blob: 87ae246d374e724d5a7a6e3a85ad7f5ea159df99 [file] [log] [blame]
/*
* PowerMac descriptor-based DMA emulation
*
* Copyright (c) 2005-2007 Fabrice Bellard
* Copyright (c) 2007 Jocelyn Mayer
* Copyright (c) 2009 Laurent Vivier
*
* some parts from linux-2.6.28, arch/powerpc/include/asm/dbdma.h
*
* Definitions for using the Apple Descriptor-Based DMA controller
* in Power Macintosh computers.
*
* Copyright (C) 1996 Paul Mackerras.
*
* some parts from mol 0.9.71
*
* Descriptor based DMA emulation
*
* Copyright (C) 1998-2004 Samuel Rydh (samuel@ibrium.se)
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "hw/hw.h"
#include "hw/isa/isa.h"
#include "hw/ppc/mac_dbdma.h"
#include "qemu/main-loop.h"
#include "qemu/log.h"
#include "sysemu/dma.h"
/* debug DBDMA */
#define DEBUG_DBDMA 0
#define DEBUG_DBDMA_CHANMASK ((1ull << DBDMA_CHANNELS) - 1)
#define DBDMA_DPRINTF(fmt, ...) do { \
if (DEBUG_DBDMA) { \
printf("DBDMA: " fmt , ## __VA_ARGS__); \
} \
} while (0)
#define DBDMA_DPRINTFCH(ch, fmt, ...) do { \
if (DEBUG_DBDMA) { \
if ((1ul << (ch)->channel) & DEBUG_DBDMA_CHANMASK) { \
printf("DBDMA[%02x]: " fmt , (ch)->channel, ## __VA_ARGS__); \
} \
} \
} while (0)
/*
*/
static DBDMAState *dbdma_from_ch(DBDMA_channel *ch)
{
return container_of(ch, DBDMAState, channels[ch->channel]);
}
#if DEBUG_DBDMA
static void dump_dbdma_cmd(DBDMA_channel *ch, dbdma_cmd *cmd)
{
DBDMA_DPRINTFCH(ch, "dbdma_cmd %p\n", cmd);
DBDMA_DPRINTFCH(ch, " req_count 0x%04x\n", le16_to_cpu(cmd->req_count));
DBDMA_DPRINTFCH(ch, " command 0x%04x\n", le16_to_cpu(cmd->command));
DBDMA_DPRINTFCH(ch, " phy_addr 0x%08x\n", le32_to_cpu(cmd->phy_addr));
DBDMA_DPRINTFCH(ch, " cmd_dep 0x%08x\n", le32_to_cpu(cmd->cmd_dep));
DBDMA_DPRINTFCH(ch, " res_count 0x%04x\n", le16_to_cpu(cmd->res_count));
DBDMA_DPRINTFCH(ch, " xfer_status 0x%04x\n",
le16_to_cpu(cmd->xfer_status));
}
#else
static void dump_dbdma_cmd(DBDMA_channel *ch, dbdma_cmd *cmd)
{
}
#endif
static void dbdma_cmdptr_load(DBDMA_channel *ch)
{
DBDMA_DPRINTFCH(ch, "dbdma_cmdptr_load 0x%08x\n",
ch->regs[DBDMA_CMDPTR_LO]);
dma_memory_read(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO],
&ch->current, sizeof(dbdma_cmd));
}
static void dbdma_cmdptr_save(DBDMA_channel *ch)
{
DBDMA_DPRINTFCH(ch, "-> update 0x%08x stat=0x%08x, res=0x%04x\n",
ch->regs[DBDMA_CMDPTR_LO],
le16_to_cpu(ch->current.xfer_status),
le16_to_cpu(ch->current.res_count));
dma_memory_write(&address_space_memory, ch->regs[DBDMA_CMDPTR_LO],
&ch->current, sizeof(dbdma_cmd));
}
static void kill_channel(DBDMA_channel *ch)
{
DBDMA_DPRINTFCH(ch, "kill_channel\n");
ch->regs[DBDMA_STATUS] |= DEAD;
ch->regs[DBDMA_STATUS] &= ~ACTIVE;
qemu_irq_raise(ch->irq);
}
static void conditional_interrupt(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t intr;
uint16_t sel_mask, sel_value;
uint32_t status;
int cond;
DBDMA_DPRINTFCH(ch, "%s\n", __func__);
intr = le16_to_cpu(current->command) & INTR_MASK;
switch(intr) {
case INTR_NEVER: /* don't interrupt */
return;
case INTR_ALWAYS: /* always interrupt */
qemu_irq_raise(ch->irq);
DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__);
