagnose call we support, bits 48-63 of the resulting |
| * address specify the function code; the remainder is ignored. |
| */ |
| func_code = decode_basedisp_rs(&cpu->env, ipb, NULL) & DIAG_KVM_CODE_MASK; |
| switch (func_code) { |
| case DIAG_TIMEREVENT: |
| kvm_handle_diag_288(cpu, run); |
| break; |
| case DIAG_IPL: |
| kvm_handle_diag_308(cpu, run); |
| break; |
| case DIAG_SET_CONTROL_PROGRAM_CODES: |
| handle_diag_318(cpu, run); |
| break; |
| case DIAG_KVM_HYPERCALL: |
| r = handle_hypercall(cpu, run); |
| break; |
| case DIAG_KVM_BREAKPOINT: |
| r = handle_sw_breakpoint(cpu, run); |
| break; |
| default: |
| DPRINTF("KVM: unknown DIAG: 0x%x\n", func_code); |
| kvm_s390_program_interrupt(cpu, PGM_SPECIFICATION); |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int kvm_s390_handle_sigp(S390CPU *cpu, uint8_t ipa1, uint32_t ipb) |
| { |
| CPUS390XState *env = &cpu->env; |
| const uint8_t r1 = ipa1 >> 4; |
| const uint8_t r3 = ipa1 & 0x0f; |
| int ret; |
| uint8_t order; |
| |
| /* get order code */ |
| order = decode_basedisp_rs(env, ipb, NULL) & SIGP_ORDER_MASK; |
| |
| ret = handle_sigp(env, order, r1, r3); |
| setcc(cpu, ret); |
| return 0; |
| } |
| |
| static int handle_instruction(S390CPU *cpu, struct kvm_run *run) |
| { |
| unsigned int ipa0 = (run->s390_sieic.ipa & 0xff00); |
| uint8_t ipa1 = run->s390_sieic.ipa & 0x00ff; |
| int r = -1; |
| |
| DPRINTF("handle_instruction 0x%x 0x%x\n", |
| run->s390_sieic.ipa, run->s390_sieic.ipb); |
| switch (ipa0) { |
| case IPA0_B2: |
| r = handle_b2(cpu, run, ipa1); |
| break; |
| case IPA0_B9: |
| r = handle_b9(cpu, run, ipa1); |
| break; |
| case IPA0_EB: |
| r = handle_eb(cpu, run, run->s390_sieic.ipb & 0xff); |
| break; |
| case IPA0_E3: |
| r = handle_e3(cpu, run, run->s390_sieic.ipb & 0xff); |
| break; |
| case IPA0_DIAG: |
| r = handle_diag(cpu, run, run->s390_sieic.ipb); |
| break; |
| case IPA0_SIGP: |
| r = kvm_s390_handle_sigp(cpu, ipa1, run->s390_sieic.ipb); |
| break; |
| } |
| |
| if (r < 0) { |
| r = 0; |
| kvm_s390_program_interrupt(cpu, PGM_OPERATION); |
| } |
| |
| return r; |
| } |
| |
| static void unmanageable_intercept(S390CPU *cpu, S390CrashReason reason, |
| int pswoffset) |
| { |
| CPUState *cs = CPU(cpu); |
| |
| s390_cpu_halt(cpu); |
| cpu->env.crash_reason = reason; |
| qemu_system_guest_panicked(cpu_get_crash_info(cs)); |
| } |
| |
| /* try to detect pgm check loops */ |
| static int handle_oper_loop(S390CPU *cpu, struct kvm_run *run) |
| { |
| CPUState *cs = CPU(cpu); |
| PSW oldpsw, newpsw; |
| |
| newpsw.mask = ldq_phys(cs->as, cpu->env.psa + |
| offsetof(LowCore, program_new_psw)); |
| newpsw.addr = ldq_phys(cs->as, cpu->env.psa + |
| offsetof(LowCore, program_new_psw) + 8); |
| oldpsw.mask = run->psw_mask; |
| oldpsw.addr = run->psw_addr; |
| /* |
| * Avoid endless loops of operation exceptions, if the pgm new |
| * PSW will cause a new operation exception. |
| * The heuristic checks if the pgm new psw is within 6 bytes before |
| * the faulting psw address (with same DAT, AS settings) and the |
| * new psw is not a wait psw and the fault was not triggered by |
| * problem state. In that case go into crashed state. |
| */ |
| |
| if (oldpsw.addr - newpsw.addr <= 6 && |
| !(newpsw.mask & PSW_MASK_WAIT) && |
| !(oldpsw.mask & PSW_MASK_PSTATE) && |
| (newpsw.mask & PSW_MASK_ASC) == (oldpsw.mask & PSW_MASK_ASC) && |
| (newpsw.mask & PSW_MASK_DAT) == (oldpsw.mask & PSW_MASK_DAT)) { |
| unmanageable_intercept(cpu, S390_CRASH_REASON_OPINT_LOOP, |
| offsetof(LowCore, program_new_psw)); |
