| #include "exec.h" |
| #include "host-utils.h" |
| #include "helper.h" |
| #include "sysemu.h" |
| |
| //#define DEBUG_MMU |
| //#define DEBUG_MXCC |
| //#define DEBUG_UNALIGNED |
| //#define DEBUG_UNASSIGNED |
| //#define DEBUG_ASI |
| //#define DEBUG_PCALL |
| //#define DEBUG_PSTATE |
| //#define DEBUG_CACHE_CONTROL |
| |
| #ifdef DEBUG_MMU |
| #define DPRINTF_MMU(fmt, ...) \ |
| do { printf("MMU: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_MMU(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef DEBUG_MXCC |
| #define DPRINTF_MXCC(fmt, ...) \ |
| do { printf("MXCC: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_MXCC(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef DEBUG_ASI |
| #define DPRINTF_ASI(fmt, ...) \ |
| do { printf("ASI: " fmt , ## __VA_ARGS__); } while (0) |
| #endif |
| |
| #ifdef DEBUG_PSTATE |
| #define DPRINTF_PSTATE(fmt, ...) \ |
| do { printf("PSTATE: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_PSTATE(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef DEBUG_CACHE_CONTROL |
| #define DPRINTF_CACHE_CONTROL(fmt, ...) \ |
| do { printf("CACHE_CONTROL: " fmt , ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF_CACHE_CONTROL(fmt, ...) do {} while (0) |
| #endif |
| |
| #ifdef TARGET_SPARC64 |
| #ifndef TARGET_ABI32 |
| #define AM_CHECK(env1) ((env1)->pstate & PS_AM) |
| #else |
| #define AM_CHECK(env1) (1) |
| #endif |
| #endif |
| |
| #define DT0 (env->dt0) |
| #define DT1 (env->dt1) |
| #define QT0 (env->qt0) |
| #define QT1 (env->qt1) |
| |
| /* Leon3 cache control */ |
| |
| /* Cache control: emulate the behavior of cache control registers but without |
| any effect on the emulated */ |
| |
| #define CACHE_STATE_MASK 0x3 |
| #define CACHE_DISABLED 0x0 |
| #define CACHE_FROZEN 0x1 |
| #define CACHE_ENABLED 0x3 |
| |
| /* Cache Control register fields */ |
| |
| #define CACHE_CTRL_IF (1 << 4) /* Instruction Cache Freeze on Interrupt */ |
| #define CACHE_CTRL_DF (1 << 5) /* Data Cache Freeze on Interrupt */ |
| #define CACHE_CTRL_DP (1 << 14) /* Data cache flush pending */ |
| #define CACHE_CTRL_IP (1 << 15) /* Instruction cache flush pending */ |
| #define CACHE_CTRL_IB (1 << 16) /* Instruction burst fetch */ |
| #define CACHE_CTRL_FI (1 << 21) /* Flush Instruction cache (Write only) */ |
| #define CACHE_CTRL_FD (1 << 22) /* Flush Data cache (Write only) */ |
| #define CACHE_CTRL_DS (1 << 23) /* Data cache snoop enable */ |
| |
| #if defined(CONFIG_USER_ONLY) && defined(TARGET_SPARC64) |
| static void do_unassigned_access(target_ulong addr, int is_write, int is_exec, |
| int is_asi, int size); |
| #endif |
| |
| #if defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) |
| // Calculates TSB pointer value for fault page size 8k or 64k |
| static uint64_t ultrasparc_tsb_pointer(uint64_t tsb_register, |
| uint64_t tag_access_register, |
| int page_size) |
| { |
| uint64_t tsb_base = tsb_register & ~0x1fffULL; |
| int tsb_split = (tsb_register & 0x1000ULL) ? 1 : 0; |
| int tsb_size = tsb_register & 0xf; |
| |
| // discard lower 13 bits which hold tag access context |
| uint64_t tag_access_va = tag_access_register & ~0x1fffULL; |
| |
| // now reorder bits |
| uint64_t tsb_base_mask = ~0x1fffULL; |
| uint64_t va = tag_access_va; |
| |
| // move va bits to correct position |
| if (page_size == 8*1024) { |
| va >>= 9; |
| } else if (page_size == 64*1024) { |
| va >>= 12; |
| } |
| |
| if (tsb_size) { |
| tsb_base_mask <<= tsb_size; |
| } |
| |
| // calculate tsb_base mask and adjust va if split is in use |
| if (tsb_split) { |
| if (page_size == 8*1024) { |
| va &= ~(1ULL << (13 + tsb_size)); |
| } else if (page_size == 64*1024) { |
| va |= (1ULL << (13 + tsb_size)); |
| } |
| tsb_base_mask <<= 1; |
| } |
| |
| return ((tsb_base & tsb_base_mask) | (va & ~tsb_base_mask)) & ~0xfULL; |
| } |
| |
| // Calculates tag target register value by reordering bits |
| // in tag access register |
| static uint64_t ultrasparc_tag_target(uint64_t tag_access_register) |
| { |
| return ((tag_access_register & 0x1fff) << 48) | (tag_access_register >> 22); |
| } |
| |
| static void replace_tlb_entry(SparcTLBEntry *tlb, |
| uint64_t tlb_tag, uint64_t tlb_tte, |
| CPUState *env1) |
| { |
| target_ulong mask, size, va, offset; |
| |
| // flush page range if translation is valid |
| if (TTE_IS_VALID(tlb->tte)) { |
| |
| mask = 0xffffffffffffe000ULL; |
| mask <<= 3 * ((tlb->tte >> 61) & 3); |
| size = ~mask + 1; |
| |
| va = tlb->tag & mask; |
| |
| for (offset = 0; offset < size; offset += TARGET_PAGE_SIZE) { |
| tlb_flush_page(env1, va + offset); |
| } |
| } |
| |
| tlb->tag = tlb_tag; |
| tlb->tte = tlb_tte; |
| } |
| |
| static void demap_tlb(SparcTLBEntry *tlb, target_ulong demap_addr, |
| const char* strmmu, CPUState *env1) |
| { |
| unsigned int i; |
| target_ulong mask; |
| uint64_t context; |
| |
| int is_demap_context = (demap_addr >> 6) & 1; |
| |
| // demap context |
| switch ((demap_addr >> 4) & 3) { |
| case 0: // primary |
| context = env1->dmmu.mmu_primary_context; |
| break; |
| case 1: // secondary |
| context = env1->dmmu.mmu_secondary_context; |
| break; |
| case 2: // nucleus |
| context = 0; |
| break; |
| case 3: // reserved |
| default: |
| return; |
| } |
| |
| for (i = 0; i < 64; i++) { |
| if (TTE_IS_VALID(tlb[i].tte)) { |
| |
| if (is_demap_context) { |
| // will remove non-global entries matching context value |
| if (TTE_IS_GLOBAL(tlb[i].tte) || |
| !tlb_compare_context(&tlb[i], context)) { |
| continue; |
| } |
| } else { |
| // demap page |
| // will remove any entry matching VA |
| mask = 0xffffffffffffe000ULL; |
| mask <<= 3 * ((tlb[i].tte >> 61) & 3); |
| |
| if (!compare_masked(demap_addr, tlb[i].tag, mask)) { |
| continue; |
| } |
| |
| // entry should be global or matching context value |
| if (!TTE_IS_GLOBAL(tlb[i].tte) && |
| !tlb_compare_context(&tlb[i], context)) { |
| continue; |
| } |
| } |
| |
| replace_tlb_entry(&tlb[i], 0, 0, env1); |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s demap invalidated entry [%02u]\n", strmmu, i); |
| dump_mmu(stdout, fprintf, env1); |
| #endif |
| } |
| } |
| } |
| |
| static void replace_tlb_1bit_lru(SparcTLBEntry *tlb, |
| uint64_t tlb_tag, uint64_t tlb_tte, |
| const char* strmmu, CPUState *env1) |
| { |
| unsigned int i, replace_used; |
| |
| // Try replacing invalid entry |
| for (i = 0; i < 64; i++) { |
| if (!TTE_IS_VALID(tlb[i].tte)) { |
| replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s lru replaced invalid entry [%i]\n", strmmu, i); |
| dump_mmu(stdout, fprintf, env1); |
| #endif |
| return; |
| } |
| } |
| |
| // All entries are valid, try replacing unlocked entry |
| |
| for (replace_used = 0; replace_used < 2; ++replace_used) { |
| |
| // Used entries are not replaced on first pass |
| |
| for (i = 0; i < 64; i++) { |
| if (!TTE_IS_LOCKED(tlb[i].tte) && !TTE_IS_USED(tlb[i].tte)) { |
| |
| replace_tlb_entry(&tlb[i], tlb_tag, tlb_tte, env1); |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s lru replaced unlocked %s entry [%i]\n", |
| strmmu, (replace_used?"used":"unused"), i); |
| dump_mmu(stdout, fprintf, env1); |
| #endif |
| return; |
| } |
| } |
| |
| // Now reset used bit and search for unused entries again |
| |
| for (i = 0; i < 64; i++) { |
| TTE_SET_UNUSED(tlb[i].tte); |
| } |
| } |
| |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("%s lru replacement failed: no entries available\n", strmmu); |
| #endif |
| // error state? |
| } |
| |
| #endif |
| |
| static inline target_ulong address_mask(CPUState *env1, target_ulong addr) |
| { |
| #ifdef TARGET_SPARC64 |
| if (AM_CHECK(env1)) |
| addr &= 0xffffffffULL; |
| #endif |
| return addr; |
| } |
| |
| /* returns true if access using this ASI is to have address translated by MMU |
| otherwise access is to raw physical address */ |
| static inline int is_translating_asi(int asi) |
| { |
| #ifdef TARGET_SPARC64 |
| /* Ultrasparc IIi translating asi |
| - note this list is defined by cpu implementation |
| */ |
| switch (asi) { |
| case 0x04 ... 0x11: |
| case 0x18 ... 0x19: |
| case 0x24 ... 0x2C: |
| case 0x70 ... 0x73: |
| case 0x78 ... 0x79: |
| case 0x80 ... 0xFF: |
| return 1; |
| |
| default: |
| return 0; |
| } |
| #else |
| /* TODO: check sparc32 bits */ |
| return 0; |
| #endif |
| } |
| |
| static inline target_ulong asi_address_mask(CPUState *env1, |
| int asi, target_ulong addr) |
| { |
| if (is_translating_asi(asi)) { |
| return address_mask(env, addr); |
| } else { |
| return addr; |
| } |
| } |
| |
| static void raise_exception(int tt) |
| { |
| env->exception_index = tt; |
| cpu_loop_exit(); |
| } |
| |
| void HELPER(raise_exception)(int tt) |
| { |
| raise_exception(tt); |
| } |
| |
| void helper_shutdown(void) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| qemu_system_shutdown_request(); |
| #endif |
| } |
| |
| void helper_check_align(target_ulong addr, uint32_t align) |
| { |
| if (addr & align) { |
| #ifdef DEBUG_UNALIGNED |
| printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| raise_exception(TT_UNALIGNED); |
| } |
| } |
| |
| #define F_HELPER(name, p) void helper_f##name##p(void) |
| |
| #define F_BINOP(name) \ |
| float32 helper_f ## name ## s (float32 src1, float32 src2) \ |
| { \ |
| return float32_ ## name (src1, src2, &env->fp_status); \ |
| } \ |
| F_HELPER(name, d) \ |
| { \ |
| DT0 = float64_ ## name (DT0, DT1, &env->fp_status); \ |
| } \ |
| F_HELPER(name, q) \ |
| { \ |
| QT0 = float128_ ## name (QT0, QT1, &env->fp_status); \ |
| } |
| |
| F_BINOP(add); |
| F_BINOP(sub); |
| F_BINOP(mul); |
| F_BINOP(div); |
| #undef F_BINOP |
| |
| void helper_fsmuld(float32 src1, float32 src2) |
| { |
| DT0 = float64_mul(float32_to_float64(src1, &env->fp_status), |
| float32_to_float64(src2, &env->fp_status), |
| &env->fp_status); |
| } |
| |
| void helper_fdmulq(void) |
| { |
| QT0 = float128_mul(float64_to_float128(DT0, &env->fp_status), |
| float64_to_float128(DT1, &env->fp_status), |
| &env->fp_status); |
| } |
| |
| float32 helper_fnegs(float32 src) |
| { |
| return float32_chs(src); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| F_HELPER(neg, d) |
| { |
| DT0 = float64_chs(DT1); |
| } |
| |
| F_HELPER(neg, q) |
| { |
| QT0 = float128_chs(QT1); |
| } |
| #endif |
| |
| /* Integer to float conversion. */ |
| float32 helper_fitos(int32_t src) |
| { |
| return int32_to_float32(src, &env->fp_status); |
| } |
| |
| void helper_fitod(int32_t src) |
| { |
| DT0 = int32_to_float64(src, &env->fp_status); |
| } |
| |
| void helper_fitoq(int32_t src) |
| { |
| QT0 = int32_to_float128(src, &env->fp_status); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| float32 helper_fxtos(void) |
| { |
| return int64_to_float32(*((int64_t *)&DT1), &env->fp_status); |
| } |
| |
| F_HELPER(xto, d) |
| { |
| DT0 = int64_to_float64(*((int64_t *)&DT1), &env->fp_status); |
| } |
| |
| F_HELPER(xto, q) |
| { |
| QT0 = int64_to_float128(*((int64_t *)&DT1), &env->fp_status); |
| } |
| #endif |
| #undef F_HELPER |
| |
| /* floating point conversion */ |
| float32 helper_fdtos(void) |
| { |
| return float64_to_float32(DT1, &env->fp_status); |
| } |
| |
| void helper_fstod(float32 src) |
| { |
| DT0 = float32_to_float64(src, &env->fp_status); |
| } |
| |
| float32 helper_fqtos(void) |
| { |
| return float128_to_float32(QT1, &env->fp_status); |
| } |
| |
| void helper_fstoq(float32 src) |
| { |
| QT0 = float32_to_float128(src, &env->fp_status); |
| } |
| |
| void helper_fqtod(void) |
| { |
| DT0 = float128_to_float64(QT1, &env->fp_status); |
| } |
| |
| void helper_fdtoq(void) |
| { |
| QT0 = float64_to_float128(DT1, &env->fp_status); |
| } |
| |
| /* Float to integer conversion. */ |
| int32_t helper_fstoi(float32 src) |
| { |
| return float32_to_int32_round_to_zero(src, &env->fp_status); |
| } |
| |
| int32_t helper_fdtoi(void) |
| { |
| return float64_to_int32_round_to_zero(DT1, &env->fp_status); |
| } |
| |
| int32_t helper_fqtoi(void) |
| { |
| return float128_to_int32_round_to_zero(QT1, &env->fp_status); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| void helper_fstox(float32 src) |
| { |
| *((int64_t *)&DT0) = float32_to_int64_round_to_zero(src, &env->fp_status); |
| } |
| |
| void helper_fdtox(void) |
| { |
| *((int64_t *)&DT0) = float64_to_int64_round_to_zero(DT1, &env->fp_status); |
| } |
| |
| void helper_fqtox(void) |
| { |
| *((int64_t *)&DT0) = float128_to_int64_round_to_zero(QT1, &env->fp_status); |
| } |
| |
| void helper_faligndata(void) |
| { |
| uint64_t tmp; |
| |
| tmp = (*((uint64_t *)&DT0)) << ((env->gsr & 7) * 8); |
| /* on many architectures a shift of 64 does nothing */ |
| if ((env->gsr & 7) != 0) { |
| tmp |= (*((uint64_t *)&DT1)) >> (64 - (env->gsr & 7) * 8); |
| } |
| *((uint64_t *)&DT0) = tmp; |
| } |
| |
| #ifdef HOST_WORDS_BIGENDIAN |
| #define VIS_B64(n) b[7 - (n)] |
| #define VIS_W64(n) w[3 - (n)] |
| #define VIS_SW64(n) sw[3 - (n)] |
| #define VIS_L64(n) l[1 - (n)] |
| #define VIS_B32(n) b[3 - (n)] |
| #define VIS_W32(n) w[1 - (n)] |
| #else |
| #define VIS_B64(n) b[n] |