return;
}
status = ch->regs[DBDMA_STATUS] & DEVSTAT;
sel_mask = (ch->regs[DBDMA_INTR_SEL] >> 16) & 0x0f;
sel_value = ch->regs[DBDMA_INTR_SEL] & 0x0f;
cond = (status & sel_mask) == (sel_value & sel_mask);
switch(intr) {
case INTR_IFSET: /* intr if condition bit is 1 */
if (cond) {
qemu_irq_raise(ch->irq);
DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__);
}
return;
case INTR_IFCLR: /* intr if condition bit is 0 */
if (!cond) {
qemu_irq_raise(ch->irq);
DBDMA_DPRINTFCH(ch, "%s: raise\n", __func__);
}
return;
}
}
static int conditional_wait(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t wait;
uint16_t sel_mask, sel_value;
uint32_t status;
int cond;
int res = 0;
wait = le16_to_cpu(current->command) & WAIT_MASK;
switch(wait) {
case WAIT_NEVER: /* don't wait */
return 0;
case WAIT_ALWAYS: /* always wait */
DBDMA_DPRINTFCH(ch, " [WAIT_ALWAYS]\n");
return 1;
}
status = ch->regs[DBDMA_STATUS] & DEVSTAT;
sel_mask = (ch->regs[DBDMA_WAIT_SEL] >> 16) & 0x0f;
sel_value = ch->regs[DBDMA_WAIT_SEL] & 0x0f;
cond = (status & sel_mask) == (sel_value & sel_mask);
switch(wait) {
case WAIT_IFSET: /* wait if condition bit is 1 */
if (cond) {
res = 1;
}
DBDMA_DPRINTFCH(ch, " [WAIT_IFSET=%d]\n", res);
break;
case WAIT_IFCLR: /* wait if condition bit is 0 */
if (!cond) {
res = 1;
}
DBDMA_DPRINTFCH(ch, " [WAIT_IFCLR=%d]\n", res);
break;
}
return res;
}
static void next(DBDMA_channel *ch)
{
uint32_t cp;
ch->regs[DBDMA_STATUS] &= ~BT;
cp = ch->regs[DBDMA_CMDPTR_LO];
ch->regs[DBDMA_CMDPTR_LO] = cp + sizeof(dbdma_cmd);
dbdma_cmdptr_load(ch);
}
static void branch(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
ch->regs[DBDMA_CMDPTR_LO] = le32_to_cpu(current->cmd_dep);
ch->regs[DBDMA_STATUS] |= BT;
dbdma_cmdptr_load(ch);
}
static void conditional_branch(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t br;
uint16_t sel_mask, sel_value;
uint32_t status;
int cond;
/* check if we must branch */
br = le16_to_cpu(current->command) & BR_MASK;
switch(br) {
case BR_NEVER: /* don't branch */
next(ch);
return;
case BR_ALWAYS: /* always branch */
DBDMA_DPRINTFCH(ch, " [BR_ALWAYS]\n");
branch(ch);
return;
}
status = ch->regs[DBDMA_STATUS] & DEVSTAT;
sel_mask = (ch->regs[DBDMA_BRANCH_SEL] >> 16) & 0x0f;
sel_value = ch->regs[DBDMA_BRANCH_SEL] & 0x0f;
cond = (status & sel_mask) == (sel_value & sel_mask);
switch(br) {
case BR_IFSET: /* branch if condition bit is 1 */
if (cond) {
DBDMA_DPRINTFCH(ch, " [BR_IFSET = 1]\n");
branch(ch);
} else {
DBDMA_DPRINTFCH(ch, " [BR_IFSET = 0]\n");
next(ch);
}
return;
case BR_IFCLR: /* branch if condition bit is 0 */
if (!cond) {
DBDMA_DPRINTFCH(ch, " [BR_IFCLR = 1]\n");
branch(ch);
} else {
DBDMA_DPRINTFCH(ch, " [BR_IFCLR = 0]\n");
next(ch);
}
return;
}
}
static void channel_run(DBDMA_channel *ch);
static void dbdma_end(DBDMA_io *io)
{
DBDMA_channel *ch = io->channel;
dbdma_cmd *current = &ch->current;
DBDMA_DPRINTFCH(ch, "%s\n", __func__);
if (conditional_wait(ch))
goto wait;
current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
current->res_count = cpu_to_le16(io->len);
dbdma_cmdptr_save(ch);