| return EXCP_HALTED; |
| } |
| return 0; |
| } |
| |
| static int handle_intercept(S390CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| struct kvm_run *run = cs->kvm_run; |
| int icpt_code = run->s390_sieic.icptcode; |
| int r = 0; |
| |
| DPRINTF("intercept: 0x%x (at 0x%lx)\n", icpt_code, (long)run->psw_addr); |
| switch (icpt_code) { |
| case ICPT_INSTRUCTION: |
| case ICPT_PV_INSTR: |
| case ICPT_PV_INSTR_NOTIFICATION: |
| r = handle_instruction(cpu, run); |
| break; |
| case ICPT_PROGRAM: |
| unmanageable_intercept(cpu, S390_CRASH_REASON_PGMINT_LOOP, |
| offsetof(LowCore, program_new_psw)); |
| r = EXCP_HALTED; |
| break; |
| case ICPT_EXT_INT: |
| unmanageable_intercept(cpu, S390_CRASH_REASON_EXTINT_LOOP, |
| offsetof(LowCore, external_new_psw)); |
| r = EXCP_HALTED; |
| break; |
| case ICPT_WAITPSW: |
| /* disabled wait, since enabled wait is handled in kernel */ |
| s390_handle_wait(cpu); |
| r = EXCP_HALTED; |
| break; |
| case ICPT_CPU_STOP: |
| do_stop_interrupt(&cpu->env); |
| r = EXCP_HALTED; |
| break; |
| case ICPT_OPEREXC: |
| /* check for break points */ |
| r = handle_sw_breakpoint(cpu, run); |
| if (r == -ENOENT) { |
| /* Then check for potential pgm check loops */ |
| r = handle_oper_loop(cpu, run); |
| if (r == 0) { |
| kvm_s390_program_interrupt(cpu, PGM_OPERATION); |
| } |
| } |
| break; |
| case ICPT_SOFT_INTERCEPT: |
| fprintf(stderr, "KVM unimplemented icpt SOFT\n"); |
| exit(1); |
| break; |
| case ICPT_IO: |
| fprintf(stderr, "KVM unimplemented icpt IO\n"); |
| exit(1); |
| break; |
| default: |
| fprintf(stderr, "Unknown intercept code: %d\n", icpt_code); |
| exit(1); |
| break; |
| } |
| |
| return r; |
| } |
| |
| static int handle_tsch(S390CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| struct kvm_run *run = cs->kvm_run; |
| int ret; |
| |
| ret = ioinst_handle_tsch(cpu, cpu->env.regs[1], run->s390_tsch.ipb, |
| RA_IGNORED); |
| if (ret < 0) { |
| /* |
| * Failure. |
| * If an I/O interrupt had been dequeued, we have to reinject it. |
| */ |
| if (run->s390_tsch.dequeued) { |
| s390_io_interrupt(run->s390_tsch.subchannel_id, |
| run->s390_tsch.subchannel_nr, |
| run->s390_tsch.io_int_parm, |
| run->s390_tsch.io_int_word); |
| } |
| ret = 0; |
| } |
| return ret; |
| } |
| |
| static void insert_stsi_3_2_2(S390CPU *cpu, __u64 addr, uint8_t ar) |
| { |
| const MachineState *ms = MACHINE(qdev_get_machine()); |
| uint16_t conf_cpus = 0, reserved_cpus = 0; |
| SysIB_322 sysib; |
| int del, i; |
| |
| if (s390_is_pv()) { |
| s390_cpu_pv_mem_read(cpu, 0, &sysib, sizeof(sysib)); |
| } else if (s390_cpu_virt_mem_read(cpu, addr, ar, &sysib, sizeof(sysib))) { |
| return; |
| } |
| /* Shift the stack of Extended Names to prepare for our own data */ |
| memmove(&sysib.ext_names[1], &sysib.ext_names[0], |
| sizeof(sysib.ext_names[0]) * (sysib.count - 1)); |
| /* First virt level, that doesn't provide Ext Names delimits stack. It is |
| * assumed it's not capable of managing Extended Names for lower levels. |
| */ |
| for (del = 1; del < sysib.count; del++) { |
| if (!sysib.vm[del].ext_name_encoding || !sysib.ext_names[del][0]) { |
| break; |
| } |
| } |
| if (del < sysib.count) { |
| memset(sysib.ext_names[del], 0, |
| sizeof(sysib.ext_names[0]) * (sysib.count - del)); |
| } |
| |
| /* count the cpus and split them into configured and reserved ones */ |
| for (i = 0; i < ms->possible_cpus->len; i++) { |
| if (ms->possible_cpus->cpus[i].cpu) { |
| conf_cpus++; |
| } else { |
| reserved_cpus++; |
| } |
| } |
| sysib.vm[0].total_cpus = conf_cpus + reserved_cpus; |