| #define VIS_W64(n) w[n] |
| #define VIS_SW64(n) sw[n] |
| #define VIS_L64(n) l[n] |
| #define VIS_B32(n) b[n] |
| #define VIS_W32(n) w[n] |
| #endif |
| |
| typedef union { |
| uint8_t b[8]; |
| uint16_t w[4]; |
| int16_t sw[4]; |
| uint32_t l[2]; |
| float64 d; |
| } vis64; |
| |
| typedef union { |
| uint8_t b[4]; |
| uint16_t w[2]; |
| uint32_t l; |
| float32 f; |
| } vis32; |
| |
| void helper_fpmerge(void) |
| { |
| vis64 s, d; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| // Reverse calculation order to handle overlap |
| d.VIS_B64(7) = s.VIS_B64(3); |
| d.VIS_B64(6) = d.VIS_B64(3); |
| d.VIS_B64(5) = s.VIS_B64(2); |
| d.VIS_B64(4) = d.VIS_B64(2); |
| d.VIS_B64(3) = s.VIS_B64(1); |
| d.VIS_B64(2) = d.VIS_B64(1); |
| d.VIS_B64(1) = s.VIS_B64(0); |
| //d.VIS_B64(0) = d.VIS_B64(0); |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8x16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * (int32_t)s.VIS_B64(r); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8x16al(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(1) * (int32_t)s.VIS_B64(r); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8x16au(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(0) * (int32_t)s.VIS_B64(r); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8sux16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmul8ulx16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_W64(r) = tmp >> 8; |
| |
| PMUL(0); |
| PMUL(1); |
| PMUL(2); |
| PMUL(3); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmuld8sux16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * ((int32_t)s.VIS_SW64(r) >> 8); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_L64(r) = tmp; |
| |
| // Reverse calculation order to handle overlap |
| PMUL(1); |
| PMUL(0); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fmuld8ulx16(void) |
| { |
| vis64 s, d; |
| uint32_t tmp; |
| |
| s.d = DT0; |
| d.d = DT1; |
| |
| #define PMUL(r) \ |
| tmp = (int32_t)d.VIS_SW64(r) * ((uint32_t)s.VIS_B64(r * 2)); \ |
| if ((tmp & 0xff) > 0x7f) \ |
| tmp += 0x100; \ |
| d.VIS_L64(r) = tmp; |
| |
| // Reverse calculation order to handle overlap |
| PMUL(1); |
| PMUL(0); |
| #undef PMUL |
| |
| DT0 = d.d; |
| } |
| |
| void helper_fexpand(void) |
| { |
| vis32 s; |
| vis64 d; |
| |
| s.l = (uint32_t)(*(uint64_t *)&DT0 & 0xffffffff); |
| d.d = DT1; |
| d.VIS_W64(0) = s.VIS_B32(0) << 4; |
| d.VIS_W64(1) = s.VIS_B32(1) << 4; |
| d.VIS_W64(2) = s.VIS_B32(2) << 4; |
| d.VIS_W64(3) = s.VIS_B32(3) << 4; |
| |
| DT0 = d.d; |
| } |
| |
| #define VIS_HELPER(name, F) \ |
| void name##16(void) \ |
| { \ |
| vis64 s, d; \ |
| \ |
| s.d = DT0; \ |
| d.d = DT1; \ |
| \ |
| d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0)); \ |
| d.VIS_W64(1) = F(d.VIS_W64(1), s.VIS_W64(1)); \ |
| d.VIS_W64(2) = F(d.VIS_W64(2), s.VIS_W64(2)); \ |
| d.VIS_W64(3) = F(d.VIS_W64(3), s.VIS_W64(3)); \ |
| \ |
| DT0 = d.d; \ |
| } \ |
| \ |
| uint32_t name##16s(uint32_t src1, uint32_t src2) \ |
| { \ |
| vis32 s, d; \ |
| \ |
| s.l = src1; \ |
| d.l = src2; \ |
| \ |
| d.VIS_W32(0) = F(d.VIS_W32(0), s.VIS_W32(0)); \ |
| d.VIS_W32(1) = F(d.VIS_W32(1), s.VIS_W32(1)); \ |
| \ |
| return d.l; \ |
| } \ |
| \ |
| void name##32(void) \ |
| { \ |
| vis64 s, d; \ |
| \ |
| s.d = DT0; \ |
| d.d = DT1; \ |
| \ |
| d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0)); \ |
| d.VIS_L64(1) = F(d.VIS_L64(1), s.VIS_L64(1)); \ |
| \ |
| DT0 = d.d; \ |
| } \ |
| \ |
| uint32_t name##32s(uint32_t src1, uint32_t src2) \ |
| { \ |
| vis32 s, d; \ |
| \ |
| s.l = src1; \ |
| d.l = src2; \ |
| \ |
| d.l = F(d.l, s.l); \ |
| \ |
| return d.l; \ |
| } |
| |
| #define FADD(a, b) ((a) + (b)) |
| #define FSUB(a, b) ((a) - (b)) |
| VIS_HELPER(helper_fpadd, FADD) |
| VIS_HELPER(helper_fpsub, FSUB) |
| |
| #define VIS_CMPHELPER(name, F) \ |
| void name##16(void) \ |
| { \ |
| vis64 s, d; \ |
| \ |
| s.d = DT0; \ |
| d.d = DT1; \ |
| \ |
| d.VIS_W64(0) = F(d.VIS_W64(0), s.VIS_W64(0))? 1: 0; \ |
| d.VIS_W64(0) |= F(d.VIS_W64(1), s.VIS_W64(1))? 2: 0; \ |
| d.VIS_W64(0) |= F(d.VIS_W64(2), s.VIS_W64(2))? 4: 0; \ |
| d.VIS_W64(0) |= F(d.VIS_W64(3), s.VIS_W64(3))? 8: 0; \ |
| \ |
| DT0 = d.d; \ |
| } \ |
| \ |
| void name##32(void) \ |
| { \ |
| vis64 s, d; \ |
| \ |
| s.d = DT0; \ |
| d.d = DT1; \ |
| \ |
| d.VIS_L64(0) = F(d.VIS_L64(0), s.VIS_L64(0))? 1: 0; \ |
| d.VIS_L64(0) |= F(d.VIS_L64(1), s.VIS_L64(1))? 2: 0; \ |
| \ |
| DT0 = d.d; \ |
| } |
| |
| #define FCMPGT(a, b) ((a) > (b)) |
| #define FCMPEQ(a, b) ((a) == (b)) |
| #define FCMPLE(a, b) ((a) <= (b)) |
| #define FCMPNE(a, b) ((a) != (b)) |
| |
| VIS_CMPHELPER(helper_fcmpgt, FCMPGT) |
| VIS_CMPHELPER(helper_fcmpeq, FCMPEQ) |
| VIS_CMPHELPER(helper_fcmple, FCMPLE) |
| VIS_CMPHELPER(helper_fcmpne, FCMPNE) |
| #endif |
| |
| void helper_check_ieee_exceptions(void) |
| { |
| target_ulong status; |
| |
| status = get_float_exception_flags(&env->fp_status); |
| if (status) { |
| /* Copy IEEE 754 flags into FSR */ |
| if (status & float_flag_invalid) |
| env->fsr |= FSR_NVC; |
| if (status & float_flag_overflow) |
| env->fsr |= FSR_OFC; |
| if (status & float_flag_underflow) |
| env->fsr |= FSR_UFC; |
| if (status & float_flag_divbyzero) |
| env->fsr |= FSR_DZC; |
| if (status & float_flag_inexact) |
| env->fsr |= FSR_NXC; |
| |
| if ((env->fsr & FSR_CEXC_MASK) & ((env->fsr & FSR_TEM_MASK) >> 23)) { |
| /* Unmasked exception, generate a trap */ |
| env->fsr |= FSR_FTT_IEEE_EXCP; |
| raise_exception(TT_FP_EXCP); |
| } else { |
| /* Accumulate exceptions */ |
| env->fsr |= (env->fsr & FSR_CEXC_MASK) << 5; |
| } |
| } |
| } |
| |
| void helper_clear_float_exceptions(void) |
| { |
| set_float_exception_flags(0, &env->fp_status); |
| } |
| |
| float32 helper_fabss(float32 src) |
| { |
| return float32_abs(src); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| void helper_fabsd(void) |
| { |
| DT0 = float64_abs(DT1); |
| } |
| |
| void helper_fabsq(void) |
| { |
| QT0 = float128_abs(QT1); |
| } |
| #endif |
| |
| float32 helper_fsqrts(float32 src) |
| { |
| return float32_sqrt(src, &env->fp_status); |
| } |
| |
| void helper_fsqrtd(void) |
| { |
| DT0 = float64_sqrt(DT1, &env->fp_status); |
| } |
| |
| void helper_fsqrtq(void) |
| { |
| QT0 = float128_sqrt(QT1, &env->fp_status); |
| } |
| |
| #define GEN_FCMP(name, size, reg1, reg2, FS, E) \ |
| void glue(helper_, name) (void) \ |
| { \ |
| env->fsr &= FSR_FTT_NMASK; \ |
| if (E && (glue(size, _is_any_nan)(reg1) || \ |
| glue(size, _is_any_nan)(reg2)) && \ |
| (env->fsr & FSR_NVM)) { \ |
| env->fsr |= FSR_NVC; \ |
| env->fsr |= FSR_FTT_IEEE_EXCP; \ |
| raise_exception(TT_FP_EXCP); \ |
| } \ |
| switch (glue(size, _compare) (reg1, reg2, &env->fp_status)) { \ |
| case float_relation_unordered: \ |
| if ((env->fsr & FSR_NVM)) { \ |
| env->fsr |= FSR_NVC; \ |
| env->fsr |= FSR_FTT_IEEE_EXCP; \ |
| raise_exception(TT_FP_EXCP); \ |
| } else { \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ |
| env->fsr |= FSR_NVA; \ |
| } \ |
| break; \ |
| case float_relation_less: \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| env->fsr |= FSR_FCC0 << FS; \ |
| break; \ |
| case float_relation_greater: \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| env->fsr |= FSR_FCC1 << FS; \ |
| break; \ |
| default: \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| break; \ |
| } \ |
| } |
| #define GEN_FCMPS(name, size, FS, E) \ |
| void glue(helper_, name)(float32 src1, float32 src2) \ |
| { \ |
| env->fsr &= FSR_FTT_NMASK; \ |
| if (E && (glue(size, _is_any_nan)(src1) || \ |
| glue(size, _is_any_nan)(src2)) && \ |
| (env->fsr & FSR_NVM)) { \ |
| env->fsr |= FSR_NVC; \ |
| env->fsr |= FSR_FTT_IEEE_EXCP; \ |
| raise_exception(TT_FP_EXCP); \ |
| } \ |
| switch (glue(size, _compare) (src1, src2, &env->fp_status)) { \ |
| case float_relation_unordered: \ |
| if ((env->fsr & FSR_NVM)) { \ |
| env->fsr |= FSR_NVC; \ |
| env->fsr |= FSR_FTT_IEEE_EXCP; \ |
| raise_exception(TT_FP_EXCP); \ |
| } else { \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| env->fsr |= (FSR_FCC1 | FSR_FCC0) << FS; \ |
| env->fsr |= FSR_NVA; \ |
| } \ |
| break; \ |
| case float_relation_less: \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| env->fsr |= FSR_FCC0 << FS; \ |
| break; \ |
| case float_relation_greater: \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| env->fsr |= FSR_FCC1 << FS; \ |
| break; \ |
| default: \ |
| env->fsr &= ~((FSR_FCC1 | FSR_FCC0) << FS); \ |
| break; \ |
| } \ |
| } |
| |
| GEN_FCMPS(fcmps, float32, 0, 0); |
| GEN_FCMP(fcmpd, float64, DT0, DT1, 0, 0); |
| |
| GEN_FCMPS(fcmpes, float32, 0, 1); |
| GEN_FCMP(fcmped, float64, DT0, DT1, 0, 1); |
| |
| GEN_FCMP(fcmpq, float128, QT0, QT1, 0, 0); |
| GEN_FCMP(fcmpeq, float128, QT0, QT1, 0, 1); |
| |
| static uint32_t compute_all_flags(void) |
| { |
| return env->psr & PSR_ICC; |
| } |
| |
| static uint32_t compute_C_flags(void) |
| { |
| return env->psr & PSR_CARRY; |
| } |
| |
| static inline uint32_t get_NZ_icc(int32_t dst) |
| { |
| uint32_t ret = 0; |
| |
| if (dst == 0) { |
| ret = PSR_ZERO; |
| } else if (dst < 0) { |
| ret = PSR_NEG; |
| } |
| return ret; |
| } |
| |
| #ifdef TARGET_SPARC64 |
| static uint32_t compute_all_flags_xcc(void) |
| { |
| return env->xcc & PSR_ICC; |
| } |
| |
| static uint32_t compute_C_flags_xcc(void) |
| { |
| return env->xcc & PSR_CARRY; |
| } |
| |
| static inline uint32_t get_NZ_xcc(target_long dst) |
| { |
| uint32_t ret = 0; |
| |
| if (!dst) { |
| ret = PSR_ZERO; |
| } else if (dst < 0) { |
| ret = PSR_NEG; |
| } |
| return ret; |
| } |
| #endif |
| |
| static inline uint32_t get_V_div_icc(target_ulong src2) |
| { |
| uint32_t ret = 0; |
| |
| if (src2 != 0) { |
| ret = PSR_OVF; |
| } |
| return ret; |
| } |
| |
| static uint32_t compute_all_div(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_icc(CC_DST); |
| ret |= get_V_div_icc(CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_C_div(void) |
| { |
| return 0; |
| } |
| |
| static inline uint32_t get_C_add_icc(uint32_t dst, uint32_t src1) |
| { |
| uint32_t ret = 0; |
| |
| if (dst < src1) { |
| ret = PSR_CARRY; |
| } |
| return ret; |
| } |
| |
| static inline uint32_t get_C_addx_icc(uint32_t dst, uint32_t src1, |
| uint32_t src2) |
| { |
| uint32_t ret = 0; |
| |
| if (((src1 & src2) | (~dst & (src1 | src2))) & (1U << 31)) { |
| ret = PSR_CARRY; |
| } |
| return ret; |
| } |
| |
| static inline uint32_t get_V_add_icc(uint32_t dst, uint32_t src1, |
| uint32_t src2) |
| { |
| uint32_t ret = 0; |
| |
| if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1U << 31)) { |
| ret = PSR_OVF; |
| } |
| return ret; |
| } |
| |
| #ifdef TARGET_SPARC64 |
| static inline uint32_t get_C_add_xcc(target_ulong dst, target_ulong src1) |
| { |
| uint32_t ret = 0; |
| |
| if (dst < src1) { |
| ret = PSR_CARRY; |
| } |
| return ret; |
| } |
| |
| static inline uint32_t get_C_addx_xcc(target_ulong dst, target_ulong src1, |
| target_ulong src2) |
| { |
| uint32_t ret = 0; |
| |
| if (((src1 & src2) | (~dst & (src1 | src2))) & (1ULL << 63)) { |
| ret = PSR_CARRY; |
| } |
| return ret; |
| } |
| |
| static inline uint32_t get_V_add_xcc(target_ulong dst, target_ulong src1, |
| target_ulong src2) |
| { |
| uint32_t ret = 0; |
| |
| if (((src1 ^ src2 ^ -1) & (src1 ^ dst)) & (1ULL << 63)) { |
| ret = PSR_OVF; |
| } |
| return ret; |
| } |
| |
| static uint32_t compute_all_add_xcc(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_xcc(CC_DST); |
| ret |= get_C_add_xcc(CC_DST, CC_SRC); |
| ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_C_add_xcc(void) |
| { |
| return get_C_add_xcc(CC_DST, CC_SRC); |
| } |
| #endif |
| |
| static uint32_t compute_all_add(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_icc(CC_DST); |
| ret |= get_C_add_icc(CC_DST, CC_SRC); |
| ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_C_add(void) |
| { |
| return get_C_add_icc(CC_DST, CC_SRC); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| static uint32_t compute_all_addx_xcc(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_xcc(CC_DST); |
| ret |= get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2); |
| ret |= get_V_add_xcc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_C_addx_xcc(void) |
| { |
| uint32_t ret; |
| |
| ret = get_C_addx_xcc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| #endif |
| |
| static uint32_t compute_all_addx(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_icc(CC_DST); |
| ret |= get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2); |
| ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_C_addx(void) |
| { |
| uint32_t ret; |
| |
| ret = get_C_addx_icc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static inline uint32_t get_V_tag_icc(target_ulong src1, target_ulong src2) |
| { |
| uint32_t ret = 0; |
| |
| if ((src1 | src2) & 0x3) { |
| ret = PSR_OVF; |
| } |
| return ret; |
| } |
| |
| static uint32_t compute_all_tadd(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_icc(CC_DST); |
| ret |= get_C_add_icc(CC_DST, CC_SRC); |