if (io->is_last)
ch->regs[DBDMA_STATUS] &= ~FLUSH;
conditional_interrupt(ch);
conditional_branch(ch);
wait:
/* Indicate that we're ready for a new DMA round */
ch->io.processing = false;
if ((ch->regs[DBDMA_STATUS] & RUN) &&
(ch->regs[DBDMA_STATUS] & ACTIVE))
channel_run(ch);
}
static void start_output(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t req_count, int is_last)
{
DBDMA_DPRINTFCH(ch, "start_output\n");
/* KEY_REGS, KEY_DEVICE and KEY_STREAM
* are not implemented in the mac-io chip
*/
DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key);
if (!addr || key > KEY_STREAM3) {
kill_channel(ch);
return;
}
ch->io.addr = addr;
ch->io.len = req_count;
ch->io.is_last = is_last;
ch->io.dma_end = dbdma_end;
ch->io.is_dma_out = 1;
ch->io.processing = true;
if (ch->rw) {
ch->rw(&ch->io);
}
}
static void start_input(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t req_count, int is_last)
{
DBDMA_DPRINTFCH(ch, "start_input\n");
/* KEY_REGS, KEY_DEVICE and KEY_STREAM
* are not implemented in the mac-io chip
*/
DBDMA_DPRINTFCH(ch, "addr 0x%x key 0x%x\n", addr, key);
if (!addr || key > KEY_STREAM3) {
kill_channel(ch);
return;
}
ch->io.addr = addr;
ch->io.len = req_count;
ch->io.is_last = is_last;
ch->io.dma_end = dbdma_end;
ch->io.is_dma_out = 0;
ch->io.processing = true;
if (ch->rw) {
ch->rw(&ch->io);
}
}
static void load_word(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t len)
{
dbdma_cmd *current = &ch->current;
DBDMA_DPRINTFCH(ch, "load_word %d bytes, addr=%08x\n", len, addr);
/* only implements KEY_SYSTEM */
if (key != KEY_SYSTEM) {
printf("DBDMA: LOAD_WORD, unimplemented key %x\n", key);
kill_channel(ch);
return;
}
dma_memory_read(&address_space_memory, addr, &current->cmd_dep, len);
if (conditional_wait(ch))
goto wait;
current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
dbdma_cmdptr_save(ch);
ch->regs[DBDMA_STATUS] &= ~FLUSH;
conditional_interrupt(ch);
next(ch);
wait:
DBDMA_kick(dbdma_from_ch(ch));
}
static void store_word(DBDMA_channel *ch, int key, uint32_t addr,
uint16_t len)
{
dbdma_cmd *current = &ch->current;
DBDMA_DPRINTFCH(ch, "store_word %d bytes, addr=%08x pa=%x\n",
len, addr, le32_to_cpu(current->cmd_dep));
/* only implements KEY_SYSTEM */
if (key != KEY_SYSTEM) {
printf("DBDMA: STORE_WORD, unimplemented key %x\n", key);
kill_channel(ch);
return;
}
dma_memory_write(&address_space_memory, addr, &current->cmd_dep, len);
if (conditional_wait(ch))
goto wait;
current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
dbdma_cmdptr_save(ch);
ch->regs[DBDMA_STATUS] &= ~FLUSH;
conditional_interrupt(ch);
next(ch);
wait:
DBDMA_kick(dbdma_from_ch(ch));
}
static void nop(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
if (conditional_wait(ch))
goto wait;
current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
dbdma_cmdptr_save(ch);
conditional_interrupt(ch);
conditional_branch(ch);
wait:
DBDMA_kick(dbdma_from_ch(ch));
}
static void stop(DBDMA_channel *ch)
{
ch->regs[DBDMA_STATUS] &= ~(ACTIVE);
/* the stop command does not increment command pointer */
}
