blob: a289531bdc8e953cc451964b665f3bc88996f843 [file] [log] [blame]
/* Interface definition for configurable Xtensa ISA support.
*
* Copyright (c) 2001-2013 Tensilica Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sublicense, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
* CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
* TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
* SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
*/
#ifndef HW_XTENSA_XTENSA_ISA_H
#define HW_XTENSA_XTENSA_ISA_H
#ifdef __cplusplus
extern "C" {
#endif
/*
* Version number: This is intended to help support code that works with
* versions of this library from multiple Xtensa releases.
*/
#define XTENSA_ISA_VERSION 7000
/*
* This file defines the interface to the Xtensa ISA library. This
* library contains most of the ISA-specific information for a
* particular Xtensa processor. For example, the set of valid
* instructions, their opcode encodings and operand fields are all
* included here.
*
* This interface basically defines a number of abstract data types.
*
* . an instruction buffer - for holding the raw instruction bits
* . ISA info - information about the ISA as a whole
* . instruction formats - instruction size and slot structure
* . opcodes - information about individual instructions
* . operands - information about register and immediate instruction operands
* . stateOperands - information about processor state instruction operands
* . interfaceOperands - information about interface instruction operands
* . register files - register file information
* . processor states - internal processor state information
* . system registers - "special registers" and "user registers"
* . interfaces - TIE interfaces that are external to the processor
* . functional units - TIE shared functions
*
* The interface defines a set of functions to access each data type.
* With the exception of the instruction buffer, the internal
* representations of the data structures are hidden. All accesses must
* be made through the functions defined here.
*/
typedef struct xtensa_isa_opaque { int unused; } *xtensa_isa;
/*
* Most of the Xtensa ISA entities (e.g., opcodes, regfiles, etc.) are
* represented here using sequential integers beginning with 0. The
* specific values are only fixed for a particular instantiation of an
* xtensa_isa structure, so these values should only be used
* internally.
*/
typedef int xtensa_opcode;
typedef int xtensa_format;
typedef int xtensa_regfile;
typedef int xtensa_state;
typedef int xtensa_sysreg;
typedef int xtensa_interface;
typedef int xtensa_funcUnit;
/* Define a unique value for undefined items. */
#define XTENSA_UNDEFINED -1
/*
* Overview of using this interface to decode/encode instructions:
*
* Each Xtensa instruction is associated with a particular instruction
* format, where the format defines a fixed number of slots for
* operations. The formats for the core Xtensa ISA have only one slot,
* but FLIX instructions may have multiple slots. Within each slot,
* there is a single opcode and some number of associated operands.
*
* The encoding and decoding functions operate on instruction buffers,
* not on the raw bytes of the instructions. The same instruction
* buffer data structure is used for both entire instructions and
* individual slots in those instructions -- the contents of a slot need
* to be extracted from or inserted into the buffer for the instruction
* as a whole.
*
* Decoding an instruction involves first finding the format, which
* identifies the number of slots, and then decoding each slot
* separately. A slot is decoded by finding the opcode and then using
* the opcode to determine how many operands there are. For example:
*
* xtensa_insnbuf_from_chars
* xtensa_format_decode
* for each slot {
* xtensa_format_get_slot
* xtensa_opcode_decode
* for each operand {
* xtensa_operand_get_field
* xtensa_operand_decode
* }
* }
*
* Encoding an instruction is roughly the same procedure in reverse:
*
* xtensa_format_encode
* for each slot {
* xtensa_opcode_encode
* for each operand {
* xtensa_operand_encode
* xtensa_operand_set_field
* }
* xtensa_format_set_slot
* }
* xtensa_insnbuf_to_chars
*/
/* Error handling. */
/*
* Error codes. The code for the most recent error condition can be
* retrieved with the "errno" function. For any result other than
* xtensa_isa_ok, an error message containing additional information
* about the problem can be retrieved using the "error_msg" function.
* The error messages are stored in an internal buffer, which should
* not be freed and may be overwritten by subsequent operations.