| ret |= get_V_add_icc(CC_DST, CC_SRC, CC_SRC2); |
| ret |= get_V_tag_icc(CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_all_taddtv(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_icc(CC_DST); |
| ret |= get_C_add_icc(CC_DST, CC_SRC); |
| return ret; |
| } |
| |
| static inline uint32_t get_C_sub_icc(uint32_t src1, uint32_t src2) |
| { |
| uint32_t ret = 0; |
| |
| if (src1 < src2) { |
| ret = PSR_CARRY; |
| } |
| return ret; |
| } |
| |
| static inline uint32_t get_C_subx_icc(uint32_t dst, uint32_t src1, |
| uint32_t src2) |
| { |
| uint32_t ret = 0; |
| |
| if (((~src1 & src2) | (dst & (~src1 | src2))) & (1U << 31)) { |
| ret = PSR_CARRY; |
| } |
| return ret; |
| } |
| |
| static inline uint32_t get_V_sub_icc(uint32_t dst, uint32_t src1, |
| uint32_t src2) |
| { |
| uint32_t ret = 0; |
| |
| if (((src1 ^ src2) & (src1 ^ dst)) & (1U << 31)) { |
| ret = PSR_OVF; |
| } |
| return ret; |
| } |
| |
| |
| #ifdef TARGET_SPARC64 |
| static inline uint32_t get_C_sub_xcc(target_ulong src1, target_ulong src2) |
| { |
| uint32_t ret = 0; |
| |
| if (src1 < src2) { |
| ret = PSR_CARRY; |
| } |
| return ret; |
| } |
| |
| static inline uint32_t get_C_subx_xcc(target_ulong dst, target_ulong src1, |
| target_ulong src2) |
| { |
| uint32_t ret = 0; |
| |
| if (((~src1 & src2) | (dst & (~src1 | src2))) & (1ULL << 63)) { |
| ret = PSR_CARRY; |
| } |
| return ret; |
| } |
| |
| static inline uint32_t get_V_sub_xcc(target_ulong dst, target_ulong src1, |
| target_ulong src2) |
| { |
| uint32_t ret = 0; |
| |
| if (((src1 ^ src2) & (src1 ^ dst)) & (1ULL << 63)) { |
| ret = PSR_OVF; |
| } |
| return ret; |
| } |
| |
| static uint32_t compute_all_sub_xcc(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_xcc(CC_DST); |
| ret |= get_C_sub_xcc(CC_SRC, CC_SRC2); |
| ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_C_sub_xcc(void) |
| { |
| return get_C_sub_xcc(CC_SRC, CC_SRC2); |
| } |
| #endif |
| |
| static uint32_t compute_all_sub(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_icc(CC_DST); |
| ret |= get_C_sub_icc(CC_SRC, CC_SRC2); |
| ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_C_sub(void) |
| { |
| return get_C_sub_icc(CC_SRC, CC_SRC2); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| static uint32_t compute_all_subx_xcc(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_xcc(CC_DST); |
| ret |= get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2); |
| ret |= get_V_sub_xcc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_C_subx_xcc(void) |
| { |
| uint32_t ret; |
| |
| ret = get_C_subx_xcc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| #endif |
| |
| static uint32_t compute_all_subx(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_icc(CC_DST); |
| ret |= get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2); |
| ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_C_subx(void) |
| { |
| uint32_t ret; |
| |
| ret = get_C_subx_icc(CC_DST, CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_all_tsub(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_icc(CC_DST); |
| ret |= get_C_sub_icc(CC_SRC, CC_SRC2); |
| ret |= get_V_sub_icc(CC_DST, CC_SRC, CC_SRC2); |
| ret |= get_V_tag_icc(CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_all_tsubtv(void) |
| { |
| uint32_t ret; |
| |
| ret = get_NZ_icc(CC_DST); |
| ret |= get_C_sub_icc(CC_SRC, CC_SRC2); |
| return ret; |
| } |
| |
| static uint32_t compute_all_logic(void) |
| { |
| return get_NZ_icc(CC_DST); |
| } |
| |
| static uint32_t compute_C_logic(void) |
| { |
| return 0; |
| } |
| |
| #ifdef TARGET_SPARC64 |
| static uint32_t compute_all_logic_xcc(void) |
| { |
| return get_NZ_xcc(CC_DST); |
| } |
| #endif |
| |
| typedef struct CCTable { |
| uint32_t (*compute_all)(void); /* return all the flags */ |
| uint32_t (*compute_c)(void); /* return the C flag */ |
| } CCTable; |
| |
| static const CCTable icc_table[CC_OP_NB] = { |
| /* CC_OP_DYNAMIC should never happen */ |
| [CC_OP_FLAGS] = { compute_all_flags, compute_C_flags }, |
| [CC_OP_DIV] = { compute_all_div, compute_C_div }, |
| [CC_OP_ADD] = { compute_all_add, compute_C_add }, |
| [CC_OP_ADDX] = { compute_all_addx, compute_C_addx }, |
| [CC_OP_TADD] = { compute_all_tadd, compute_C_add }, |
| [CC_OP_TADDTV] = { compute_all_taddtv, compute_C_add }, |
| [CC_OP_SUB] = { compute_all_sub, compute_C_sub }, |
| [CC_OP_SUBX] = { compute_all_subx, compute_C_subx }, |
| [CC_OP_TSUB] = { compute_all_tsub, compute_C_sub }, |
| [CC_OP_TSUBTV] = { compute_all_tsubtv, compute_C_sub }, |
| [CC_OP_LOGIC] = { compute_all_logic, compute_C_logic }, |
| }; |
| |
| #ifdef TARGET_SPARC64 |
| static const CCTable xcc_table[CC_OP_NB] = { |
| /* CC_OP_DYNAMIC should never happen */ |
| [CC_OP_FLAGS] = { compute_all_flags_xcc, compute_C_flags_xcc }, |
| [CC_OP_DIV] = { compute_all_logic_xcc, compute_C_logic }, |
| [CC_OP_ADD] = { compute_all_add_xcc, compute_C_add_xcc }, |
| [CC_OP_ADDX] = { compute_all_addx_xcc, compute_C_addx_xcc }, |
| [CC_OP_TADD] = { compute_all_add_xcc, compute_C_add_xcc }, |
| [CC_OP_TADDTV] = { compute_all_add_xcc, compute_C_add_xcc }, |
| [CC_OP_SUB] = { compute_all_sub_xcc, compute_C_sub_xcc }, |
| [CC_OP_SUBX] = { compute_all_subx_xcc, compute_C_subx_xcc }, |
| [CC_OP_TSUB] = { compute_all_sub_xcc, compute_C_sub_xcc }, |
| [CC_OP_TSUBTV] = { compute_all_sub_xcc, compute_C_sub_xcc }, |
| [CC_OP_LOGIC] = { compute_all_logic_xcc, compute_C_logic }, |
| }; |
| #endif |
| |
| void helper_compute_psr(void) |
| { |
| uint32_t new_psr; |
| |
| new_psr = icc_table[CC_OP].compute_all(); |
| env->psr = new_psr; |
| #ifdef TARGET_SPARC64 |
| new_psr = xcc_table[CC_OP].compute_all(); |
| env->xcc = new_psr; |
| #endif |
| CC_OP = CC_OP_FLAGS; |
| } |
| |
| uint32_t helper_compute_C_icc(void) |
| { |
| uint32_t ret; |
| |
| ret = icc_table[CC_OP].compute_c() >> PSR_CARRY_SHIFT; |
| return ret; |
| } |
| |
| static inline void memcpy32(target_ulong *dst, const target_ulong *src) |
| { |
| dst[0] = src[0]; |
| dst[1] = src[1]; |
| dst[2] = src[2]; |
| dst[3] = src[3]; |
| dst[4] = src[4]; |
| dst[5] = src[5]; |
| dst[6] = src[6]; |
| dst[7] = src[7]; |
| } |
| |
| static void set_cwp(int new_cwp) |
| { |
| /* put the modified wrap registers at their proper location */ |
| if (env->cwp == env->nwindows - 1) { |
| memcpy32(env->regbase, env->regbase + env->nwindows * 16); |
| } |
| env->cwp = new_cwp; |
| |
| /* put the wrap registers at their temporary location */ |
| if (new_cwp == env->nwindows - 1) { |
| memcpy32(env->regbase + env->nwindows * 16, env->regbase); |
| } |
| env->regwptr = env->regbase + (new_cwp * 16); |
| } |
| |
| void cpu_set_cwp(CPUState *env1, int new_cwp) |
| { |
| CPUState *saved_env; |
| |
| saved_env = env; |
| env = env1; |
| set_cwp(new_cwp); |
| env = saved_env; |
| } |
| |
| static target_ulong get_psr(void) |
| { |
| helper_compute_psr(); |
| |
| #if !defined (TARGET_SPARC64) |
| return env->version | (env->psr & PSR_ICC) | |
| (env->psref? PSR_EF : 0) | |
| (env->psrpil << 8) | |
| (env->psrs? PSR_S : 0) | |
| (env->psrps? PSR_PS : 0) | |
| (env->psret? PSR_ET : 0) | env->cwp; |
| #else |
| return env->psr & PSR_ICC; |
| #endif |
| } |
| |
| target_ulong cpu_get_psr(CPUState *env1) |
| { |
| CPUState *saved_env; |
| target_ulong ret; |
| |
| saved_env = env; |
| env = env1; |
| ret = get_psr(); |
| env = saved_env; |
| return ret; |
| } |
| |
| static void put_psr(target_ulong val) |
| { |
| env->psr = val & PSR_ICC; |
| #if !defined (TARGET_SPARC64) |
| env->psref = (val & PSR_EF)? 1 : 0; |
| env->psrpil = (val & PSR_PIL) >> 8; |
| #endif |
| #if ((!defined (TARGET_SPARC64)) && !defined(CONFIG_USER_ONLY)) |
| cpu_check_irqs(env); |
| #endif |
| #if !defined (TARGET_SPARC64) |
| env->psrs = (val & PSR_S)? 1 : 0; |
| env->psrps = (val & PSR_PS)? 1 : 0; |
| env->psret = (val & PSR_ET)? 1 : 0; |
| set_cwp(val & PSR_CWP); |
| #endif |
| env->cc_op = CC_OP_FLAGS; |
| } |
| |
| void cpu_put_psr(CPUState *env1, target_ulong val) |
| { |
| CPUState *saved_env; |
| |
| saved_env = env; |
| env = env1; |
| put_psr(val); |
| env = saved_env; |
| } |
| |
| static int cwp_inc(int cwp) |
| { |
| if (unlikely(cwp >= env->nwindows)) { |
| cwp -= env->nwindows; |
| } |
| return cwp; |
| } |
| |
| int cpu_cwp_inc(CPUState *env1, int cwp) |
| { |
| CPUState *saved_env; |
| target_ulong ret; |
| |
| saved_env = env; |
| env = env1; |
| ret = cwp_inc(cwp); |
| env = saved_env; |
| return ret; |
| } |
| |
| static int cwp_dec(int cwp) |
| { |
| if (unlikely(cwp < 0)) { |
| cwp += env->nwindows; |
| } |
| return cwp; |
| } |
| |
| int cpu_cwp_dec(CPUState *env1, int cwp) |
| { |
| CPUState *saved_env; |
| target_ulong ret; |
| |
| saved_env = env; |
| env = env1; |
| ret = cwp_dec(cwp); |
| env = saved_env; |
| return ret; |
| } |
| |
| #ifdef TARGET_SPARC64 |
| GEN_FCMPS(fcmps_fcc1, float32, 22, 0); |
| GEN_FCMP(fcmpd_fcc1, float64, DT0, DT1, 22, 0); |
| GEN_FCMP(fcmpq_fcc1, float128, QT0, QT1, 22, 0); |
| |
| GEN_FCMPS(fcmps_fcc2, float32, 24, 0); |
| GEN_FCMP(fcmpd_fcc2, float64, DT0, DT1, 24, 0); |
| GEN_FCMP(fcmpq_fcc2, float128, QT0, QT1, 24, 0); |
| |
| GEN_FCMPS(fcmps_fcc3, float32, 26, 0); |
| GEN_FCMP(fcmpd_fcc3, float64, DT0, DT1, 26, 0); |
| GEN_FCMP(fcmpq_fcc3, float128, QT0, QT1, 26, 0); |
| |
| GEN_FCMPS(fcmpes_fcc1, float32, 22, 1); |
| GEN_FCMP(fcmped_fcc1, float64, DT0, DT1, 22, 1); |
| GEN_FCMP(fcmpeq_fcc1, float128, QT0, QT1, 22, 1); |
| |
| GEN_FCMPS(fcmpes_fcc2, float32, 24, 1); |
| GEN_FCMP(fcmped_fcc2, float64, DT0, DT1, 24, 1); |
| GEN_FCMP(fcmpeq_fcc2, float128, QT0, QT1, 24, 1); |
| |
| GEN_FCMPS(fcmpes_fcc3, float32, 26, 1); |
| GEN_FCMP(fcmped_fcc3, float64, DT0, DT1, 26, 1); |
| GEN_FCMP(fcmpeq_fcc3, float128, QT0, QT1, 26, 1); |
| #endif |
| #undef GEN_FCMPS |
| |
| #if !defined(TARGET_SPARC64) && !defined(CONFIG_USER_ONLY) && \ |
| defined(DEBUG_MXCC) |
| static void dump_mxcc(CPUState *env) |
| { |
| printf("mxccdata: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 |
| "\n", |
| env->mxccdata[0], env->mxccdata[1], |
| env->mxccdata[2], env->mxccdata[3]); |
| printf("mxccregs: %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 |
| "\n" |
| " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 " %016" PRIx64 |
| "\n", |
| env->mxccregs[0], env->mxccregs[1], |
| env->mxccregs[2], env->mxccregs[3], |
| env->mxccregs[4], env->mxccregs[5], |
| env->mxccregs[6], env->mxccregs[7]); |
| } |
| #endif |
| |
| #if (defined(TARGET_SPARC64) || !defined(CONFIG_USER_ONLY)) \ |
| && defined(DEBUG_ASI) |
| static void dump_asi(const char *txt, target_ulong addr, int asi, int size, |
| uint64_t r1) |
| { |
| switch (size) |
| { |
| case 1: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %02" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xff); |
| break; |
| case 2: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %04" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xffff); |
| break; |
| case 4: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %08" PRIx64 "\n", txt, |
| addr, asi, r1 & 0xffffffff); |
| break; |
| case 8: |
| DPRINTF_ASI("%s "TARGET_FMT_lx " asi 0x%02x = %016" PRIx64 "\n", txt, |
| addr, asi, r1); |
| break; |
| } |
| } |
| #endif |
| |
| #ifndef TARGET_SPARC64 |
| #ifndef CONFIG_USER_ONLY |
| |
| |
| /* Leon3 cache control */ |
| |
| static void leon3_cache_control_int(void) |
| { |
| uint32_t state = 0; |
| |
| if (env->cache_control & CACHE_CTRL_IF) { |
| /* Instruction cache state */ |
| state = env->cache_control & CACHE_STATE_MASK; |
| if (state == CACHE_ENABLED) { |
| state = CACHE_FROZEN; |
| DPRINTF_CACHE_CONTROL("Instruction cache: freeze\n"); |
| } |
| |
| env->cache_control &= ~CACHE_STATE_MASK; |
| env->cache_control |= state; |
| } |
| |
| if (env->cache_control & CACHE_CTRL_DF) { |
| /* Data cache state */ |
| state = (env->cache_control >> 2) & CACHE_STATE_MASK; |
| if (state == CACHE_ENABLED) { |
| state = CACHE_FROZEN; |
| DPRINTF_CACHE_CONTROL("Data cache: freeze\n"); |
| } |
| |
| env->cache_control &= ~(CACHE_STATE_MASK << 2); |
| env->cache_control |= (state << 2); |
| } |
| } |
| |
| static void leon3_cache_control_st(target_ulong addr, uint64_t val, int size) |
| { |
| DPRINTF_CACHE_CONTROL("st addr:%08x, val:%" PRIx64 ", size:%d\n", |
| addr, val, size); |
| |
| if (size != 4) { |
| DPRINTF_CACHE_CONTROL("32bits only\n"); |
| return; |
| } |
| |
| switch (addr) { |
| case 0x00: /* Cache control */ |
| |
| /* These values must always be read as zeros */ |
| val &= ~CACHE_CTRL_FD; |
| val &= ~CACHE_CTRL_FI; |
| val &= ~CACHE_CTRL_IB; |
| val &= ~CACHE_CTRL_IP; |
| val &= ~CACHE_CTRL_DP; |
| |
| env->cache_control = val; |
| break; |
| case 0x04: /* Instruction cache configuration */ |
| case 0x08: /* Data cache configuration */ |
| /* Read Only */ |
| break; |
| default: |
| DPRINTF_CACHE_CONTROL("write unknown register %08x\n", addr); |
| break; |
| }; |
| } |
| |
| static uint64_t leon3_cache_control_ld(target_ulong addr, int size) |
| { |
| uint64_t ret = 0; |