static void channel_run(DBDMA_channel *ch)
{
dbdma_cmd *current = &ch->current;
uint16_t cmd, key;
uint16_t req_count;
uint32_t phy_addr;
DBDMA_DPRINTFCH(ch, "channel_run\n");
dump_dbdma_cmd(ch, current);
/* clear WAKE flag at command fetch */
ch->regs[DBDMA_STATUS] &= ~WAKE;
cmd = le16_to_cpu(current->command) & COMMAND_MASK;
switch (cmd) {
case DBDMA_NOP:
nop(ch);
return;
case DBDMA_STOP:
stop(ch);
return;
}
key = le16_to_cpu(current->command) & 0x0700;
req_count = le16_to_cpu(current->req_count);
phy_addr = le32_to_cpu(current->phy_addr);
if (key == KEY_STREAM4) {
printf("command %x, invalid key 4\n", cmd);
kill_channel(ch);
return;
}
switch (cmd) {
case OUTPUT_MORE:
DBDMA_DPRINTFCH(ch, "* OUTPUT_MORE *\n");
start_output(ch, key, phy_addr, req_count, 0);
return;
case OUTPUT_LAST:
DBDMA_DPRINTFCH(ch, "* OUTPUT_LAST *\n");
start_output(ch, key, phy_addr, req_count, 1);
return;
case INPUT_MORE:
DBDMA_DPRINTFCH(ch, "* INPUT_MORE *\n");
start_input(ch, key, phy_addr, req_count, 0);
return;
case INPUT_LAST:
DBDMA_DPRINTFCH(ch, "* INPUT_LAST *\n");
start_input(ch, key, phy_addr, req_count, 1);
return;
}
if (key < KEY_REGS) {
printf("command %x, invalid key %x\n", cmd, key);
key = KEY_SYSTEM;
}
/* for LOAD_WORD and STORE_WORD, req_count is on 3 bits
* and BRANCH is invalid
*/
req_count = req_count & 0x0007;
if (req_count & 0x4) {
req_count = 4;
phy_addr &= ~3;
} else if (req_count & 0x2) {
req_count = 2;
phy_addr &= ~1;
} else
req_count = 1;
switch (cmd) {
case LOAD_WORD:
DBDMA_DPRINTFCH(ch, "* LOAD_WORD *\n");
load_word(ch, key, phy_addr, req_count);
return;
case STORE_WORD:
DBDMA_DPRINTFCH(ch, "* STORE_WORD *\n");
store_word(ch, key, phy_addr, req_count);
return;
}
}
static void DBDMA_run(DBDMAState *s)
{
int channel;
for (channel = 0; channel < DBDMA_CHANNELS; channel++) {
DBDMA_channel *ch = &s->channels[channel];
uint32_t status = ch->regs[DBDMA_STATUS];
if (!ch->io.processing && (status & RUN) && (status & ACTIVE)) {
channel_run(ch);
}
}
}
static void DBDMA_run_bh(void *opaque)
{
DBDMAState *s = opaque;
DBDMA_DPRINTF("-> DBDMA_run_bh\n");
DBDMA_run(s);
DBDMA_DPRINTF("<- DBDMA_run_bh\n");
}
void DBDMA_kick(DBDMAState *dbdma)
{
qemu_bh_schedule(dbdma->bh);
}
void DBDMA_register_channel(void *dbdma, int nchan, qemu_irq irq,
DBDMA_rw rw, DBDMA_flush flush,
void *opaque)
{
DBDMAState *s = dbdma;
DBDMA_channel *ch = &s->channels[nchan];
DBDMA_DPRINTFCH(ch, "DBDMA_register_channel 0x%x\n", nchan);
assert(rw);
assert(flush);
ch->irq = irq;
ch->rw = rw;
ch->flush = flush;
ch->io.opaque = opaque;
}
static void dbdma_control_write(DBDMA_channel *ch)
{
uint16_t mask, value;
uint32_t status;
bool do_flush = false;
mask = (ch->regs[DBDMA_CONTROL] >> 16) & 0xffff;
value = ch->regs[DBDMA_CONTROL] & 0xffff;
/* This is the status register which we'll update
* appropriately and store back
*/
status = ch->regs[DBDMA_STATUS];
/* RUN and PAUSE are bits under SW control only
* FLUSH and WAKE are set by SW and cleared by HW
* DEAD, ACTIVE and BT are only under HW control
*
* We handle ACTIVE separately at the end of the
* logic to ensure all cases are covered.