| sysib.vm[0].conf_cpus = conf_cpus; |
| sysib.vm[0].reserved_cpus = reserved_cpus; |
| |
| /* Insert short machine name in EBCDIC, padded with blanks */ |
| if (qemu_name) { |
| memset(sysib.vm[0].name, 0x40, sizeof(sysib.vm[0].name)); |
| ebcdic_put(sysib.vm[0].name, qemu_name, MIN(sizeof(sysib.vm[0].name), |
| strlen(qemu_name))); |
| } |
| sysib.vm[0].ext_name_encoding = 2; /* 2 = UTF-8 */ |
| /* If hypervisor specifies zero Extended Name in STSI322 SYSIB, it's |
| * considered by s390 as not capable of providing any Extended Name. |
| * Therefore if no name was specified on qemu invocation, we go with the |
| * same "KVMguest" default, which KVM has filled into short name field. |
| */ |
| strpadcpy((char *)sysib.ext_names[0], |
| sizeof(sysib.ext_names[0]), |
| qemu_name ?: "KVMguest", '\0'); |
| |
| /* Insert UUID */ |
| memcpy(sysib.vm[0].uuid, &qemu_uuid, sizeof(sysib.vm[0].uuid)); |
| |
| if (s390_is_pv()) { |
| s390_cpu_pv_mem_write(cpu, 0, &sysib, sizeof(sysib)); |
| } else { |
| s390_cpu_virt_mem_write(cpu, addr, ar, &sysib, sizeof(sysib)); |
| } |
| } |
| |
| static int handle_stsi(S390CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| struct kvm_run *run = cs->kvm_run; |
| |
| switch (run->s390_stsi.fc) { |
| case 3: |
| if (run->s390_stsi.sel1 != 2 || run->s390_stsi.sel2 != 2) { |
| return 0; |
| } |
| /* Only sysib 3.2.2 needs post-handling for now. */ |
| insert_stsi_3_2_2(cpu, run->s390_stsi.addr, run->s390_stsi.ar); |
| return 0; |
| default: |
| return 0; |
| } |
| } |
| |
| static int kvm_arch_handle_debug_exit(S390CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| struct kvm_run *run = cs->kvm_run; |
| |
| int ret = 0; |
| struct kvm_debug_exit_arch *arch_info = &run->debug.arch; |
| |
| switch (arch_info->type) { |
| case KVM_HW_WP_WRITE: |
| if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { |
| cs->watchpoint_hit = &hw_watchpoint; |
| hw_watchpoint.vaddr = arch_info->addr; |
| hw_watchpoint.flags = BP_MEM_WRITE; |
| ret = EXCP_DEBUG; |
| } |
| break; |
| case KVM_HW_BP: |
| if (find_hw_breakpoint(arch_info->addr, -1, arch_info->type)) { |
| ret = EXCP_DEBUG; |
| } |
| break; |
| case KVM_SINGLESTEP: |
| if (cs->singlestep_enabled) { |
| ret = EXCP_DEBUG; |
| } |
| break; |
| default: |
| ret = -ENOSYS; |
| } |
| |
| return ret; |
| } |
| |
| int kvm_arch_handle_exit(CPUState *cs, struct kvm_run *run) |
| { |
| S390CPU *cpu = S390_CPU(cs); |
| int ret = 0; |
| |
| qemu_mutex_lock_iothread(); |
| |
| kvm_cpu_synchronize_state(cs); |
| |
| switch (run->exit_reason) { |
| case KVM_EXIT_S390_SIEIC: |
| ret = handle_intercept(cpu); |
| break; |
| case KVM_EXIT_S390_RESET: |
| s390_ipl_reset_request(cs, S390_RESET_REIPL); |
| break; |
| case KVM_EXIT_S390_TSCH: |
| ret = handle_tsch(cpu); |
| break; |
| case KVM_EXIT_S390_STSI: |
| ret = handle_stsi(cpu); |
| break; |
| case KVM_EXIT_DEBUG: |
| ret = kvm_arch_handle_debug_exit(cpu); |
| break; |
| default: |
| fprintf(stderr, "Unknown KVM exit: %d\n", run->exit_reason); |
| break; |
| } |
| qemu_mutex_unlock_iothread(); |
| |
| if (ret == 0) { |
| ret = EXCP_INTERRUPT; |
| } |
| return ret; |
| } |
| |
| bool kvm_arch_stop_on_emulation_error(CPUState *cpu) |
| { |
| return true; |
| } |
| |
| void kvm_s390_enable_css_support(S390CPU *cpu) |
| { |
| int r; |
| |
| /* Activate host kernel channel subsystem support. */ |
| r = kvm_vcpu_enable_cap(CPU(cpu), KVM_CAP_S390_CSS_SUPPORT, 0); |
| assert(r == 0); |
| } |
| |
| void kvm_arch_init_irq_routing(KVMState *s) |
| { |
| /* |