| |
| if (size != 4) { |
| DPRINTF_CACHE_CONTROL("32bits only\n"); |
| return 0; |
| } |
| |
| switch (addr) { |
| case 0x00: /* Cache control */ |
| ret = env->cache_control; |
| break; |
| |
| /* Configuration registers are read and only always keep those |
| predefined values */ |
| |
| case 0x04: /* Instruction cache configuration */ |
| ret = 0x10220000; |
| break; |
| case 0x08: /* Data cache configuration */ |
| ret = 0x18220000; |
| break; |
| default: |
| DPRINTF_CACHE_CONTROL("read unknown register %08x\n", addr); |
| break; |
| }; |
| DPRINTF_CACHE_CONTROL("ld addr:%08x, ret:0x%" PRIx64 ", size:%d\n", |
| addr, ret, size); |
| return ret; |
| } |
| |
| void leon3_irq_manager(void *irq_manager, int intno) |
| { |
| leon3_irq_ack(irq_manager, intno); |
| leon3_cache_control_int(); |
| } |
| |
| uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) |
| { |
| uint64_t ret = 0; |
| #if defined(DEBUG_MXCC) || defined(DEBUG_ASI) |
| uint32_t last_addr = addr; |
| #endif |
| |
| helper_check_align(addr, size - 1); |
| switch (asi) { |
| case 2: /* SuperSparc MXCC registers and Leon3 cache control */ |
| switch (addr) { |
| case 0x00: /* Leon3 Cache Control */ |
| case 0x08: /* Leon3 Instruction Cache config */ |
| case 0x0C: /* Leon3 Date Cache config */ |
| if (env->def->features & CPU_FEATURE_CACHE_CTRL) { |
| ret = leon3_cache_control_ld(addr, size); |
| } |
| break; |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) |
| ret = env->mxccregs[3]; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) |
| ret = env->mxccregs[3]; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00c00: /* Module reset register */ |
| if (size == 8) { |
| ret = env->mxccregs[5]; |
| // should we do something here? |
| } else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) |
| ret = env->mxccregs[7]; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| default: |
| DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, |
| size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, sign = %d, " |
| "addr = %08x -> ret = %" PRIx64 "," |
| "addr = %08x\n", asi, size, sign, last_addr, ret, addr); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case 3: /* MMU probe */ |
| { |
| int mmulev; |
| |
| mmulev = (addr >> 8) & 15; |
| if (mmulev > 4) |
| ret = 0; |
| else |
| ret = mmu_probe(env, addr, mmulev); |
| DPRINTF_MMU("mmu_probe: 0x%08x (lev %d) -> 0x%08" PRIx64 "\n", |
| addr, mmulev, ret); |
| } |
| break; |
| case 4: /* read MMU regs */ |
| { |
| int reg = (addr >> 8) & 0x1f; |
| |
| ret = env->mmuregs[reg]; |
| if (reg == 3) /* Fault status cleared on read */ |
| env->mmuregs[3] = 0; |
| else if (reg == 0x13) /* Fault status read */ |
| ret = env->mmuregs[3]; |
| else if (reg == 0x14) /* Fault address read */ |
| ret = env->mmuregs[4]; |
| DPRINTF_MMU("mmu_read: reg[%d] = 0x%08" PRIx64 "\n", reg, ret); |
| } |
| break; |
| case 5: // Turbosparc ITLB Diagnostic |
| case 6: // Turbosparc DTLB Diagnostic |
| case 7: // Turbosparc IOTLB Diagnostic |
| break; |
| case 9: /* Supervisor code access */ |
| switch(size) { |
| case 1: |
| ret = ldub_code(addr); |
| break; |
| case 2: |
| ret = lduw_code(addr); |
| break; |
| default: |
| case 4: |
| ret = ldl_code(addr); |
| break; |
| case 8: |
| ret = ldq_code(addr); |
| break; |
| } |
| break; |
| case 0xa: /* User data access */ |
| switch(size) { |
| case 1: |
| ret = ldub_user(addr); |
| break; |
| case 2: |
| ret = lduw_user(addr); |
| break; |
| default: |
| case 4: |
| ret = ldl_user(addr); |
| break; |
| case 8: |
| ret = ldq_user(addr); |
| break; |
| } |
| break; |
| case 0xb: /* Supervisor data access */ |
| switch(size) { |
| case 1: |
| ret = ldub_kernel(addr); |
| break; |
| case 2: |
| ret = lduw_kernel(addr); |
| break; |
| default: |
| case 4: |
| ret = ldl_kernel(addr); |
| break; |
| case 8: |
| ret = ldq_kernel(addr); |
| break; |
| } |
| break; |
| case 0xc: /* I-cache tag */ |
| case 0xd: /* I-cache data */ |
| case 0xe: /* D-cache tag */ |
| case 0xf: /* D-cache data */ |
| break; |
| case 0x20: /* MMU passthrough */ |
| switch(size) { |
| case 1: |
| ret = ldub_phys(addr); |
| break; |
| case 2: |
| ret = lduw_phys(addr); |
| break; |
| default: |
| case 4: |
| ret = ldl_phys(addr); |
| break; |
| case 8: |
| ret = ldq_phys(addr); |
| break; |
| } |
| break; |
| case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ |
| switch(size) { |
| case 1: |
| ret = ldub_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| case 2: |
| ret = lduw_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| default: |
| case 4: |
| ret = ldl_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| case 8: |
| ret = ldq_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32)); |
| break; |
| } |
| break; |
| case 0x30: // Turbosparc secondary cache diagnostic |
| case 0x31: // Turbosparc RAM snoop |
| case 0x32: // Turbosparc page table descriptor diagnostic |
| case 0x39: /* data cache diagnostic register */ |
| case 0x4c: /* SuperSPARC MMU Breakpoint Action register */ |
| ret = 0; |
| break; |
| case 0x38: /* SuperSPARC MMU Breakpoint Control Registers */ |
| { |
| int reg = (addr >> 8) & 3; |
| |
| switch(reg) { |
| case 0: /* Breakpoint Value (Addr) */ |
| ret = env->mmubpregs[reg]; |
| break; |
| case 1: /* Breakpoint Mask */ |
| ret = env->mmubpregs[reg]; |
| break; |
| case 2: /* Breakpoint Control */ |
| ret = env->mmubpregs[reg]; |
| break; |
| case 3: /* Breakpoint Status */ |
| ret = env->mmubpregs[reg]; |
| env->mmubpregs[reg] = 0ULL; |
| break; |
| } |
| DPRINTF_MMU("read breakpoint reg[%d] 0x%016" PRIx64 "\n", reg, |
| ret); |
| } |
| break; |
| case 8: /* User code access, XXX */ |
| default: |
| do_unassigned_access(addr, 0, 0, asi, size); |
| ret = 0; |
| break; |
| } |
| if (sign) { |
| switch(size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(target_ulong addr, uint64_t val, int asi, int size) |
| { |
| helper_check_align(addr, size - 1); |
| switch(asi) { |
| case 2: /* SuperSparc MXCC registers and Leon3 cache control */ |
| switch (addr) { |
| case 0x00: /* Leon3 Cache Control */ |
| case 0x08: /* Leon3 Instruction Cache config */ |
| case 0x0C: /* Leon3 Date Cache config */ |
| if (env->def->features & CPU_FEATURE_CACHE_CTRL) { |
| leon3_cache_control_st(addr, val, size); |
| } |
| break; |
| |
| case 0x01c00000: /* MXCC stream data register 0 */ |
| if (size == 8) |
| env->mxccdata[0] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00008: /* MXCC stream data register 1 */ |
| if (size == 8) |
| env->mxccdata[1] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00010: /* MXCC stream data register 2 */ |
| if (size == 8) |
| env->mxccdata[2] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00018: /* MXCC stream data register 3 */ |
| if (size == 8) |
| env->mxccdata[3] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00100: /* MXCC stream source */ |
| if (size == 8) |
| env->mxccregs[0] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| env->mxccdata[0] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + |
| 0); |
| env->mxccdata[1] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + |
| 8); |
| env->mxccdata[2] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + |
| 16); |
| env->mxccdata[3] = ldq_phys((env->mxccregs[0] & 0xffffffffULL) + |
| 24); |
| break; |
| case 0x01c00200: /* MXCC stream destination */ |
| if (size == 8) |
| env->mxccregs[1] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 0, |
| env->mxccdata[0]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 8, |
| env->mxccdata[1]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 16, |
| env->mxccdata[2]); |
| stq_phys((env->mxccregs[1] & 0xffffffffULL) + 24, |
| env->mxccdata[3]); |
| break; |
| case 0x01c00a00: /* MXCC control register */ |
| if (size == 8) |
| env->mxccregs[3] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00a04: /* MXCC control register */ |
| if (size == 4) |
| env->mxccregs[3] = (env->mxccregs[3] & 0xffffffff00000000ULL) |
| | val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00e00: /* MXCC error register */ |
| // writing a 1 bit clears the error |
| if (size == 8) |
| env->mxccregs[6] &= ~val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| case 0x01c00f00: /* MBus port address register */ |
| if (size == 8) |
| env->mxccregs[7] = val; |
| else |
| DPRINTF_MXCC("%08x: unimplemented access size: %d\n", addr, |
| size); |
| break; |
| default: |
| DPRINTF_MXCC("%08x: unimplemented address, size: %d\n", addr, |
| size); |
| break; |
| } |
| DPRINTF_MXCC("asi = %d, size = %d, addr = %08x, val = %" PRIx64 "\n", |
| asi, size, addr, val); |
| #ifdef DEBUG_MXCC |
| dump_mxcc(env); |
| #endif |
| break; |
| case 3: /* MMU flush */ |
| { |
| int mmulev; |
| |
| mmulev = (addr >> 8) & 15; |
| DPRINTF_MMU("mmu flush level %d\n", mmulev); |
| switch (mmulev) { |
| case 0: // flush page |
| tlb_flush_page(env, addr & 0xfffff000); |
| break; |
| case 1: // flush segment (256k) |
| case 2: // flush region (16M) |
| case 3: // flush context (4G) |
| case 4: // flush entire |
| tlb_flush(env, 1); |
| break; |
| default: |
| break; |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| } |
| break; |
| case 4: /* write MMU regs */ |
| { |
| int reg = (addr >> 8) & 0x1f; |
| uint32_t oldreg; |
| |
| oldreg = env->mmuregs[reg]; |
| switch(reg) { |
| case 0: // Control Register |
| env->mmuregs[reg] = (env->mmuregs[reg] & 0xff000000) | |
| (val & 0x00ffffff); |
| // Mappings generated during no-fault mode or MMU |
| // disabled mode are invalid in normal mode |
| if ((oldreg & (MMU_E | MMU_NF | env->def->mmu_bm)) != |
| (env->mmuregs[reg] & (MMU_E | MMU_NF | env->def->mmu_bm))) |
| tlb_flush(env, 1); |
| break; |
| case 1: // Context Table Pointer Register |
| env->mmuregs[reg] = val & env->def->mmu_ctpr_mask; |
| break; |
| case 2: // Context Register |
| env->mmuregs[reg] = val & env->def->mmu_cxr_mask; |
| if (oldreg != env->mmuregs[reg]) { |
| /* we flush when the MMU context changes because |
| QEMU has no MMU context support */ |
| tlb_flush(env, 1); |
| } |
| break; |
| case 3: // Synchronous Fault Status Register with Clear |
| case 4: // Synchronous Fault Address Register |
| break; |
| case 0x10: // TLB Replacement Control Register |
| env->mmuregs[reg] = val & env->def->mmu_trcr_mask; |
| break; |
| case 0x13: // Synchronous Fault Status Register with Read and Clear |
| env->mmuregs[3] = val & env->def->mmu_sfsr_mask; |
| break; |
| case 0x14: // Synchronous Fault Address Register |
| env->mmuregs[4] = val; |
| break; |
| default: |
| env->mmuregs[reg] = val; |
| break; |
| } |
| if (oldreg != env->mmuregs[reg]) { |
| DPRINTF_MMU("mmu change reg[%d]: 0x%08x -> 0x%08x\n", |
| reg, oldreg, env->mmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| } |
| break; |
| case 5: // Turbosparc ITLB Diagnostic |
| case 6: // Turbosparc DTLB Diagnostic |
| case 7: // Turbosparc IOTLB Diagnostic |
| break; |
| case 0xa: /* User data access */ |
| switch(size) { |
| case 1: |
| stb_user(addr, val); |
| break; |
| case 2: |
| stw_user(addr, val); |
| break; |
| default: |
| case 4: |
| stl_user(addr, val); |
| break; |
| case 8: |
| stq_user(addr, val); |
| break; |
| } |
| break; |
| case 0xb: /* Supervisor data access */ |
| switch(size) { |
| case 1: |
| stb_kernel(addr, val); |
| break; |
| case 2: |
| stw_kernel(addr, val); |
| break; |
| default: |
| case 4: |
| stl_kernel(addr, val); |
| break; |
| case 8: |
| stq_kernel(addr, val); |
| break; |
| } |
| break; |
| case 0xc: /* I-cache tag */ |
| case 0xd: /* I-cache data */ |
| case 0xe: /* D-cache tag */ |
| case 0xf: /* D-cache data */ |
| case 0x10: /* I/D-cache flush page */ |
| case 0x11: /* I/D-cache flush segment */ |
| case 0x12: /* I/D-cache flush region */ |
| case 0x13: /* I/D-cache flush context */ |
| case 0x14: /* I/D-cache flush user */ |
| break; |
| case 0x17: /* Block copy, sta access */ |
| { |
| // val = src |
| // addr = dst |
| // copy 32 bytes |
| unsigned int i; |
| uint32_t src = val & ~3, dst = addr & ~3, temp; |
| |
| for (i = 0; i < 32; i += 4, src += 4, dst += 4) { |
| temp = ldl_kernel(src); |
| stl_kernel(dst, temp); |
| } |
| } |
| break; |
| case 0x1f: /* Block fill, stda access */ |
| { |
| // addr = dst |
| // fill 32 bytes with val |
| unsigned int i; |
| uint32_t dst = addr & 7; |
| |
| for (i = 0; i < 32; i += 8, dst += 8) |
| stq_kernel(dst, val); |
| } |
| break; |
| case 0x20: /* MMU passthrough */ |
| { |
| switch(size) { |
| case 1: |
| stb_phys(addr, val); |
| break; |
| case 2: |
| stw_phys(addr, val); |
| break; |
| case 4: |
| default: |
| stl_phys(addr, val); |
| break; |
| case 8: |
| stq_phys(addr, val); |
| break; |
| } |
| } |
| break; |
| case 0x21 ... 0x2f: /* MMU passthrough, 0x100000000 to 0xfffffffff */ |
| { |
| switch(size) { |
| case 1: |
| stb_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32), val); |
| break; |
| case 2: |
| stw_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32), val); |