*/
/* Setting RUN will tentatively activate the channel
*/
if ((mask & RUN) && (value & RUN)) {
status |= RUN;
DBDMA_DPRINTFCH(ch, " Setting RUN !\n");
}
/* Clearing RUN 1->0 will stop the channel */
if ((mask & RUN) && !(value & RUN)) {
/* This has the side effect of clearing the DEAD bit */
status &= ~(DEAD | RUN);
DBDMA_DPRINTFCH(ch, " Clearing RUN !\n");
}
/* Setting WAKE wakes up an idle channel if it's running
*
* Note: The doc doesn't say so but assume that only works
* on a channel whose RUN bit is set.
*
* We set WAKE in status, it's not terribly useful as it will
* be cleared on the next command fetch but it seems to mimmic
* the HW behaviour and is useful for the way we handle
* ACTIVE further down.
*/
if ((mask & WAKE) && (value & WAKE) && (status & RUN)) {
status |= WAKE;
DBDMA_DPRINTFCH(ch, " Setting WAKE !\n");
}
/* PAUSE being set will deactivate (or prevent activation)
* of the channel. We just copy it over for now, ACTIVE will
* be re-evaluated later.
*/
if (mask & PAUSE) {
status = (status & ~PAUSE) | (value & PAUSE);
DBDMA_DPRINTFCH(ch, " %sing PAUSE !\n",
(value & PAUSE) ? "sett" : "clear");
}
/* FLUSH is its own thing */
if ((mask & FLUSH) && (value & FLUSH)) {
DBDMA_DPRINTFCH(ch, " Setting FLUSH !\n");
/* We set flush directly in the status register, we do *NOT*
* set it in "status" so that it gets naturally cleared when
* we update the status register further down. That way it
* will be set only during the HW flush operation so it is
* visible to any completions happening during that time.
*/
ch->regs[DBDMA_STATUS] |= FLUSH;
do_flush = true;
}
/* If either RUN or PAUSE is clear, so should ACTIVE be,
* otherwise, ACTIVE will be set if we modified RUN, PAUSE or
* set WAKE. That means that PAUSE was just cleared, RUN was
* just set or WAKE was just set.
*/
if ((status & PAUSE) || !(status & RUN)) {
status &= ~ACTIVE;
DBDMA_DPRINTFCH(ch, " -> ACTIVE down !\n");
/* We stopped processing, we want the underlying HW command
* to complete *before* we clear the ACTIVE bit. Otherwise
* we can get into a situation where the command status will
* have RUN or ACTIVE not set which is going to confuse the
* MacOS driver.
*/
do_flush = true;
} else if (mask & (RUN | PAUSE)) {
status |= ACTIVE;
DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n");
} else if ((mask & WAKE) && (value & WAKE)) {
status |= ACTIVE;
DBDMA_DPRINTFCH(ch, " -> ACTIVE up !\n");
}
DBDMA_DPRINTFCH(ch, " new status=0x%08x\n", status);
/* If we need to flush the underlying HW, do it now, this happens
* both on FLUSH commands and when stopping the channel for safety.