| * Note that while irqchip capabilities generally imply that cpustates |
| * are handled in-kernel, it is not true for s390 (yet); therefore, we |
| * have to override the common code kvm_halt_in_kernel_allowed setting. |
| */ |
| if (kvm_check_extension(s, KVM_CAP_IRQ_ROUTING)) { |
| kvm_gsi_routing_allowed = true; |
| kvm_halt_in_kernel_allowed = false; |
| } |
| } |
| |
| int kvm_s390_assign_subch_ioeventfd(EventNotifier *notifier, uint32_t sch, |
| int vq, bool assign) |
| { |
| struct kvm_ioeventfd kick = { |
| .flags = KVM_IOEVENTFD_FLAG_VIRTIO_CCW_NOTIFY | |
| KVM_IOEVENTFD_FLAG_DATAMATCH, |
| .fd = event_notifier_get_fd(notifier), |
| .datamatch = vq, |
| .addr = sch, |
| .len = 8, |
| }; |
| trace_kvm_assign_subch_ioeventfd(kick.fd, kick.addr, assign, |
| kick.datamatch); |
| if (!kvm_check_extension(kvm_state, KVM_CAP_IOEVENTFD)) { |
| return -ENOSYS; |
| } |
| if (!assign) { |
| kick.flags |= KVM_IOEVENTFD_FLAG_DEASSIGN; |
| } |
| return kvm_vm_ioctl(kvm_state, KVM_IOEVENTFD, &kick); |
| } |
| |
| int kvm_s390_get_protected_dump(void) |
| { |
| return cap_protected_dump; |
| } |
| |
| int kvm_s390_get_ri(void) |
| { |
| return cap_ri; |
| } |
| |
| int kvm_s390_set_cpu_state(S390CPU *cpu, uint8_t cpu_state) |
| { |
| struct kvm_mp_state mp_state = {}; |
| int ret; |
| |
| /* the kvm part might not have been initialized yet */ |
| if (CPU(cpu)->kvm_state == NULL) { |
| return 0; |
| } |
| |
| switch (cpu_state) { |
| case S390_CPU_STATE_STOPPED: |
| mp_state.mp_state = KVM_MP_STATE_STOPPED; |
| break; |
| case S390_CPU_STATE_CHECK_STOP: |
| mp_state.mp_state = KVM_MP_STATE_CHECK_STOP; |
| break; |
| case S390_CPU_STATE_OPERATING: |
| mp_state.mp_state = KVM_MP_STATE_OPERATING; |
| break; |
| case S390_CPU_STATE_LOAD: |
| mp_state.mp_state = KVM_MP_STATE_LOAD; |
| break; |
| default: |
| error_report("Requested CPU state is not a valid S390 CPU state: %u", |
| cpu_state); |
| exit(1); |
| } |
| |
| ret = kvm_vcpu_ioctl(CPU(cpu), KVM_SET_MP_STATE, &mp_state); |
| if (ret) { |
| trace_kvm_failed_cpu_state_set(CPU(cpu)->cpu_index, cpu_state, |
| strerror(-ret)); |
| } |
| |
| return ret; |
| } |
| |
| void kvm_s390_vcpu_interrupt_pre_save(S390CPU *cpu) |
| { |
| unsigned int max_cpus = MACHINE(qdev_get_machine())->smp.max_cpus; |
| struct kvm_s390_irq_state irq_state = { |
| .buf = (uint64_t) cpu->irqstate, |
| .len = VCPU_IRQ_BUF_SIZE(max_cpus), |
| }; |
| CPUState *cs = CPU(cpu); |
| int32_t bytes; |
| |
| if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { |
| return; |
| } |
| |
| bytes = kvm_vcpu_ioctl(cs, KVM_S390_GET_IRQ_STATE, &irq_state); |
| if (bytes < 0) { |
| cpu->irqstate_saved_size = 0; |
| error_report("Migration of interrupt state failed"); |
| return; |
| } |
| |
| cpu->irqstate_saved_size = bytes; |
| } |
| |
| int kvm_s390_vcpu_interrupt_post_load(S390CPU *cpu) |
| { |
| CPUState *cs = CPU(cpu); |
| struct kvm_s390_irq_state irq_state = { |
| .buf = (uint64_t) cpu->irqstate, |
| .len = cpu->irqstate_saved_size, |
| }; |
| int r; |
| |
| if (cpu->irqstate_saved_size == 0) { |
| return 0; |
| } |
| |
| if (!kvm_check_extension(kvm_state, KVM_CAP_S390_IRQ_STATE)) { |
| return -ENOSYS; |
| } |
| |
| r = kvm_vcpu_ioctl(cs, KVM_S390_SET_IRQ_STATE, &irq_state); |
| if (r) { |
| error_report("Setting interrupt state failed %d", r); |
| } |
| return r; |
| } |
| |
| int kvm_arch_fixup_msi_route(struct kvm_irq_routing_entry *route, |
| uint64_t address, uint32_t data, PCIDevice *dev) |
| { |
| S390PCIBusDevice *pbdev; |
| uint32_t vec = data & ZPCI_MSI_VEC_MASK; |
| |