| break; |
| case 4: |
| default: |
| stl_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32), val); |
| break; |
| case 8: |
| stq_phys((target_phys_addr_t)addr |
| | ((target_phys_addr_t)(asi & 0xf) << 32), val); |
| break; |
| } |
| } |
| break; |
| case 0x30: // store buffer tags or Turbosparc secondary cache diagnostic |
| case 0x31: // store buffer data, Ross RT620 I-cache flush or |
| // Turbosparc snoop RAM |
| case 0x32: // store buffer control or Turbosparc page table |
| // descriptor diagnostic |
| case 0x36: /* I-cache flash clear */ |
| case 0x37: /* D-cache flash clear */ |
| case 0x4c: /* breakpoint action */ |
| break; |
| case 0x38: /* SuperSPARC MMU Breakpoint Control Registers*/ |
| { |
| int reg = (addr >> 8) & 3; |
| |
| switch(reg) { |
| case 0: /* Breakpoint Value (Addr) */ |
| env->mmubpregs[reg] = (val & 0xfffffffffULL); |
| break; |
| case 1: /* Breakpoint Mask */ |
| env->mmubpregs[reg] = (val & 0xfffffffffULL); |
| break; |
| case 2: /* Breakpoint Control */ |
| env->mmubpregs[reg] = (val & 0x7fULL); |
| break; |
| case 3: /* Breakpoint Status */ |
| env->mmubpregs[reg] = (val & 0xfULL); |
| break; |
| } |
| DPRINTF_MMU("write breakpoint reg[%d] 0x%016x\n", reg, |
| env->mmuregs[reg]); |
| } |
| break; |
| case 8: /* User code access, XXX */ |
| case 9: /* Supervisor code access, XXX */ |
| default: |
| do_unassigned_access(addr, 1, 0, asi, size); |
| break; |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| } |
| |
| #endif /* CONFIG_USER_ONLY */ |
| #else /* TARGET_SPARC64 */ |
| |
| #ifdef CONFIG_USER_ONLY |
| uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) |
| { |
| uint64_t ret = 0; |
| #if defined(DEBUG_ASI) |
| target_ulong last_addr = addr; |
| #endif |
| |
| if (asi < 0x80) |
| raise_exception(TT_PRIV_ACT); |
| |
| helper_check_align(addr, size - 1); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case 0x82: // Primary no-fault |
| case 0x8a: // Primary no-fault LE |
| if (page_check_range(addr, size, PAGE_READ) == -1) { |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return 0; |
| } |
| // Fall through |
| case 0x80: // Primary |
| case 0x88: // Primary LE |
| { |
| switch(size) { |
| case 1: |
| ret = ldub_raw(addr); |
| break; |
| case 2: |
| ret = lduw_raw(addr); |
| break; |
| case 4: |
| ret = ldl_raw(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_raw(addr); |
| break; |
| } |
| } |
| break; |
| case 0x83: // Secondary no-fault |
| case 0x8b: // Secondary no-fault LE |
| if (page_check_range(addr, size, PAGE_READ) == -1) { |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return 0; |
| } |
| // Fall through |
| case 0x81: // Secondary |
| case 0x89: // Secondary LE |
| // XXX |
| break; |
| default: |
| break; |
| } |
| |
| /* Convert from little endian */ |
| switch (asi) { |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| case 0x8a: // Primary no-fault LE |
| case 0x8b: // Secondary no-fault LE |
| switch(size) { |
| case 2: |
| ret = bswap16(ret); |
| break; |
| case 4: |
| ret = bswap32(ret); |
| break; |
| case 8: |
| ret = bswap64(ret); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch(size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) |
| { |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| if (asi < 0x80) |
| raise_exception(TT_PRIV_ACT); |
| |
| helper_check_align(addr, size - 1); |
| addr = asi_address_mask(env, asi, addr); |
| |
| /* Convert to little endian */ |
| switch (asi) { |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| switch(size) { |
| case 2: |
| val = bswap16(val); |
| break; |
| case 4: |
| val = bswap32(val); |
| break; |
| case 8: |
| val = bswap64(val); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch(asi) { |
| case 0x80: // Primary |
| case 0x88: // Primary LE |
| { |
| switch(size) { |
| case 1: |
| stb_raw(addr, val); |
| break; |
| case 2: |
| stw_raw(addr, val); |
| break; |
| case 4: |
| stl_raw(addr, val); |
| break; |
| case 8: |
| default: |
| stq_raw(addr, val); |
| break; |
| } |
| } |
| break; |
| case 0x81: // Secondary |
| case 0x89: // Secondary LE |
| // XXX |
| return; |
| |
| case 0x82: // Primary no-fault, RO |
| case 0x83: // Secondary no-fault, RO |
| case 0x8a: // Primary no-fault LE, RO |
| case 0x8b: // Secondary no-fault LE, RO |
| default: |
| do_unassigned_access(addr, 1, 0, 1, size); |
| return; |
| } |
| } |
| |
| #else /* CONFIG_USER_ONLY */ |
| |
| uint64_t helper_ld_asi(target_ulong addr, int asi, int size, int sign) |
| { |
| uint64_t ret = 0; |
| #if defined(DEBUG_ASI) |
| target_ulong last_addr = addr; |
| #endif |
| |
| asi &= 0xff; |
| |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (cpu_has_hypervisor(env) |
| && asi >= 0x30 && asi < 0x80 |
| && !(env->hpstate & HS_PRIV))) |
| raise_exception(TT_PRIV_ACT); |
| |
| helper_check_align(addr, size - 1); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case 0x82: // Primary no-fault |
| case 0x8a: // Primary no-fault LE |
| case 0x83: // Secondary no-fault |
| case 0x8b: // Secondary no-fault LE |
| { |
| /* secondary space access has lowest asi bit equal to 1 */ |
| int access_mmu_idx = ( asi & 1 ) ? MMU_KERNEL_IDX |
| : MMU_KERNEL_SECONDARY_IDX; |
| |
| if (cpu_get_phys_page_nofault(env, addr, access_mmu_idx) == -1ULL) { |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return 0; |
| } |
| } |
| // Fall through |
| case 0x10: // As if user primary |
| case 0x11: // As if user secondary |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x80: // Primary |
| case 0x81: // Secondary |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| case 0xe2: // UA2007 Primary block init |
| case 0xe3: // UA2007 Secondary block init |
| if ((asi & 0x80) && (env->pstate & PS_PRIV)) { |
| if (cpu_hypervisor_mode(env)) { |
| switch(size) { |
| case 1: |
| ret = ldub_hypv(addr); |
| break; |
| case 2: |
| ret = lduw_hypv(addr); |
| break; |
| case 4: |
| ret = ldl_hypv(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_hypv(addr); |
| break; |
| } |
| } else { |
| /* secondary space access has lowest asi bit equal to 1 */ |
| if (asi & 1) { |
| switch(size) { |
| case 1: |
| ret = ldub_kernel_secondary(addr); |
| break; |
| case 2: |
| ret = lduw_kernel_secondary(addr); |
| break; |
| case 4: |
| ret = ldl_kernel_secondary(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_kernel_secondary(addr); |
| break; |
| } |
| } else { |
| switch(size) { |
| case 1: |
| ret = ldub_kernel(addr); |
| break; |
| case 2: |
| ret = lduw_kernel(addr); |
| break; |
| case 4: |
| ret = ldl_kernel(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_kernel(addr); |
| break; |
| } |
| } |
| } |
| } else { |
| /* secondary space access has lowest asi bit equal to 1 */ |
| if (asi & 1) { |
| switch(size) { |
| case 1: |
| ret = ldub_user_secondary(addr); |
| break; |
| case 2: |
| ret = lduw_user_secondary(addr); |
| break; |
| case 4: |
| ret = ldl_user_secondary(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_user_secondary(addr); |
| break; |
| } |
| } else { |
| switch(size) { |
| case 1: |
| ret = ldub_user(addr); |
| break; |
| case 2: |
| ret = lduw_user(addr); |
| break; |
| case 4: |
| ret = ldl_user(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_user(addr); |
| break; |
| } |
| } |
| } |
| break; |
| case 0x14: // Bypass |
| case 0x15: // Bypass, non-cacheable |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| { |
| switch(size) { |
| case 1: |
| ret = ldub_phys(addr); |
| break; |
| case 2: |
| ret = lduw_phys(addr); |
| break; |
| case 4: |
| ret = ldl_phys(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_phys(addr); |
| break; |
| } |
| break; |
| } |
| case 0x24: // Nucleus quad LDD 128 bit atomic |
| case 0x2c: // Nucleus quad LDD 128 bit atomic LE |
| // Only ldda allowed |
| raise_exception(TT_ILL_INSN); |
| return 0; |
| case 0x04: // Nucleus |
| case 0x0c: // Nucleus Little Endian (LE) |
| { |
| switch(size) { |
| case 1: |
| ret = ldub_nucleus(addr); |
| break; |
| case 2: |
| ret = lduw_nucleus(addr); |
| break; |
| case 4: |
| ret = ldl_nucleus(addr); |
| break; |
| default: |
| case 8: |
| ret = ldq_nucleus(addr); |
| break; |
| } |
| break; |
| } |
| case 0x4a: // UPA config |
| // XXX |
| break; |
| case 0x45: // LSU |
| ret = env->lsu; |
| break; |
| case 0x50: // I-MMU regs |
| { |
| int reg = (addr >> 3) & 0xf; |
| |
| if (reg == 0) { |
| // I-TSB Tag Target register |
| ret = ultrasparc_tag_target(env->immu.tag_access); |
| } else { |
| ret = env->immuregs[reg]; |
| } |
| |
| break; |
| } |
| case 0x51: // I-MMU 8k TSB pointer |
| { |
| // env->immuregs[5] holds I-MMU TSB register value |
| // env->immuregs[6] holds I-MMU Tag Access register value |
| ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, |
| 8*1024); |
| break; |
| } |
| case 0x52: // I-MMU 64k TSB pointer |
| { |
| // env->immuregs[5] holds I-MMU TSB register value |
| // env->immuregs[6] holds I-MMU Tag Access register value |
| ret = ultrasparc_tsb_pointer(env->immu.tsb, env->immu.tag_access, |
| 64*1024); |
| break; |
| } |
| case 0x55: // I-MMU data access |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->itlb[reg].tte; |
| break; |
| } |
| case 0x56: // I-MMU tag read |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->itlb[reg].tag; |
| break; |
| } |
| case 0x58: // D-MMU regs |
| { |
| int reg = (addr >> 3) & 0xf; |
| |
| if (reg == 0) { |
| // D-TSB Tag Target register |
| ret = ultrasparc_tag_target(env->dmmu.tag_access); |
| } else { |
| ret = env->dmmuregs[reg]; |
| } |
| break; |
| } |
| case 0x59: // D-MMU 8k TSB pointer |
| { |
| // env->dmmuregs[5] holds D-MMU TSB register value |
| // env->dmmuregs[6] holds D-MMU Tag Access register value |
| ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, |
| 8*1024); |
| break; |
| } |
| case 0x5a: // D-MMU 64k TSB pointer |
| { |
| // env->dmmuregs[5] holds D-MMU TSB register value |
| // env->dmmuregs[6] holds D-MMU Tag Access register value |
| ret = ultrasparc_tsb_pointer(env->dmmu.tsb, env->dmmu.tag_access, |
| 64*1024); |
| break; |
| } |
| case 0x5d: // D-MMU data access |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->dtlb[reg].tte; |
| break; |
| } |
| case 0x5e: // D-MMU tag read |
| { |
| int reg = (addr >> 3) & 0x3f; |
| |
| ret = env->dtlb[reg].tag; |
| break; |
| } |
| case 0x46: // D-cache data |
| case 0x47: // D-cache tag access |
| case 0x4b: // E-cache error enable |
| case 0x4c: // E-cache asynchronous fault status |
| case 0x4d: // E-cache asynchronous fault address |
| case 0x4e: // E-cache tag data |
| case 0x66: // I-cache instruction access |
| case 0x67: // I-cache tag access |
| case 0x6e: // I-cache predecode |
| case 0x6f: // I-cache LRU etc. |
| case 0x76: // E-cache tag |
| case 0x7e: // E-cache tag |
| break; |
| case 0x5b: // D-MMU data pointer |
| case 0x48: // Interrupt dispatch, RO |
| case 0x49: // Interrupt data receive |
| case 0x7f: // Incoming interrupt vector, RO |
| // XXX |
| break; |
| case 0x54: // I-MMU data in, WO |
| case 0x57: // I-MMU demap, WO |
| case 0x5c: // D-MMU data in, WO |
| case 0x5f: // D-MMU demap, WO |
| case 0x77: // Interrupt vector, WO |
| default: |
| do_unassigned_access(addr, 0, 0, 1, size); |
| ret = 0; |
| break; |
| } |
| |
| /* Convert from little endian */ |
| switch (asi) { |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| case 0x8a: // Primary no-fault LE |
| case 0x8b: // Secondary no-fault LE |
| switch(size) { |
| case 2: |
| ret = bswap16(ret); |
| break; |
| case 4: |
| ret = bswap32(ret); |
| break; |
| case 8: |
| ret = bswap64(ret); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| /* Convert to signed number */ |
| if (sign) { |
| switch(size) { |
| case 1: |
| ret = (int8_t) ret; |
| break; |
| case 2: |
| ret = (int16_t) ret; |
| break; |
| case 4: |
| ret = (int32_t) ret; |
| break; |
| default: |
| break; |
| } |
| } |
| #ifdef DEBUG_ASI |
| dump_asi("read ", last_addr, asi, size, ret); |
| #endif |
| return ret; |
| } |
| |
| void helper_st_asi(target_ulong addr, target_ulong val, int asi, int size) |
| { |
| #ifdef DEBUG_ASI |
| dump_asi("write", addr, asi, size, val); |
| #endif |
| |
| asi &= 0xff; |
| |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (cpu_has_hypervisor(env) |
| && asi >= 0x30 && asi < 0x80 |
| && !(env->hpstate & HS_PRIV))) |
| raise_exception(TT_PRIV_ACT); |
| |
| helper_check_align(addr, size - 1); |
| addr = asi_address_mask(env, asi, addr); |
| |
| /* Convert to little endian */ |
| switch (asi) { |
| case 0x0c: // Nucleus Little Endian (LE) |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| switch(size) { |
| case 2: |
| val = bswap16(val); |
| break; |
| case 4: |
| val = bswap32(val); |
| break; |
| case 8: |
| val = bswap64(val); |
| break; |
| default: |
| break; |
| } |
| default: |
| break; |
| } |
| |
| switch(asi) { |
| case 0x10: // As if user primary |
| case 0x11: // As if user secondary |
| case 0x18: // As if user primary LE |