*/
if (do_flush && ch->flush) {
ch->flush(&ch->io);
}
/* Finally update the status register image */
ch->regs[DBDMA_STATUS] = status;
/* If active, make sure the BH gets to run */
if (status & ACTIVE) {
DBDMA_kick(dbdma_from_ch(ch));
}
}
static void dbdma_write(void *opaque, hwaddr addr,
uint64_t value, unsigned size)
{
int channel = addr >> DBDMA_CHANNEL_SHIFT;
DBDMAState *s = opaque;
DBDMA_channel *ch = &s->channels[channel];
int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
DBDMA_DPRINTFCH(ch, "writel 0x" TARGET_FMT_plx " <= 0x%08"PRIx64"\n",
addr, value);
DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n",
(uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
/* cmdptr cannot be modified if channel is ACTIVE */
if (reg == DBDMA_CMDPTR_LO && (ch->regs[DBDMA_STATUS] & ACTIVE)) {
return;
}
ch->regs[reg] = value;
switch(reg) {
case DBDMA_CONTROL:
dbdma_control_write(ch);
break;
case DBDMA_CMDPTR_LO:
/* 16-byte aligned */
ch->regs[DBDMA_CMDPTR_LO] &= ~0xf;
dbdma_cmdptr_load(ch);
break;
case DBDMA_STATUS:
case DBDMA_INTR_SEL:
case DBDMA_BRANCH_SEL:
case DBDMA_WAIT_SEL:
/* nothing to do */
break;
case DBDMA_XFER_MODE:
case DBDMA_CMDPTR_HI:
case DBDMA_DATA2PTR_HI:
case DBDMA_DATA2PTR_LO:
case DBDMA_ADDRESS_HI:
case DBDMA_BRANCH_ADDR_HI:
case DBDMA_RES1:
case DBDMA_RES2:
case DBDMA_RES3:
case DBDMA_RES4:
/* unused */
break;
}
}
static uint64_t dbdma_read(void *opaque, hwaddr addr,
unsigned size)
{
uint32_t value;
int channel = addr >> DBDMA_CHANNEL_SHIFT;
DBDMAState *s = opaque;
DBDMA_channel *ch = &s->channels[channel];
int reg = (addr - (channel << DBDMA_CHANNEL_SHIFT)) >> 2;
value = ch->regs[reg];
switch(reg) {
case DBDMA_CONTROL:
value = ch->regs[DBDMA_STATUS];
break;
case DBDMA_STATUS:
case DBDMA_CMDPTR_LO:
case DBDMA_INTR_SEL:
case DBDMA_BRANCH_SEL:
case DBDMA_WAIT_SEL:
/* nothing to do */
break;
case DBDMA_XFER_MODE:
case DBDMA_CMDPTR_HI:
case DBDMA_DATA2PTR_HI:
case DBDMA_DATA2PTR_LO:
case DBDMA_ADDRESS_HI:
case DBDMA_BRANCH_ADDR_HI:
/* unused */
value = 0;
break;
case DBDMA_RES1:
case DBDMA_RES2:
case DBDMA_RES3:
case DBDMA_RES4:
/* reserved */
break;
}
DBDMA_DPRINTFCH(ch, "readl 0x" TARGET_FMT_plx " => 0x%08x\n", addr, value);
DBDMA_DPRINTFCH(ch, "channel 0x%x reg 0x%x\n",
(uint32_t)addr >> DBDMA_CHANNEL_SHIFT, reg);
return value;
}
static const MemoryRegionOps dbdma_ops = {
.read = dbdma_read,
.write = dbdma_write,
.endianness = DEVICE_LITTLE_ENDIAN,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
},
};
static const VMStateDescription vmstate_dbdma_io = {
.name = "dbdma_io",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT64(addr, struct DBDMA_io),
VMSTATE_INT32(len, struct DBDMA_io),
VMSTATE_INT32(is_last, struct DBDMA_io),
VMSTATE_INT32(is_dma_out, struct DBDMA_io),
VMSTATE_BOOL(processing, struct DBDMA_io),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_dbdma_cmd = {
.name = "dbdma_cmd",