*/
typedef enum xtensa_isa_status_enum {
xtensa_isa_ok = 0,
xtensa_isa_bad_format,
xtensa_isa_bad_slot,
xtensa_isa_bad_opcode,
xtensa_isa_bad_operand,
xtensa_isa_bad_field,
xtensa_isa_bad_iclass,
xtensa_isa_bad_regfile,
xtensa_isa_bad_sysreg,
xtensa_isa_bad_state,
xtensa_isa_bad_interface,
xtensa_isa_bad_funcUnit,
xtensa_isa_wrong_slot,
xtensa_isa_no_field,
xtensa_isa_out_of_memory,
xtensa_isa_buffer_overflow,
xtensa_isa_internal_error,
xtensa_isa_bad_value
} xtensa_isa_status;
xtensa_isa_status xtensa_isa_errno(xtensa_isa isa);
char *xtensa_isa_error_msg(xtensa_isa isa);
/* Instruction buffers. */
typedef uint32_t xtensa_insnbuf_word;
typedef xtensa_insnbuf_word *xtensa_insnbuf;
/* Get the size in "insnbuf_words" of the xtensa_insnbuf array. */
int xtensa_insnbuf_size(xtensa_isa isa);
/* Allocate an xtensa_insnbuf of the right size. */
xtensa_insnbuf xtensa_insnbuf_alloc(xtensa_isa isa);
/* Release an xtensa_insnbuf. */
void xtensa_insnbuf_free(xtensa_isa isa, xtensa_insnbuf buf);
/*
* Conversion between raw memory (char arrays) and our internal
* instruction representation. This is complicated by the Xtensa ISA's
* variable instruction lengths. When converting to chars, the buffer
* must contain a valid instruction so we know how many bytes to copy;
* thus, the "to_chars" function returns the number of bytes copied or
* XTENSA_UNDEFINED on error. The "from_chars" function first reads the
* minimal number of bytes required to decode the instruction length and
* then proceeds to copy the entire instruction into the buffer; if the
* memory does not contain a valid instruction, it copies the maximum
* number of bytes required for the longest Xtensa instruction. The
* "num_chars" argument may be used to limit the number of bytes that
* can be read or written. Otherwise, if "num_chars" is zero, the
* functions may read or write past the end of the code.
*/
int xtensa_insnbuf_to_chars(xtensa_isa isa, const xtensa_insnbuf insn,
unsigned char *cp, int num_chars);
void xtensa_insnbuf_from_chars(xtensa_isa isa, xtensa_insnbuf insn,
const unsigned char *cp, int num_chars);
/* ISA information. */
/* Initialize the ISA information. */
xtensa_isa xtensa_isa_init(void *xtensa_modules, xtensa_isa_status *errno_p,
char **error_msg_p);
/* Deallocate an xtensa_isa structure. */
void xtensa_isa_free(xtensa_isa isa);
/* Get the maximum instruction size in bytes. */
int xtensa_isa_maxlength(xtensa_isa isa);
/*
* Decode the length in bytes of an instruction in raw memory (not an
* insnbuf). This function reads only the minimal number of bytes
* required to decode the instruction length. Returns
* XTENSA_UNDEFINED on error.
*/
int xtensa_isa_length_from_chars(xtensa_isa isa, const unsigned char *cp);
/*
* Get the number of stages in the processor's pipeline. The pipeline
* stage values returned by other functions in this library will range
* from 0 to N-1, where N is the value returned by this function.
* Note that the stage numbers used here may not correspond to the
* actual processor hardware, e.g., the hardware may have additional
* stages before stage 0. Returns XTENSA_UNDEFINED on error.
*/
int xtensa_isa_num_pipe_stages(xtensa_isa isa);
/* Get the number of various entities that are defined for this processor. */
int xtensa_isa_num_formats(xtensa_isa isa);
int xtensa_isa_num_opcodes(xtensa_isa isa);
int xtensa_isa_num_regfiles(xtensa_isa isa);
int xtensa_isa_num_states(xtensa_isa isa);
int xtensa_isa_num_sysregs(xtensa_isa isa);
int xtensa_isa_num_interfaces(xtensa_isa isa);
int xtensa_isa_num_funcUnits(xtensa_isa isa);
/* Instruction formats. */
/* Get the name of a format. Returns null on error. */
const char *xtensa_format_name(xtensa_isa isa, xtensa_format fmt);
/*
* Given a format name, return the format number. Returns
* XTENSA_UNDEFINED if the name is not a valid format.
*/
xtensa_format xtensa_format_lookup(xtensa_isa isa, const char *fmtname);
/*
* Decode the instruction format from a binary instruction buffer.
* Returns XTENSA_UNDEFINED if the format is not recognized.
*/
xtensa_format xtensa_format_decode(xtensa_isa isa, const xtensa_insnbuf insn);
/*
* Set the instruction format field(s) in a binary instruction buffer.
* All the other fields are set to zero. Returns non-zero on error.
*/
int xtensa_format_encode(xtensa_isa isa, xtensa_format fmt,
xtensa_insnbuf insn);
/*
* Find the length (in bytes) of an instruction. Returns
* XTENSA_UNDEFINED on error.