| if (!dev) { |
| DPRINTF("add_msi_route no pci device\n"); |
| return -ENODEV; |
| } |
| |
| pbdev = s390_pci_find_dev_by_target(s390_get_phb(), DEVICE(dev)->id); |
| if (!pbdev) { |
| DPRINTF("add_msi_route no zpci device\n"); |
| return -ENODEV; |
| } |
| |
| route->type = KVM_IRQ_ROUTING_S390_ADAPTER; |
| route->flags = 0; |
| route->u.adapter.summary_addr = pbdev->routes.adapter.summary_addr; |
| route->u.adapter.ind_addr = pbdev->routes.adapter.ind_addr; |
| route->u.adapter.summary_offset = pbdev->routes.adapter.summary_offset; |
| route->u.adapter.ind_offset = pbdev->routes.adapter.ind_offset + vec; |
| route->u.adapter.adapter_id = pbdev->routes.adapter.adapter_id; |
| return 0; |
| } |
| |
| int kvm_arch_add_msi_route_post(struct kvm_irq_routing_entry *route, |
| int vector, PCIDevice *dev) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_release_virq_post(int virq) |
| { |
| return 0; |
| } |
| |
| int kvm_arch_msi_data_to_gsi(uint32_t data) |
| { |
| abort(); |
| } |
| |
| static int query_cpu_subfunc(S390FeatBitmap features) |
| { |
| struct kvm_s390_vm_cpu_subfunc prop = {}; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_CPU_MODEL, |
| .attr = KVM_S390_VM_CPU_MACHINE_SUBFUNC, |
| .addr = (uint64_t) &prop, |
| }; |
| int rc; |
| |
| rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); |
| if (rc) { |
| return rc; |
| } |
| |
| /* |
| * We're going to add all subfunctions now, if the corresponding feature |
| * is available that unlocks the query functions. |
| */ |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); |
| if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); |
| } |
| if (test_bit(S390_FEAT_MSA, features)) { |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KM, prop.km); |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_3, features)) { |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_4, features)) { |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_5, features)) { |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_8, features)) { |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_9, features)) { |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); |
| } |
| if (test_bit(S390_FEAT_ESORT_BASE, features)) { |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); |
| } |
| if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { |
| s390_add_from_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); |
| } |
| return 0; |
| } |
| |
| static int configure_cpu_subfunc(const S390FeatBitmap features) |
| { |
| struct kvm_s390_vm_cpu_subfunc prop = {}; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_CPU_MODEL, |
| .attr = KVM_S390_VM_CPU_PROCESSOR_SUBFUNC, |
| .addr = (uint64_t) &prop, |
| }; |
| |
| if (!kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, |
| KVM_S390_VM_CPU_PROCESSOR_SUBFUNC)) { |
| /* hardware support might be missing, IBC will handle most of this */ |
| return 0; |
| } |
| |
| s390_fill_feat_block(features, S390_FEAT_TYPE_PLO, prop.plo); |
| if (test_bit(S390_FEAT_TOD_CLOCK_STEERING, features)) { |
| s390_fill_feat_block(features, S390_FEAT_TYPE_PTFF, prop.ptff); |
| } |
| if (test_bit(S390_FEAT_MSA, features)) { |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KMAC, prop.kmac); |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KMC, prop.kmc); |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KM, prop.km); |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KIMD, prop.kimd); |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KLMD, prop.klmd); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_3, features)) { |