.version_id = 0,
.minimum_version_id = 0,
.fields = (VMStateField[]) {
VMSTATE_UINT16(req_count, dbdma_cmd),
VMSTATE_UINT16(command, dbdma_cmd),
VMSTATE_UINT32(phy_addr, dbdma_cmd),
VMSTATE_UINT32(cmd_dep, dbdma_cmd),
VMSTATE_UINT16(res_count, dbdma_cmd),
VMSTATE_UINT16(xfer_status, dbdma_cmd),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_dbdma_channel = {
.name = "dbdma_channel",
.version_id = 1,
.minimum_version_id = 1,
.fields = (VMStateField[]) {
VMSTATE_UINT32_ARRAY(regs, struct DBDMA_channel, DBDMA_REGS),
VMSTATE_STRUCT(io, struct DBDMA_channel, 0, vmstate_dbdma_io, DBDMA_io),
VMSTATE_STRUCT(current, struct DBDMA_channel, 0, vmstate_dbdma_cmd,
dbdma_cmd),
VMSTATE_END_OF_LIST()
}
};
static const VMStateDescription vmstate_dbdma = {
.name = "dbdma",
.version_id = 3,
.minimum_version_id = 3,
.fields = (VMStateField[]) {
VMSTATE_STRUCT_ARRAY(channels, DBDMAState, DBDMA_CHANNELS, 1,
vmstate_dbdma_channel, DBDMA_channel),
VMSTATE_END_OF_LIST()
}
};
static void mac_dbdma_reset(DeviceState *d)
{
DBDMAState *s = MAC_DBDMA(d);
int i;
for (i = 0; i < DBDMA_CHANNELS; i++) {
memset(s->channels[i].regs, 0, DBDMA_SIZE);
}
}
static void dbdma_unassigned_rw(DBDMA_io *io)
{
DBDMA_channel *ch = io->channel;
dbdma_cmd *current = &ch->current;
uint16_t cmd;
qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n",
__func__, ch->channel);
ch->io.processing = false;
cmd = le16_to_cpu(current->command) & COMMAND_MASK;
if (cmd == OUTPUT_MORE || cmd == OUTPUT_LAST ||
cmd == INPUT_MORE || cmd == INPUT_LAST) {
current->xfer_status = cpu_to_le16(ch->regs[DBDMA_STATUS]);
current->res_count = cpu_to_le16(io->len);
dbdma_cmdptr_save(ch);
}
}
static void dbdma_unassigned_flush(DBDMA_io *io)
{
DBDMA_channel *ch = io->channel;
qemu_log_mask(LOG_GUEST_ERROR, "%s: use of unassigned channel %d\n",
__func__, ch->channel);
}
static void mac_dbdma_init(Object *obj)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
DBDMAState *s = MAC_DBDMA(obj);
int i;
for (i = 0; i < DBDMA_CHANNELS; i++) {
DBDMA_channel *ch = &s->channels[i];
ch->rw = dbdma_unassigned_rw;
ch->flush = dbdma_unassigned_flush;
ch->channel = i;
ch->io.channel = ch;
}
memory_region_init_io(&s->mem, obj, &dbdma_ops, s, "dbdma", 0x1000);
sysbus_init_mmio(sbd, &s->mem);
}
static void mac_dbdma_realize(DeviceState *dev, Error **errp)
{
DBDMAState *s = MAC_DBDMA(dev);
s->bh = qemu_bh_new(DBDMA_run_bh, s);
}
static void mac_dbdma_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = mac_dbdma_realize;
dc->reset = mac_dbdma_reset;
dc->vmsd = &vmstate_dbdma;
}
static const TypeInfo mac_dbdma_type_info = {
.name = TYPE_MAC_DBDMA,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(DBDMAState),
.instance_init = mac_dbdma_init,
.class_init = mac_dbdma_class_init
};
static void mac_dbdma_register_types(void)
{
type_register_static(&mac_dbdma_type_info);
}
type_init(mac_dbdma_register_types)