| case 0x19: // As if user secondary LE |
| case 0x80: // Primary |
| case 0x81: // Secondary |
| case 0x88: // Primary LE |
| case 0x89: // Secondary LE |
| case 0xe2: // UA2007 Primary block init |
| case 0xe3: // UA2007 Secondary block init |
| if ((asi & 0x80) && (env->pstate & PS_PRIV)) { |
| if (cpu_hypervisor_mode(env)) { |
| switch(size) { |
| case 1: |
| stb_hypv(addr, val); |
| break; |
| case 2: |
| stw_hypv(addr, val); |
| break; |
| case 4: |
| stl_hypv(addr, val); |
| break; |
| case 8: |
| default: |
| stq_hypv(addr, val); |
| break; |
| } |
| } else { |
| /* secondary space access has lowest asi bit equal to 1 */ |
| if (asi & 1) { |
| switch(size) { |
| case 1: |
| stb_kernel_secondary(addr, val); |
| break; |
| case 2: |
| stw_kernel_secondary(addr, val); |
| break; |
| case 4: |
| stl_kernel_secondary(addr, val); |
| break; |
| case 8: |
| default: |
| stq_kernel_secondary(addr, val); |
| break; |
| } |
| } else { |
| switch(size) { |
| case 1: |
| stb_kernel(addr, val); |
| break; |
| case 2: |
| stw_kernel(addr, val); |
| break; |
| case 4: |
| stl_kernel(addr, val); |
| break; |
| case 8: |
| default: |
| stq_kernel(addr, val); |
| break; |
| } |
| } |
| } |
| } else { |
| /* secondary space access has lowest asi bit equal to 1 */ |
| if (asi & 1) { |
| switch(size) { |
| case 1: |
| stb_user_secondary(addr, val); |
| break; |
| case 2: |
| stw_user_secondary(addr, val); |
| break; |
| case 4: |
| stl_user_secondary(addr, val); |
| break; |
| case 8: |
| default: |
| stq_user_secondary(addr, val); |
| break; |
| } |
| } else { |
| switch(size) { |
| case 1: |
| stb_user(addr, val); |
| break; |
| case 2: |
| stw_user(addr, val); |
| break; |
| case 4: |
| stl_user(addr, val); |
| break; |
| case 8: |
| default: |
| stq_user(addr, val); |
| break; |
| } |
| } |
| } |
| break; |
| case 0x14: // Bypass |
| case 0x15: // Bypass, non-cacheable |
| case 0x1c: // Bypass LE |
| case 0x1d: // Bypass, non-cacheable LE |
| { |
| switch(size) { |
| case 1: |
| stb_phys(addr, val); |
| break; |
| case 2: |
| stw_phys(addr, val); |
| break; |
| case 4: |
| stl_phys(addr, val); |
| break; |
| case 8: |
| default: |
| stq_phys(addr, val); |
| break; |
| } |
| } |
| return; |
| case 0x24: // Nucleus quad LDD 128 bit atomic |
| case 0x2c: // Nucleus quad LDD 128 bit atomic LE |
| // Only ldda allowed |
| raise_exception(TT_ILL_INSN); |
| return; |
| case 0x04: // Nucleus |
| case 0x0c: // Nucleus Little Endian (LE) |
| { |
| switch(size) { |
| case 1: |
| stb_nucleus(addr, val); |
| break; |
| case 2: |
| stw_nucleus(addr, val); |
| break; |
| case 4: |
| stl_nucleus(addr, val); |
| break; |
| default: |
| case 8: |
| stq_nucleus(addr, val); |
| break; |
| } |
| break; |
| } |
| |
| case 0x4a: // UPA config |
| // XXX |
| return; |
| case 0x45: // LSU |
| { |
| uint64_t oldreg; |
| |
| oldreg = env->lsu; |
| env->lsu = val & (DMMU_E | IMMU_E); |
| // Mappings generated during D/I MMU disabled mode are |
| // invalid in normal mode |
| if (oldreg != env->lsu) { |
| DPRINTF_MMU("LSU change: 0x%" PRIx64 " -> 0x%" PRIx64 "\n", |
| oldreg, env->lsu); |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env1); |
| #endif |
| tlb_flush(env, 1); |
| } |
| return; |
| } |
| case 0x50: // I-MMU regs |
| { |
| int reg = (addr >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->immuregs[reg]; |
| switch(reg) { |
| case 0: // RO |
| return; |
| case 1: // Not in I-MMU |
| case 2: |
| return; |
| case 3: // SFSR |
| if ((val & 1) == 0) |
| val = 0; // Clear SFSR |
| env->immu.sfsr = val; |
| break; |
| case 4: // RO |
| return; |
| case 5: // TSB access |
| DPRINTF_MMU("immu TSB write: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", env->immu.tsb, val); |
| env->immu.tsb = val; |
| break; |
| case 6: // Tag access |
| env->immu.tag_access = val; |
| break; |
| case 7: |
| case 8: |
| return; |
| default: |
| break; |
| } |
| |
| if (oldreg != env->immuregs[reg]) { |
| DPRINTF_MMU("immu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", reg, oldreg, env->immuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| return; |
| } |
| case 0x54: // I-MMU data in |
| replace_tlb_1bit_lru(env->itlb, env->immu.tag_access, val, "immu", env); |
| return; |
| case 0x55: // I-MMU data access |
| { |
| // TODO: auto demap |
| |
| unsigned int i = (addr >> 3) & 0x3f; |
| |
| replace_tlb_entry(&env->itlb[i], env->immu.tag_access, val, env); |
| |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("immu data access replaced entry [%i]\n", i); |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| return; |
| } |
| case 0x57: // I-MMU demap |
| demap_tlb(env->itlb, addr, "immu", env); |
| return; |
| case 0x58: // D-MMU regs |
| { |
| int reg = (addr >> 3) & 0xf; |
| uint64_t oldreg; |
| |
| oldreg = env->dmmuregs[reg]; |
| switch(reg) { |
| case 0: // RO |
| case 4: |
| return; |
| case 3: // SFSR |
| if ((val & 1) == 0) { |
| val = 0; // Clear SFSR, Fault address |
| env->dmmu.sfar = 0; |
| } |
| env->dmmu.sfsr = val; |
| break; |
| case 1: // Primary context |
| env->dmmu.mmu_primary_context = val; |
| /* can be optimized to only flush MMU_USER_IDX |
| and MMU_KERNEL_IDX entries */ |
| tlb_flush(env, 1); |
| break; |
| case 2: // Secondary context |
| env->dmmu.mmu_secondary_context = val; |
| /* can be optimized to only flush MMU_USER_SECONDARY_IDX |
| and MMU_KERNEL_SECONDARY_IDX entries */ |
| tlb_flush(env, 1); |
| break; |
| case 5: // TSB access |
| DPRINTF_MMU("dmmu TSB write: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", env->dmmu.tsb, val); |
| env->dmmu.tsb = val; |
| break; |
| case 6: // Tag access |
| env->dmmu.tag_access = val; |
| break; |
| case 7: // Virtual Watchpoint |
| case 8: // Physical Watchpoint |
| default: |
| env->dmmuregs[reg] = val; |
| break; |
| } |
| |
| if (oldreg != env->dmmuregs[reg]) { |
| DPRINTF_MMU("dmmu change reg[%d]: 0x%016" PRIx64 " -> 0x%016" |
| PRIx64 "\n", reg, oldreg, env->dmmuregs[reg]); |
| } |
| #ifdef DEBUG_MMU |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| return; |
| } |
| case 0x5c: // D-MMU data in |
| replace_tlb_1bit_lru(env->dtlb, env->dmmu.tag_access, val, "dmmu", env); |
| return; |
| case 0x5d: // D-MMU data access |
| { |
| unsigned int i = (addr >> 3) & 0x3f; |
| |
| replace_tlb_entry(&env->dtlb[i], env->dmmu.tag_access, val, env); |
| |
| #ifdef DEBUG_MMU |
| DPRINTF_MMU("dmmu data access replaced entry [%i]\n", i); |
| dump_mmu(stdout, fprintf, env); |
| #endif |
| return; |
| } |
| case 0x5f: // D-MMU demap |
| demap_tlb(env->dtlb, addr, "dmmu", env); |
| return; |
| case 0x49: // Interrupt data receive |
| // XXX |
| return; |
| case 0x46: // D-cache data |
| case 0x47: // D-cache tag access |
| case 0x4b: // E-cache error enable |
| case 0x4c: // E-cache asynchronous fault status |
| case 0x4d: // E-cache asynchronous fault address |
| case 0x4e: // E-cache tag data |
| case 0x66: // I-cache instruction access |
| case 0x67: // I-cache tag access |
| case 0x6e: // I-cache predecode |
| case 0x6f: // I-cache LRU etc. |
| case 0x76: // E-cache tag |
| case 0x7e: // E-cache tag |
| return; |
| case 0x51: // I-MMU 8k TSB pointer, RO |
| case 0x52: // I-MMU 64k TSB pointer, RO |
| case 0x56: // I-MMU tag read, RO |
| case 0x59: // D-MMU 8k TSB pointer, RO |
| case 0x5a: // D-MMU 64k TSB pointer, RO |
| case 0x5b: // D-MMU data pointer, RO |
| case 0x5e: // D-MMU tag read, RO |
| case 0x48: // Interrupt dispatch, RO |
| case 0x7f: // Incoming interrupt vector, RO |
| case 0x82: // Primary no-fault, RO |
| case 0x83: // Secondary no-fault, RO |
| case 0x8a: // Primary no-fault LE, RO |
| case 0x8b: // Secondary no-fault LE, RO |
| default: |
| do_unassigned_access(addr, 1, 0, 1, size); |
| return; |
| } |
| } |
| #endif /* CONFIG_USER_ONLY */ |
| |
| void helper_ldda_asi(target_ulong addr, int asi, int rd) |
| { |
| if ((asi < 0x80 && (env->pstate & PS_PRIV) == 0) |
| || (cpu_has_hypervisor(env) |
| && asi >= 0x30 && asi < 0x80 |
| && !(env->hpstate & HS_PRIV))) |
| raise_exception(TT_PRIV_ACT); |
| |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| #if !defined(CONFIG_USER_ONLY) |
| case 0x24: // Nucleus quad LDD 128 bit atomic |
| case 0x2c: // Nucleus quad LDD 128 bit atomic LE |
| helper_check_align(addr, 0xf); |
| if (rd == 0) { |
| env->gregs[1] = ldq_nucleus(addr + 8); |
| if (asi == 0x2c) |
| bswap64s(&env->gregs[1]); |
| } else if (rd < 8) { |
| env->gregs[rd] = ldq_nucleus(addr); |
| env->gregs[rd + 1] = ldq_nucleus(addr + 8); |
| if (asi == 0x2c) { |
| bswap64s(&env->gregs[rd]); |
| bswap64s(&env->gregs[rd + 1]); |
| } |
| } else { |
| env->regwptr[rd] = ldq_nucleus(addr); |
| env->regwptr[rd + 1] = ldq_nucleus(addr + 8); |
| if (asi == 0x2c) { |
| bswap64s(&env->regwptr[rd]); |
| bswap64s(&env->regwptr[rd + 1]); |
| } |
| } |
| break; |
| #endif |
| default: |
| helper_check_align(addr, 0x3); |
| if (rd == 0) |
| env->gregs[1] = helper_ld_asi(addr + 4, asi, 4, 0); |
| else if (rd < 8) { |
| env->gregs[rd] = helper_ld_asi(addr, asi, 4, 0); |
| env->gregs[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0); |
| } else { |
| env->regwptr[rd] = helper_ld_asi(addr, asi, 4, 0); |
| env->regwptr[rd + 1] = helper_ld_asi(addr + 4, asi, 4, 0); |
| } |
| break; |
| } |
| } |
| |
| void helper_ldf_asi(target_ulong addr, int asi, int size, int rd) |
| { |
| unsigned int i; |
| target_ulong val; |
| |
| helper_check_align(addr, 3); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case 0xf0: // Block load primary |
| case 0xf1: // Block load secondary |
| case 0xf8: // Block load primary LE |
| case 0xf9: // Block load secondary LE |
| if (rd & 7) { |
| raise_exception(TT_ILL_INSN); |
| return; |
| } |
| helper_check_align(addr, 0x3f); |
| for (i = 0; i < 16; i++) { |
| *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x8f, 4, |
| 0); |
| addr += 4; |
| } |
| |
| return; |
| case 0x70: // Block load primary, user privilege |
| case 0x71: // Block load secondary, user privilege |
| if (rd & 7) { |
| raise_exception(TT_ILL_INSN); |
| return; |
| } |
| helper_check_align(addr, 0x3f); |
| for (i = 0; i < 16; i++) { |
| *(uint32_t *)&env->fpr[rd++] = helper_ld_asi(addr, asi & 0x1f, 4, |
| 0); |
| addr += 4; |
| } |
| |
| return; |
| default: |
| break; |
| } |
| |
| val = helper_ld_asi(addr, asi, size, 0); |
| switch(size) { |
| default: |
| case 4: |
| *((uint32_t *)&env->fpr[rd]) = val; |
| break; |
| case 8: |
| *((int64_t *)&DT0) = val; |
| break; |
| case 16: |
| // XXX |
| break; |
| } |
| } |
| |
| void helper_stf_asi(target_ulong addr, int asi, int size, int rd) |
| { |
| unsigned int i; |
| target_ulong val = 0; |
| |
| helper_check_align(addr, 3); |
| addr = asi_address_mask(env, asi, addr); |
| |
| switch (asi) { |
| case 0xe0: // UA2007 Block commit store primary (cache flush) |
| case 0xe1: // UA2007 Block commit store secondary (cache flush) |
| case 0xf0: // Block store primary |
| case 0xf1: // Block store secondary |
| case 0xf8: // Block store primary LE |
| case 0xf9: // Block store secondary LE |
| if (rd & 7) { |
| raise_exception(TT_ILL_INSN); |
| return; |
| } |
| helper_check_align(addr, 0x3f); |
| for (i = 0; i < 16; i++) { |
| val = *(uint32_t *)&env->fpr[rd++]; |
| helper_st_asi(addr, val, asi & 0x8f, 4); |
| addr += 4; |
| } |
| |
| return; |
| case 0x70: // Block store primary, user privilege |
| case 0x71: // Block store secondary, user privilege |
| if (rd & 7) { |
| raise_exception(TT_ILL_INSN); |
| return; |
| } |
| helper_check_align(addr, 0x3f); |
| for (i = 0; i < 16; i++) { |
| val = *(uint32_t *)&env->fpr[rd++]; |
| helper_st_asi(addr, val, asi & 0x1f, 4); |
| addr += 4; |
| } |
| |
| return; |
| default: |
| break; |
| } |
| |
| switch(size) { |
| default: |
| case 4: |
| val = *((uint32_t *)&env->fpr[rd]); |
| break; |
| case 8: |
| val = *((int64_t *)&DT0); |
| break; |
| case 16: |
| // XXX |
| break; |
| } |
| helper_st_asi(addr, val, asi, size); |
| } |
| |
| target_ulong helper_cas_asi(target_ulong addr, target_ulong val1, |
| target_ulong val2, uint32_t asi) |
| { |
| target_ulong ret; |
| |
| val2 &= 0xffffffffUL; |
| ret = helper_ld_asi(addr, asi, 4, 0); |
| ret &= 0xffffffffUL; |
| if (val2 == ret) |
| helper_st_asi(addr, val1 & 0xffffffffUL, asi, 4); |
| return ret; |
| } |
| |
| target_ulong helper_casx_asi(target_ulong addr, target_ulong val1, |
| target_ulong val2, uint32_t asi) |
| { |
| target_ulong ret; |
| |
| ret = helper_ld_asi(addr, asi, 8, 0); |
| if (val2 == ret) |
| helper_st_asi(addr, val1, asi, 8); |
| return ret; |
| } |
| #endif /* TARGET_SPARC64 */ |
| |
| #ifndef TARGET_SPARC64 |
| void helper_rett(void) |
| { |
| unsigned int cwp; |
| |
| if (env->psret == 1) |
| raise_exception(TT_ILL_INSN); |
| |
| env->psret = 1; |
| cwp = cwp_inc(env->cwp + 1) ; |
| if (env->wim & (1 << cwp)) { |
| raise_exception(TT_WIN_UNF); |
| } |
| set_cwp(cwp); |
| env->psrs = env->psrps; |
| } |
| #endif |
| |
| static target_ulong helper_udiv_common(target_ulong a, target_ulong b, int cc) |
| { |