| s390_fill_feat_block(features, S390_FEAT_TYPE_PCKMO, prop.pckmo); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_4, features)) { |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KMCTR, prop.kmctr); |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KMF, prop.kmf); |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KMO, prop.kmo); |
| s390_fill_feat_block(features, S390_FEAT_TYPE_PCC, prop.pcc); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_5, features)) { |
| s390_fill_feat_block(features, S390_FEAT_TYPE_PPNO, prop.ppno); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_8, features)) { |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KMA, prop.kma); |
| } |
| if (test_bit(S390_FEAT_MSA_EXT_9, features)) { |
| s390_fill_feat_block(features, S390_FEAT_TYPE_KDSA, prop.kdsa); |
| } |
| if (test_bit(S390_FEAT_ESORT_BASE, features)) { |
| s390_fill_feat_block(features, S390_FEAT_TYPE_SORTL, prop.sortl); |
| } |
| if (test_bit(S390_FEAT_DEFLATE_BASE, features)) { |
| s390_fill_feat_block(features, S390_FEAT_TYPE_DFLTCC, prop.dfltcc); |
| } |
| return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); |
| } |
| |
| static int kvm_to_feat[][2] = { |
| { KVM_S390_VM_CPU_FEAT_ESOP, S390_FEAT_ESOP }, |
| { KVM_S390_VM_CPU_FEAT_SIEF2, S390_FEAT_SIE_F2 }, |
| { KVM_S390_VM_CPU_FEAT_64BSCAO , S390_FEAT_SIE_64BSCAO }, |
| { KVM_S390_VM_CPU_FEAT_SIIF, S390_FEAT_SIE_SIIF }, |
| { KVM_S390_VM_CPU_FEAT_GPERE, S390_FEAT_SIE_GPERE }, |
| { KVM_S390_VM_CPU_FEAT_GSLS, S390_FEAT_SIE_GSLS }, |
| { KVM_S390_VM_CPU_FEAT_IB, S390_FEAT_SIE_IB }, |
| { KVM_S390_VM_CPU_FEAT_CEI, S390_FEAT_SIE_CEI }, |
| { KVM_S390_VM_CPU_FEAT_IBS, S390_FEAT_SIE_IBS }, |
| { KVM_S390_VM_CPU_FEAT_SKEY, S390_FEAT_SIE_SKEY }, |
| { KVM_S390_VM_CPU_FEAT_CMMA, S390_FEAT_SIE_CMMA }, |
| { KVM_S390_VM_CPU_FEAT_PFMFI, S390_FEAT_SIE_PFMFI}, |
| { KVM_S390_VM_CPU_FEAT_SIGPIF, S390_FEAT_SIE_SIGPIF}, |
| { KVM_S390_VM_CPU_FEAT_KSS, S390_FEAT_SIE_KSS}, |
| }; |
| |
| static int query_cpu_feat(S390FeatBitmap features) |
| { |
| struct kvm_s390_vm_cpu_feat prop = {}; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_CPU_MODEL, |
| .attr = KVM_S390_VM_CPU_MACHINE_FEAT, |
| .addr = (uint64_t) &prop, |
| }; |
| int rc; |
| int i; |
| |
| rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); |
| if (rc) { |
| return rc; |
| } |
| |
| for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { |
| if (test_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat)) { |
| set_bit(kvm_to_feat[i][1], features); |
| } |
| } |
| return 0; |
| } |
| |
| static int configure_cpu_feat(const S390FeatBitmap features) |
| { |
| struct kvm_s390_vm_cpu_feat prop = {}; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_CPU_MODEL, |
| .attr = KVM_S390_VM_CPU_PROCESSOR_FEAT, |
| .addr = (uint64_t) &prop, |
| }; |
| int i; |
| |
| for (i = 0; i < ARRAY_SIZE(kvm_to_feat); i++) { |
| if (test_bit(kvm_to_feat[i][1], features)) { |
| set_be_bit(kvm_to_feat[i][0], (uint8_t *) prop.feat); |
| } |
| } |
| return kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); |
| } |
| |
| bool kvm_s390_cpu_models_supported(void) |
| { |
| if (!cpu_model_allowed()) { |
| /* compatibility machines interfere with the cpu model */ |
| return false; |
| } |
| return kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, |
| KVM_S390_VM_CPU_MACHINE) && |
| kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, |
| KVM_S390_VM_CPU_PROCESSOR) && |
| kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, |