| int overflow = 0; |
| uint64_t x0; |
| uint32_t x1; |
| |
| x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32); |
| x1 = (b & 0xffffffff); |
| |
| if (x1 == 0) { |
| raise_exception(TT_DIV_ZERO); |
| } |
| |
| x0 = x0 / x1; |
| if (x0 > 0xffffffff) { |
| x0 = 0xffffffff; |
| overflow = 1; |
| } |
| |
| if (cc) { |
| env->cc_dst = x0; |
| env->cc_src2 = overflow; |
| env->cc_op = CC_OP_DIV; |
| } |
| return x0; |
| } |
| |
| target_ulong helper_udiv(target_ulong a, target_ulong b) |
| { |
| return helper_udiv_common(a, b, 0); |
| } |
| |
| target_ulong helper_udiv_cc(target_ulong a, target_ulong b) |
| { |
| return helper_udiv_common(a, b, 1); |
| } |
| |
| static target_ulong helper_sdiv_common(target_ulong a, target_ulong b, int cc) |
| { |
| int overflow = 0; |
| int64_t x0; |
| int32_t x1; |
| |
| x0 = (a & 0xffffffff) | ((int64_t) (env->y) << 32); |
| x1 = (b & 0xffffffff); |
| |
| if (x1 == 0) { |
| raise_exception(TT_DIV_ZERO); |
| } |
| |
| x0 = x0 / x1; |
| if ((int32_t) x0 != x0) { |
| x0 = x0 < 0 ? 0x80000000: 0x7fffffff; |
| overflow = 1; |
| } |
| |
| if (cc) { |
| env->cc_dst = x0; |
| env->cc_src2 = overflow; |
| env->cc_op = CC_OP_DIV; |
| } |
| return x0; |
| } |
| |
| target_ulong helper_sdiv(target_ulong a, target_ulong b) |
| { |
| return helper_sdiv_common(a, b, 0); |
| } |
| |
| target_ulong helper_sdiv_cc(target_ulong a, target_ulong b) |
| { |
| return helper_sdiv_common(a, b, 1); |
| } |
| |
| void helper_stdf(target_ulong addr, int mem_idx) |
| { |
| helper_check_align(addr, 7); |
| #if !defined(CONFIG_USER_ONLY) |
| switch (mem_idx) { |
| case MMU_USER_IDX: |
| stfq_user(addr, DT0); |
| break; |
| case MMU_KERNEL_IDX: |
| stfq_kernel(addr, DT0); |
| break; |
| #ifdef TARGET_SPARC64 |
| case MMU_HYPV_IDX: |
| stfq_hypv(addr, DT0); |
| break; |
| #endif |
| default: |
| DPRINTF_MMU("helper_stdf: need to check MMU idx %d\n", mem_idx); |
| break; |
| } |
| #else |
| stfq_raw(address_mask(env, addr), DT0); |
| #endif |
| } |
| |
| void helper_lddf(target_ulong addr, int mem_idx) |
| { |
| helper_check_align(addr, 7); |
| #if !defined(CONFIG_USER_ONLY) |
| switch (mem_idx) { |
| case MMU_USER_IDX: |
| DT0 = ldfq_user(addr); |
| break; |
| case MMU_KERNEL_IDX: |
| DT0 = ldfq_kernel(addr); |
| break; |
| #ifdef TARGET_SPARC64 |
| case MMU_HYPV_IDX: |
| DT0 = ldfq_hypv(addr); |
| break; |
| #endif |
| default: |
| DPRINTF_MMU("helper_lddf: need to check MMU idx %d\n", mem_idx); |
| break; |
| } |
| #else |
| DT0 = ldfq_raw(address_mask(env, addr)); |
| #endif |
| } |
| |
| void helper_ldqf(target_ulong addr, int mem_idx) |
| { |
| // XXX add 128 bit load |
| CPU_QuadU u; |
| |
| helper_check_align(addr, 7); |
| #if !defined(CONFIG_USER_ONLY) |
| switch (mem_idx) { |
| case MMU_USER_IDX: |
| u.ll.upper = ldq_user(addr); |
| u.ll.lower = ldq_user(addr + 8); |
| QT0 = u.q; |
| break; |
| case MMU_KERNEL_IDX: |
| u.ll.upper = ldq_kernel(addr); |
| u.ll.lower = ldq_kernel(addr + 8); |
| QT0 = u.q; |
| break; |
| #ifdef TARGET_SPARC64 |
| case MMU_HYPV_IDX: |
| u.ll.upper = ldq_hypv(addr); |
| u.ll.lower = ldq_hypv(addr + 8); |
| QT0 = u.q; |
| break; |
| #endif |
| default: |
| DPRINTF_MMU("helper_ldqf: need to check MMU idx %d\n", mem_idx); |
| break; |
| } |
| #else |
| u.ll.upper = ldq_raw(address_mask(env, addr)); |
| u.ll.lower = ldq_raw(address_mask(env, addr + 8)); |
| QT0 = u.q; |
| #endif |
| } |
| |
| void helper_stqf(target_ulong addr, int mem_idx) |
| { |
| // XXX add 128 bit store |
| CPU_QuadU u; |
| |
| helper_check_align(addr, 7); |
| #if !defined(CONFIG_USER_ONLY) |
| switch (mem_idx) { |
| case MMU_USER_IDX: |
| u.q = QT0; |
| stq_user(addr, u.ll.upper); |
| stq_user(addr + 8, u.ll.lower); |
| break; |
| case MMU_KERNEL_IDX: |
| u.q = QT0; |
| stq_kernel(addr, u.ll.upper); |
| stq_kernel(addr + 8, u.ll.lower); |
| break; |
| #ifdef TARGET_SPARC64 |
| case MMU_HYPV_IDX: |
| u.q = QT0; |
| stq_hypv(addr, u.ll.upper); |
| stq_hypv(addr + 8, u.ll.lower); |
| break; |
| #endif |
| default: |
| DPRINTF_MMU("helper_stqf: need to check MMU idx %d\n", mem_idx); |
| break; |
| } |
| #else |
| u.q = QT0; |
| stq_raw(address_mask(env, addr), u.ll.upper); |
| stq_raw(address_mask(env, addr + 8), u.ll.lower); |
| #endif |
| } |
| |
| static inline void set_fsr(void) |
| { |
| int rnd_mode; |
| |
| switch (env->fsr & FSR_RD_MASK) { |
| case FSR_RD_NEAREST: |
| rnd_mode = float_round_nearest_even; |
| break; |
| default: |
| case FSR_RD_ZERO: |
| rnd_mode = float_round_to_zero; |
| break; |
| case FSR_RD_POS: |
| rnd_mode = float_round_up; |
| break; |
| case FSR_RD_NEG: |
| rnd_mode = float_round_down; |
| break; |
| } |
| set_float_rounding_mode(rnd_mode, &env->fp_status); |
| } |
| |
| void helper_ldfsr(uint32_t new_fsr) |
| { |
| env->fsr = (new_fsr & FSR_LDFSR_MASK) | (env->fsr & FSR_LDFSR_OLDMASK); |
| set_fsr(); |
| } |
| |
| #ifdef TARGET_SPARC64 |
| void helper_ldxfsr(uint64_t new_fsr) |
| { |
| env->fsr = (new_fsr & FSR_LDXFSR_MASK) | (env->fsr & FSR_LDXFSR_OLDMASK); |
| set_fsr(); |
| } |
| #endif |
| |
| void helper_debug(void) |
| { |
| env->exception_index = EXCP_DEBUG; |
| cpu_loop_exit(); |
| } |
| |
| #ifndef TARGET_SPARC64 |
| /* XXX: use another pointer for %iN registers to avoid slow wrapping |
| handling ? */ |
| void helper_save(void) |
| { |
| uint32_t cwp; |
| |
| cwp = cwp_dec(env->cwp - 1); |
| if (env->wim & (1 << cwp)) { |
| raise_exception(TT_WIN_OVF); |
| } |
| set_cwp(cwp); |
| } |
| |
| void helper_restore(void) |
| { |
| uint32_t cwp; |
| |
| cwp = cwp_inc(env->cwp + 1); |
| if (env->wim & (1 << cwp)) { |
| raise_exception(TT_WIN_UNF); |
| } |
| set_cwp(cwp); |
| } |
| |
| void helper_wrpsr(target_ulong new_psr) |
| { |
| if ((new_psr & PSR_CWP) >= env->nwindows) { |
| raise_exception(TT_ILL_INSN); |
| } else { |
| cpu_put_psr(env, new_psr); |
| } |
| } |
| |
| target_ulong helper_rdpsr(void) |
| { |
| return get_psr(); |
| } |
| |
| #else |
| /* XXX: use another pointer for %iN registers to avoid slow wrapping |
| handling ? */ |
| void helper_save(void) |
| { |
| uint32_t cwp; |
| |
| cwp = cwp_dec(env->cwp - 1); |
| if (env->cansave == 0) { |
| raise_exception(TT_SPILL | (env->otherwin != 0 ? |
| (TT_WOTHER | ((env->wstate & 0x38) >> 1)): |
| ((env->wstate & 0x7) << 2))); |
| } else { |
| if (env->cleanwin - env->canrestore == 0) { |
| // XXX Clean windows without trap |
| raise_exception(TT_CLRWIN); |
| } else { |
| env->cansave--; |
| env->canrestore++; |
| set_cwp(cwp); |
| } |
| } |
| } |
| |
| void helper_restore(void) |
| { |
| uint32_t cwp; |
| |
| cwp = cwp_inc(env->cwp + 1); |
| if (env->canrestore == 0) { |
| raise_exception(TT_FILL | (env->otherwin != 0 ? |
| (TT_WOTHER | ((env->wstate & 0x38) >> 1)): |
| ((env->wstate & 0x7) << 2))); |
| } else { |
| env->cansave++; |
| env->canrestore--; |
| set_cwp(cwp); |
| } |
| } |
| |
| void helper_flushw(void) |
| { |
| if (env->cansave != env->nwindows - 2) { |
| raise_exception(TT_SPILL | (env->otherwin != 0 ? |
| (TT_WOTHER | ((env->wstate & 0x38) >> 1)): |
| ((env->wstate & 0x7) << 2))); |
| } |
| } |
| |
| void helper_saved(void) |
| { |
| env->cansave++; |
| if (env->otherwin == 0) |
| env->canrestore--; |
| else |
| env->otherwin--; |
| } |
| |
| void helper_restored(void) |
| { |
| env->canrestore++; |
| if (env->cleanwin < env->nwindows - 1) |
| env->cleanwin++; |
| if (env->otherwin == 0) |
| env->cansave--; |
| else |
| env->otherwin--; |
| } |
| |
| static target_ulong get_ccr(void) |
| { |
| target_ulong psr; |
| |
| psr = get_psr(); |
| |
| return ((env->xcc >> 20) << 4) | ((psr & PSR_ICC) >> 20); |
| } |
| |
| target_ulong cpu_get_ccr(CPUState *env1) |
| { |
| CPUState *saved_env; |
| target_ulong ret; |
| |
| saved_env = env; |
| env = env1; |
| ret = get_ccr(); |
| env = saved_env; |
| return ret; |
| } |
| |
| static void put_ccr(target_ulong val) |
| { |
| target_ulong tmp = val; |
| |
| env->xcc = (tmp >> 4) << 20; |
| env->psr = (tmp & 0xf) << 20; |
| CC_OP = CC_OP_FLAGS; |
| } |
| |
| void cpu_put_ccr(CPUState *env1, target_ulong val) |
| { |
| CPUState *saved_env; |
| |
| saved_env = env; |
| env = env1; |
| put_ccr(val); |
| env = saved_env; |
| } |
| |
| static target_ulong get_cwp64(void) |
| { |
| return env->nwindows - 1 - env->cwp; |
| } |
| |
| target_ulong cpu_get_cwp64(CPUState *env1) |
| { |
| CPUState *saved_env; |
| target_ulong ret; |
| |
| saved_env = env; |
| env = env1; |
| ret = get_cwp64(); |
| env = saved_env; |
| return ret; |
| } |
| |
| static void put_cwp64(int cwp) |
| { |
| if (unlikely(cwp >= env->nwindows || cwp < 0)) { |
| cwp %= env->nwindows; |
| } |
| set_cwp(env->nwindows - 1 - cwp); |
| } |
| |
| void cpu_put_cwp64(CPUState *env1, int cwp) |
| { |
| CPUState *saved_env; |
| |
| saved_env = env; |
| env = env1; |
| put_cwp64(cwp); |
| env = saved_env; |
| } |
| |
| target_ulong helper_rdccr(void) |
| { |
| return get_ccr(); |
| } |
| |
| void helper_wrccr(target_ulong new_ccr) |
| { |
| put_ccr(new_ccr); |
| } |
| |
| // CWP handling is reversed in V9, but we still use the V8 register |
| // order. |
| target_ulong helper_rdcwp(void) |
| { |
| return get_cwp64(); |
| } |
| |
| void helper_wrcwp(target_ulong new_cwp) |
| { |
| put_cwp64(new_cwp); |
| } |
| |
| // This function uses non-native bit order |
| #define GET_FIELD(X, FROM, TO) \ |
| ((X) >> (63 - (TO)) & ((1ULL << ((TO) - (FROM) + 1)) - 1)) |
| |
| // This function uses the order in the manuals, i.e. bit 0 is 2^0 |
| #define GET_FIELD_SP(X, FROM, TO) \ |
| GET_FIELD(X, 63 - (TO), 63 - (FROM)) |
| |
| target_ulong helper_array8(target_ulong pixel_addr, target_ulong cubesize) |
| { |
| return (GET_FIELD_SP(pixel_addr, 60, 63) << (17 + 2 * cubesize)) | |
| (GET_FIELD_SP(pixel_addr, 39, 39 + cubesize - 1) << (17 + cubesize)) | |
| (GET_FIELD_SP(pixel_addr, 17 + cubesize - 1, 17) << 17) | |
| (GET_FIELD_SP(pixel_addr, 56, 59) << 13) | |
| (GET_FIELD_SP(pixel_addr, 35, 38) << 9) | |
| (GET_FIELD_SP(pixel_addr, 13, 16) << 5) | |
| (((pixel_addr >> 55) & 1) << 4) | |
| (GET_FIELD_SP(pixel_addr, 33, 34) << 2) | |
| GET_FIELD_SP(pixel_addr, 11, 12); |
| } |
| |
| target_ulong helper_alignaddr(target_ulong addr, target_ulong offset) |
| { |
| uint64_t tmp; |
| |
| tmp = addr + offset; |
| env->gsr &= ~7ULL; |
| env->gsr |= tmp & 7ULL; |
| return tmp & ~7ULL; |
| } |
| |
| target_ulong helper_popc(target_ulong val) |
| { |
| return ctpop64(val); |
| } |
| |
| static inline uint64_t *get_gregset(uint32_t pstate) |
| { |
| switch (pstate) { |
| default: |
| DPRINTF_PSTATE("ERROR in get_gregset: active pstate bits=%x%s%s%s\n", |
| pstate, |
| (pstate & PS_IG) ? " IG" : "", |
| (pstate & PS_MG) ? " MG" : "", |
| (pstate & PS_AG) ? " AG" : ""); |
| /* pass through to normal set of global registers */ |
| case 0: |
| return env->bgregs; |
| case PS_AG: |
| return env->agregs; |
| case PS_MG: |
| return env->mgregs; |
| case PS_IG: |
| return env->igregs; |
| } |
| } |
| |
| static inline void change_pstate(uint32_t new_pstate) |
| { |
| uint32_t pstate_regs, new_pstate_regs; |
| uint64_t *src, *dst; |
| |
| if (env->def->features & CPU_FEATURE_GL) { |
| // PS_AG is not implemented in this case |
| new_pstate &= ~PS_AG; |
| } |
| |
| pstate_regs = env->pstate & 0xc01; |
| new_pstate_regs = new_pstate & 0xc01; |
| |
| if (new_pstate_regs != pstate_regs) { |
| DPRINTF_PSTATE("change_pstate: switching regs old=%x new=%x\n", |
| pstate_regs, new_pstate_regs); |
| // Switch global register bank |
| src = get_gregset(new_pstate_regs); |
| dst = get_gregset(pstate_regs); |
| memcpy32(dst, env->gregs); |
| memcpy32(env->gregs, src); |
| } |
| else { |
| DPRINTF_PSTATE("change_pstate: regs new=%x (unchanged)\n", |
| new_pstate_regs); |
| } |
| env->pstate = new_pstate; |
| } |
| |
| void helper_wrpstate(target_ulong new_state) |
| { |
| change_pstate(new_state & 0xf3f); |
| |
| #if !defined(CONFIG_USER_ONLY) |
| if (cpu_interrupts_enabled(env)) { |
| cpu_check_irqs(env); |
| } |
| #endif |
| } |
| |
| void helper_wrpil(target_ulong new_pil) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| DPRINTF_PSTATE("helper_wrpil old=%x new=%x\n", |
| env->psrpil, (uint32_t)new_pil); |
| |
| env->psrpil = new_pil; |
| |
| if (cpu_interrupts_enabled(env)) { |
| cpu_check_irqs(env); |
| } |
| #endif |
| } |
| |
| void helper_done(void) |
| { |
| trap_state* tsptr = cpu_tsptr(env); |
| |
| env->pc = tsptr->tnpc; |
| env->npc = tsptr->tnpc + 4; |
| put_ccr(tsptr->tstate >> 32); |
| env->asi = (tsptr->tstate >> 24) & 0xff; |
| change_pstate((tsptr->tstate >> 8) & 0xf3f); |
| put_cwp64(tsptr->tstate & 0xff); |
| env->tl--; |
| |
| DPRINTF_PSTATE("... helper_done tl=%d\n", env->tl); |
| |
| #if !defined(CONFIG_USER_ONLY) |
| if (cpu_interrupts_enabled(env)) { |
| cpu_check_irqs(env); |
| } |
| #endif |
| } |
| |
| void helper_retry(void) |
| { |
| trap_state* tsptr = cpu_tsptr(env); |
| |
| env->pc = tsptr->tpc; |
| env->npc = tsptr->tnpc; |
| put_ccr(tsptr->tstate >> 32); |
| env->asi = (tsptr->tstate >> 24) & 0xff; |