| KVM_S390_VM_CPU_MACHINE_FEAT) && |
| kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, |
| KVM_S390_VM_CPU_PROCESSOR_FEAT) && |
| kvm_vm_check_attr(kvm_state, KVM_S390_VM_CPU_MODEL, |
| KVM_S390_VM_CPU_MACHINE_SUBFUNC); |
| } |
| |
| void kvm_s390_get_host_cpu_model(S390CPUModel *model, Error **errp) |
| { |
| struct kvm_s390_vm_cpu_machine prop = {}; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_CPU_MODEL, |
| .attr = KVM_S390_VM_CPU_MACHINE, |
| .addr = (uint64_t) &prop, |
| }; |
| uint16_t unblocked_ibc = 0, cpu_type = 0; |
| int rc; |
| |
| memset(model, 0, sizeof(*model)); |
| |
| if (!kvm_s390_cpu_models_supported()) { |
| error_setg(errp, "KVM doesn't support CPU models"); |
| return; |
| } |
| |
| /* query the basic cpu model properties */ |
| rc = kvm_vm_ioctl(kvm_state, KVM_GET_DEVICE_ATTR, &attr); |
| if (rc) { |
| error_setg(errp, "KVM: Error querying host CPU model: %d", rc); |
| return; |
| } |
| |
| cpu_type = cpuid_type(prop.cpuid); |
| if (has_ibc(prop.ibc)) { |
| model->lowest_ibc = lowest_ibc(prop.ibc); |
| unblocked_ibc = unblocked_ibc(prop.ibc); |
| } |
| model->cpu_id = cpuid_id(prop.cpuid); |
| model->cpu_id_format = cpuid_format(prop.cpuid); |
| model->cpu_ver = 0xff; |
| |
| /* get supported cpu features indicated via STFL(E) */ |
| s390_add_from_feat_block(model->features, S390_FEAT_TYPE_STFL, |
| (uint8_t *) prop.fac_mask); |
| /* dat-enhancement facility 2 has no bit but was introduced with stfle */ |
| if (test_bit(S390_FEAT_STFLE, model->features)) { |
| set_bit(S390_FEAT_DAT_ENH_2, model->features); |
| } |
| /* get supported cpu features indicated e.g. via SCLP */ |
| rc = query_cpu_feat(model->features); |
| if (rc) { |
| error_setg(errp, "KVM: Error querying CPU features: %d", rc); |
| return; |
| } |
| /* get supported cpu subfunctions indicated via query / test bit */ |
| rc = query_cpu_subfunc(model->features); |
| if (rc) { |
| error_setg(errp, "KVM: Error querying CPU subfunctions: %d", rc); |
| return; |
| } |
| |
| /* PTFF subfunctions might be indicated although kernel support missing */ |
| if (!test_bit(S390_FEAT_MULTIPLE_EPOCH, model->features)) { |
| clear_bit(S390_FEAT_PTFF_QSIE, model->features); |
| clear_bit(S390_FEAT_PTFF_QTOUE, model->features); |
| clear_bit(S390_FEAT_PTFF_STOE, model->features); |
| clear_bit(S390_FEAT_PTFF_STOUE, model->features); |
| } |
| |
| /* with cpu model support, CMM is only indicated if really available */ |
| if (kvm_s390_cmma_available()) { |
| set_bit(S390_FEAT_CMM, model->features); |
| } else { |
| /* no cmm -> no cmm nt */ |
| clear_bit(S390_FEAT_CMM_NT, model->features); |
| } |
| |
| /* bpb needs kernel support for migration, VSIE and reset */ |
| if (!kvm_check_extension(kvm_state, KVM_CAP_S390_BPB)) { |
| clear_bit(S390_FEAT_BPB, model->features); |
| } |
| |
| /* |
| * If we have support for protected virtualization, indicate |
| * the protected virtualization IPL unpack facility. |
| */ |
| if (cap_protected) { |
| set_bit(S390_FEAT_UNPACK, model->features); |
| } |
| |
| /* We emulate a zPCI bus and AEN, therefore we don't need HW support */ |
| set_bit(S390_FEAT_ZPCI, model->features); |
| set_bit(S390_FEAT_ADAPTER_EVENT_NOTIFICATION, model->features); |
| |
| if (s390_known_cpu_type(cpu_type)) { |
| /* we want the exact model, even if some features are missing */ |
| model->def = s390_find_cpu_def(cpu_type, ibc_gen(unblocked_ibc), |
| ibc_ec_ga(unblocked_ibc), NULL); |
| } else { |
| /* model unknown, e.g. too new - search using features */ |