| change_pstate((tsptr->tstate >> 8) & 0xf3f); |
| put_cwp64(tsptr->tstate & 0xff); |
| env->tl--; |
| |
| DPRINTF_PSTATE("... helper_retry tl=%d\n", env->tl); |
| |
| #if !defined(CONFIG_USER_ONLY) |
| if (cpu_interrupts_enabled(env)) { |
| cpu_check_irqs(env); |
| } |
| #endif |
| } |
| |
| static void do_modify_softint(const char* operation, uint32_t value) |
| { |
| if (env->softint != value) { |
| env->softint = value; |
| DPRINTF_PSTATE(": %s new %08x\n", operation, env->softint); |
| #if !defined(CONFIG_USER_ONLY) |
| if (cpu_interrupts_enabled(env)) { |
| cpu_check_irqs(env); |
| } |
| #endif |
| } |
| } |
| |
| void helper_set_softint(uint64_t value) |
| { |
| do_modify_softint("helper_set_softint", env->softint | (uint32_t)value); |
| } |
| |
| void helper_clear_softint(uint64_t value) |
| { |
| do_modify_softint("helper_clear_softint", env->softint & (uint32_t)~value); |
| } |
| |
| void helper_write_softint(uint64_t value) |
| { |
| do_modify_softint("helper_write_softint", (uint32_t)value); |
| } |
| #endif |
| |
| #ifdef TARGET_SPARC64 |
| #ifdef DEBUG_PCALL |
| static const char * const excp_names[0x80] = { |
| [TT_TFAULT] = "Instruction Access Fault", |
| [TT_TMISS] = "Instruction Access MMU Miss", |
| [TT_CODE_ACCESS] = "Instruction Access Error", |
| [TT_ILL_INSN] = "Illegal Instruction", |
| [TT_PRIV_INSN] = "Privileged Instruction", |
| [TT_NFPU_INSN] = "FPU Disabled", |
| [TT_FP_EXCP] = "FPU Exception", |
| [TT_TOVF] = "Tag Overflow", |
| [TT_CLRWIN] = "Clean Windows", |
| [TT_DIV_ZERO] = "Division By Zero", |
| [TT_DFAULT] = "Data Access Fault", |
| [TT_DMISS] = "Data Access MMU Miss", |
| [TT_DATA_ACCESS] = "Data Access Error", |
| [TT_DPROT] = "Data Protection Error", |
| [TT_UNALIGNED] = "Unaligned Memory Access", |
| [TT_PRIV_ACT] = "Privileged Action", |
| [TT_EXTINT | 0x1] = "External Interrupt 1", |
| [TT_EXTINT | 0x2] = "External Interrupt 2", |
| [TT_EXTINT | 0x3] = "External Interrupt 3", |
| [TT_EXTINT | 0x4] = "External Interrupt 4", |
| [TT_EXTINT | 0x5] = "External Interrupt 5", |
| [TT_EXTINT | 0x6] = "External Interrupt 6", |
| [TT_EXTINT | 0x7] = "External Interrupt 7", |
| [TT_EXTINT | 0x8] = "External Interrupt 8", |
| [TT_EXTINT | 0x9] = "External Interrupt 9", |
| [TT_EXTINT | 0xa] = "External Interrupt 10", |
| [TT_EXTINT | 0xb] = "External Interrupt 11", |
| [TT_EXTINT | 0xc] = "External Interrupt 12", |
| [TT_EXTINT | 0xd] = "External Interrupt 13", |
| [TT_EXTINT | 0xe] = "External Interrupt 14", |
| [TT_EXTINT | 0xf] = "External Interrupt 15", |
| }; |
| #endif |
| |
| trap_state* cpu_tsptr(CPUState* env) |
| { |
| return &env->ts[env->tl & MAXTL_MASK]; |
| } |
| |
| void do_interrupt(CPUState *env) |
| { |
| int intno = env->exception_index; |
| trap_state* tsptr; |
| |
| #ifdef DEBUG_PCALL |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| static int count; |
| const char *name; |
| |
| if (intno < 0 || intno >= 0x180) |
| name = "Unknown"; |
| else if (intno >= 0x100) |
| name = "Trap Instruction"; |
| else if (intno >= 0xc0) |
| name = "Window Fill"; |
| else if (intno >= 0x80) |
| name = "Window Spill"; |
| else { |
| name = excp_names[intno]; |
| if (!name) |
| name = "Unknown"; |
| } |
| |
| qemu_log("%6d: %s (v=%04x) pc=%016" PRIx64 " npc=%016" PRIx64 |
| " SP=%016" PRIx64 "\n", |
| count, name, intno, |
| env->pc, |
| env->npc, env->regwptr[6]); |
| log_cpu_state(env, 0); |
| #if 0 |
| { |
| int i; |
| uint8_t *ptr; |
| |
| qemu_log(" code="); |
| ptr = (uint8_t *)env->pc; |
| for(i = 0; i < 16; i++) { |
| qemu_log(" %02x", ldub(ptr + i)); |
| } |
| qemu_log("\n"); |
| } |
| #endif |
| count++; |
| } |
| #endif |
| #if !defined(CONFIG_USER_ONLY) |
| if (env->tl >= env->maxtl) { |
| cpu_abort(env, "Trap 0x%04x while trap level (%d) >= MAXTL (%d)," |
| " Error state", env->exception_index, env->tl, env->maxtl); |
| return; |
| } |
| #endif |
| if (env->tl < env->maxtl - 1) { |
| env->tl++; |
| } else { |
| env->pstate |= PS_RED; |
| if (env->tl < env->maxtl) |
| env->tl++; |
| } |
| tsptr = cpu_tsptr(env); |
| |
| tsptr->tstate = (get_ccr() << 32) | |
| ((env->asi & 0xff) << 24) | ((env->pstate & 0xf3f) << 8) | |
| get_cwp64(); |
| tsptr->tpc = env->pc; |
| tsptr->tnpc = env->npc; |
| tsptr->tt = intno; |
| |
| switch (intno) { |
| case TT_IVEC: |
| change_pstate(PS_PEF | PS_PRIV | PS_IG); |
| break; |
| case TT_TFAULT: |
| case TT_DFAULT: |
| case TT_TMISS ... TT_TMISS + 3: |
| case TT_DMISS ... TT_DMISS + 3: |
| case TT_DPROT ... TT_DPROT + 3: |
| change_pstate(PS_PEF | PS_PRIV | PS_MG); |
| break; |
| default: |
| change_pstate(PS_PEF | PS_PRIV | PS_AG); |
| break; |
| } |
| |
| if (intno == TT_CLRWIN) { |
| set_cwp(cwp_dec(env->cwp - 1)); |
| } else if ((intno & 0x1c0) == TT_SPILL) { |
| set_cwp(cwp_dec(env->cwp - env->cansave - 2)); |
| } else if ((intno & 0x1c0) == TT_FILL) { |
| set_cwp(cwp_inc(env->cwp + 1)); |
| } |
| env->tbr &= ~0x7fffULL; |
| env->tbr |= ((env->tl > 1) ? 1 << 14 : 0) | (intno << 5); |
| env->pc = env->tbr; |
| env->npc = env->pc + 4; |
| env->exception_index = -1; |
| } |
| #else |
| #ifdef DEBUG_PCALL |
| static const char * const excp_names[0x80] = { |
| [TT_TFAULT] = "Instruction Access Fault", |
| [TT_ILL_INSN] = "Illegal Instruction", |
| [TT_PRIV_INSN] = "Privileged Instruction", |
| [TT_NFPU_INSN] = "FPU Disabled", |
| [TT_WIN_OVF] = "Window Overflow", |
| [TT_WIN_UNF] = "Window Underflow", |
| [TT_UNALIGNED] = "Unaligned Memory Access", |
| [TT_FP_EXCP] = "FPU Exception", |
| [TT_DFAULT] = "Data Access Fault", |
| [TT_TOVF] = "Tag Overflow", |
| [TT_EXTINT | 0x1] = "External Interrupt 1", |
| [TT_EXTINT | 0x2] = "External Interrupt 2", |
| [TT_EXTINT | 0x3] = "External Interrupt 3", |
| [TT_EXTINT | 0x4] = "External Interrupt 4", |
| [TT_EXTINT | 0x5] = "External Interrupt 5", |
| [TT_EXTINT | 0x6] = "External Interrupt 6", |
| [TT_EXTINT | 0x7] = "External Interrupt 7", |
| [TT_EXTINT | 0x8] = "External Interrupt 8", |
| [TT_EXTINT | 0x9] = "External Interrupt 9", |
| [TT_EXTINT | 0xa] = "External Interrupt 10", |
| [TT_EXTINT | 0xb] = "External Interrupt 11", |
| [TT_EXTINT | 0xc] = "External Interrupt 12", |
| [TT_EXTINT | 0xd] = "External Interrupt 13", |
| [TT_EXTINT | 0xe] = "External Interrupt 14", |
| [TT_EXTINT | 0xf] = "External Interrupt 15", |
| [TT_TOVF] = "Tag Overflow", |
| [TT_CODE_ACCESS] = "Instruction Access Error", |
| [TT_DATA_ACCESS] = "Data Access Error", |
| [TT_DIV_ZERO] = "Division By Zero", |
| [TT_NCP_INSN] = "Coprocessor Disabled", |
| }; |
| #endif |
| |
| void do_interrupt(CPUState *env) |
| { |
| int cwp, intno = env->exception_index; |
| |
| #ifdef DEBUG_PCALL |
| if (qemu_loglevel_mask(CPU_LOG_INT)) { |
| static int count; |
| const char *name; |
| |
| if (intno < 0 || intno >= 0x100) |
| name = "Unknown"; |
| else if (intno >= 0x80) |
| name = "Trap Instruction"; |
| else { |
| name = excp_names[intno]; |
| if (!name) |
| name = "Unknown"; |
| } |
| |
| qemu_log("%6d: %s (v=%02x) pc=%08x npc=%08x SP=%08x\n", |
| count, name, intno, |
| env->pc, |
| env->npc, env->regwptr[6]); |
| log_cpu_state(env, 0); |
| #if 0 |
| { |
| int i; |
| uint8_t *ptr; |
| |
| qemu_log(" code="); |
| ptr = (uint8_t *)env->pc; |
| for(i = 0; i < 16; i++) { |
| qemu_log(" %02x", ldub(ptr + i)); |
| } |
| qemu_log("\n"); |
| } |
| #endif |
| count++; |
| } |
| #endif |
| #if !defined(CONFIG_USER_ONLY) |
| if (env->psret == 0) { |
| cpu_abort(env, "Trap 0x%02x while interrupts disabled, Error state", |
| env->exception_index); |
| return; |
| } |
| #endif |
| env->psret = 0; |
| cwp = cwp_dec(env->cwp - 1); |
| set_cwp(cwp); |
| env->regwptr[9] = env->pc; |
| env->regwptr[10] = env->npc; |
| env->psrps = env->psrs; |
| env->psrs = 1; |
| env->tbr = (env->tbr & TBR_BASE_MASK) | (intno << 4); |
| env->pc = env->tbr; |
| env->npc = env->pc + 4; |
| env->exception_index = -1; |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* IRQ acknowledgment */ |
| if ((intno & ~15) == TT_EXTINT && env->qemu_irq_ack != NULL) { |
| env->qemu_irq_ack(env->irq_manager, intno); |
| } |
| #endif |
| } |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user, |
| void *retaddr); |
| |
| #define MMUSUFFIX _mmu |
| #define ALIGNED_ONLY |
| |
| #define SHIFT 0 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 1 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 2 |
| #include "softmmu_template.h" |
| |
| #define SHIFT 3 |
| #include "softmmu_template.h" |
| |
| /* XXX: make it generic ? */ |
| static void cpu_restore_state2(void *retaddr) |
| { |
| TranslationBlock *tb; |
| unsigned long pc; |
| |
| if (retaddr) { |
| /* now we have a real cpu fault */ |
| pc = (unsigned long)retaddr; |
| tb = tb_find_pc(pc); |
| if (tb) { |
| /* the PC is inside the translated code. It means that we have |
| a virtual CPU fault */ |
| cpu_restore_state(tb, env, pc); |
| } |
| } |
| } |
| |
| static void do_unaligned_access(target_ulong addr, int is_write, int is_user, |
| void *retaddr) |
| { |
| #ifdef DEBUG_UNALIGNED |
| printf("Unaligned access to 0x" TARGET_FMT_lx " from 0x" TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| cpu_restore_state2(retaddr); |
| raise_exception(TT_UNALIGNED); |
| } |
| |
| /* try to fill the TLB and return an exception if error. If retaddr is |
| NULL, it means that the function was called in C code (i.e. not |
| from generated code or from helper.c) */ |
| /* XXX: fix it to restore all registers */ |
| void tlb_fill(target_ulong addr, int is_write, int mmu_idx, void *retaddr) |
| { |
| int ret; |
| CPUState *saved_env; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| |
| ret = cpu_sparc_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); |
| if (ret) { |
| cpu_restore_state2(retaddr); |
| cpu_loop_exit(); |
| } |
| env = saved_env; |
| } |
| |
| #endif /* !CONFIG_USER_ONLY */ |
| |
| #ifndef TARGET_SPARC64 |
| #if !defined(CONFIG_USER_ONLY) |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, |
| int is_asi, int size) |
| { |
| CPUState *saved_env; |
| int fault_type; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| #ifdef DEBUG_UNASSIGNED |
| if (is_asi) |
| printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx |
| " asi 0x%02x from " TARGET_FMT_lx "\n", |
| is_exec ? "exec" : is_write ? "write" : "read", size, |
| size == 1 ? "" : "s", addr, is_asi, env->pc); |
| else |
| printf("Unassigned mem %s access of %d byte%s to " TARGET_FMT_plx |
| " from " TARGET_FMT_lx "\n", |
| is_exec ? "exec" : is_write ? "write" : "read", size, |
| size == 1 ? "" : "s", addr, env->pc); |
| #endif |
| /* Don't overwrite translation and access faults */ |
| fault_type = (env->mmuregs[3] & 0x1c) >> 2; |
| if ((fault_type > 4) || (fault_type == 0)) { |
| env->mmuregs[3] = 0; /* Fault status register */ |
| if (is_asi) |
| env->mmuregs[3] |= 1 << 16; |
| if (env->psrs) |
| env->mmuregs[3] |= 1 << 5; |
| if (is_exec) |
| env->mmuregs[3] |= 1 << 6; |
| if (is_write) |
| env->mmuregs[3] |= 1 << 7; |
| env->mmuregs[3] |= (5 << 2) | 2; |
| /* SuperSPARC will never place instruction fault addresses in the FAR */ |
| if (!is_exec) { |
| env->mmuregs[4] = addr; /* Fault address register */ |
| } |
| } |
| /* overflow (same type fault was not read before another fault) */ |
| if (fault_type == ((env->mmuregs[3] & 0x1c)) >> 2) { |
| env->mmuregs[3] |= 1; |
| } |
| |
| if ((env->mmuregs[0] & MMU_E) && !(env->mmuregs[0] & MMU_NF)) { |
| if (is_exec) |
| raise_exception(TT_CODE_ACCESS); |
| else |
| raise_exception(TT_DATA_ACCESS); |
| } |
| |
| /* flush neverland mappings created during no-fault mode, |
| so the sequential MMU faults report proper fault types */ |
| if (env->mmuregs[0] & MMU_NF) { |
| tlb_flush(env, 1); |
| } |
| |
| env = saved_env; |
| } |
| #endif |
| #else |
| #if defined(CONFIG_USER_ONLY) |
| static void do_unassigned_access(target_ulong addr, int is_write, int is_exec, |
| int is_asi, int size) |
| #else |
| void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec, |
| int is_asi, int size) |
| #endif |
| { |
| CPUState *saved_env; |
| |
| /* XXX: hack to restore env in all cases, even if not called from |
| generated code */ |
| saved_env = env; |
| env = cpu_single_env; |
| |
| #ifdef DEBUG_UNASSIGNED |
| printf("Unassigned mem access to " TARGET_FMT_plx " from " TARGET_FMT_lx |
| "\n", addr, env->pc); |
| #endif |
| |
| if (is_exec) |
| raise_exception(TT_CODE_ACCESS); |
| else |
| raise_exception(TT_DATA_ACCESS); |
| |
| env = saved_env; |
| } |
| #endif |
| |
| |
| #ifdef TARGET_SPARC64 |
| void helper_tick_set_count(void *opaque, uint64_t count) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| cpu_tick_set_count(opaque, count); |
| #endif |
| } |
| |
| uint64_t helper_tick_get_count(void *opaque) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| return cpu_tick_get_count(opaque); |
| #else |
| return 0; |
| #endif |
| } |
| |
| void helper_tick_set_limit(void *opaque, uint64_t limit) |
| { |
| #if !defined(CONFIG_USER_ONLY) |
| cpu_tick_set_limit(opaque, limit); |
| #endif |
| } |
| #endif |