| model->def = s390_find_cpu_def(0, ibc_gen(unblocked_ibc), |
| ibc_ec_ga(unblocked_ibc), |
| model->features); |
| } |
| if (!model->def) { |
| error_setg(errp, "KVM: host CPU model could not be identified"); |
| return; |
| } |
| /* for now, we can only provide the AP feature with HW support */ |
| if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, |
| KVM_S390_VM_CRYPTO_ENABLE_APIE)) { |
| set_bit(S390_FEAT_AP, model->features); |
| } |
| |
| /* |
| * Extended-Length SCCB is handled entirely within QEMU. |
| * For PV guests this is completely fenced by the Ultravisor, as Service |
| * Call error checking and STFLE interpretation are handled via SIE. |
| */ |
| set_bit(S390_FEAT_EXTENDED_LENGTH_SCCB, model->features); |
| |
| if (kvm_check_extension(kvm_state, KVM_CAP_S390_DIAG318)) { |
| set_bit(S390_FEAT_DIAG_318, model->features); |
| } |
| |
| /* strip of features that are not part of the maximum model */ |
| bitmap_and(model->features, model->features, model->def->full_feat, |
| S390_FEAT_MAX); |
| } |
| |
| static void kvm_s390_configure_apie(bool interpret) |
| { |
| uint64_t attr = interpret ? KVM_S390_VM_CRYPTO_ENABLE_APIE : |
| KVM_S390_VM_CRYPTO_DISABLE_APIE; |
| |
| if (kvm_vm_check_attr(kvm_state, KVM_S390_VM_CRYPTO, attr)) { |
| kvm_s390_set_attr(attr); |
| } |
| } |
| |
| void kvm_s390_apply_cpu_model(const S390CPUModel *model, Error **errp) |
| { |
| struct kvm_s390_vm_cpu_processor prop = { |
| .fac_list = { 0 }, |
| }; |
| struct kvm_device_attr attr = { |
| .group = KVM_S390_VM_CPU_MODEL, |
| .attr = KVM_S390_VM_CPU_PROCESSOR, |
| .addr = (uint64_t) &prop, |
| }; |
| int rc; |
| |
| if (!model) { |
| /* compatibility handling if cpu models are disabled */ |
| if (kvm_s390_cmma_available()) { |
| kvm_s390_enable_cmma(); |
| } |
| return; |
| } |
| if (!kvm_s390_cpu_models_supported()) { |
| error_setg(errp, "KVM doesn't support CPU models"); |
| return; |
| } |
| prop.cpuid = s390_cpuid_from_cpu_model(model); |
| prop.ibc = s390_ibc_from_cpu_model(model); |
| /* configure cpu features indicated via STFL(e) */ |
| s390_fill_feat_block(model->features, S390_FEAT_TYPE_STFL, |
| (uint8_t *) prop.fac_list); |
| rc = kvm_vm_ioctl(kvm_state, KVM_SET_DEVICE_ATTR, &attr); |
| if (rc) { |
| error_setg(errp, "KVM: Error configuring the CPU model: %d", rc); |
| return; |
| } |
| /* configure cpu features indicated e.g. via SCLP */ |
| rc = configure_cpu_feat(model->features); |
| if (rc) { |
| error_setg(errp, "KVM: Error configuring CPU features: %d", rc); |
| return; |
| } |
| /* configure cpu subfunctions indicated via query / test bit */ |
| rc = configure_cpu_subfunc(model->features); |
| if (rc) { |
| error_setg(errp, "KVM: Error configuring CPU subfunctions: %d", rc); |
| return; |
| } |
| /* enable CMM via CMMA */ |
| if (test_bit(S390_FEAT_CMM, model->features)) { |
| kvm_s390_enable_cmma(); |
| } |
| |
| if (test_bit(S390_FEAT_AP, model->features)) { |
| kvm_s390_configure_apie(true); |
| } |
| } |
| |
| void kvm_s390_restart_interrupt(S390CPU *cpu) |
| { |
| struct kvm_s390_irq irq = { |
| .type = KVM_S390_RESTART, |
| }; |
| |
| kvm_s390_vcpu_interrupt(cpu, &irq); |
| } |
| |
| void kvm_s390_stop_interrupt(S390CPU *cpu) |
| { |
| struct kvm_s390_irq irq = { |
| .type = KVM_S390_SIGP_STOP, |
| }; |
| |
| kvm_s390_vcpu_interrupt(cpu, &irq); |
| } |
| |
| bool kvm_arch_cpu_check_are_resettable(void) |
| { |
| return true; |
| } |
| |
| int kvm_s390_get_zpci_op(void) |
| { |
| return cap_zpci_op; |
| } |
| |
| void kvm_arch_accel_class_init(ObjectClass *oc) |
| { |
| } |