*/
int xtensa_format_length(xtensa_isa isa, xtensa_format fmt);
/*
* Get the number of slots in an instruction. Returns XTENSA_UNDEFINED
* on error.
*/
int xtensa_format_num_slots(xtensa_isa isa, xtensa_format fmt);
/*
* Get the opcode for a no-op in a particular slot.
* Returns XTENSA_UNDEFINED on error.
*/
xtensa_opcode xtensa_format_slot_nop_opcode(xtensa_isa isa, xtensa_format fmt,
int slot);
/*
* Get the bits for a specified slot out of an insnbuf for the
* instruction as a whole and put them into an insnbuf for that one
* slot, and do the opposite to set a slot. Return non-zero on error.
*/
int xtensa_format_get_slot(xtensa_isa isa, xtensa_format fmt, int slot,
const xtensa_insnbuf insn, xtensa_insnbuf slotbuf);
int xtensa_format_set_slot(xtensa_isa isa, xtensa_format fmt, int slot,
xtensa_insnbuf insn, const xtensa_insnbuf slotbuf);
/* Opcode information. */
/*
* Translate a mnemonic name to an opcode. Returns XTENSA_UNDEFINED if
* the name is not a valid opcode mnemonic.
*/
xtensa_opcode xtensa_opcode_lookup(xtensa_isa isa, const char *opname);
/*
* Decode the opcode for one instruction slot from a binary instruction
* buffer. Returns the opcode or XTENSA_UNDEFINED if the opcode is
* illegal.
*/
xtensa_opcode xtensa_opcode_decode(xtensa_isa isa, xtensa_format fmt, int slot,
const xtensa_insnbuf slotbuf);
/*
* Set the opcode field(s) for an instruction slot. All other fields
* in the slot are set to zero. Returns non-zero if the opcode cannot
* be encoded.
*/
int xtensa_opcode_encode(xtensa_isa isa, xtensa_format fmt, int slot,
xtensa_insnbuf slotbuf, xtensa_opcode opc);
/* Get the mnemonic name for an opcode. Returns null on error. */
const char *xtensa_opcode_name(xtensa_isa isa, xtensa_opcode opc);
/* Check various properties of opcodes. These functions return 0 if
* the condition is false, 1 if the condition is true, and
* XTENSA_UNDEFINED on error. The instructions are classified as
* follows:
*
* branch: conditional branch; may fall through to next instruction (B*)
* jump: unconditional branch (J, JX, RET*, RF*)
* loop: zero-overhead loop (LOOP*)
* call: unconditional call; control returns to next instruction (CALL*)
*
* For the opcodes that affect control flow in some way, the branch
* target may be specified by an immediate operand or it may be an
* address stored in a register. You can distinguish these by
* checking if the instruction has a PC-relative immediate
* operand.
*/
int xtensa_opcode_is_branch(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_is_jump(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_is_loop(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_is_call(xtensa_isa isa, xtensa_opcode opc);
/*
* Find the number of ordinary operands, state operands, and interface
* operands for an instruction. These return XTENSA_UNDEFINED on
* error.
*/
int xtensa_opcode_num_operands(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_num_stateOperands(xtensa_isa isa, xtensa_opcode opc);
int xtensa_opcode_num_interfaceOperands(xtensa_isa isa, xtensa_opcode opc);
/*
* Get functional unit usage requirements for an opcode. Each "use"
* is identified by a <functional unit, pipeline stage> pair. The
* "num_funcUnit_uses" function returns the number of these "uses" or
* XTENSA_UNDEFINED on error. The "funcUnit_use" function returns
* a pointer to a "use" pair or null on error.
*/
typedef struct xtensa_funcUnit_use_struct {
xtensa_funcUnit unit;
int stage;
} xtensa_funcUnit_use;
int xtensa_opcode_num_funcUnit_uses(xtensa_isa isa, xtensa_opcode opc);
xtensa_funcUnit_use *xtensa_opcode_funcUnit_use(xtensa_isa isa,
xtensa_opcode opc, int u);
/* Operand information. */
/* Get the name of an operand. Returns null on error. */
const char *xtensa_operand_name(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Some operands are "invisible", i.e., not explicitly specified in
* assembly language. When assembling an instruction, you need not set
* the values of invisible operands, since they are either hardwired or
* derived from other field values. The values of invisible operands
* can be examined in the same way as other operands, but remember that
* an invisible operand may get its value from another visible one, so
* the entire instruction must be available before examining the
* invisible operand values. This function returns 1 if an operand is
* visible, 0 if it is invisible, or XTENSA_UNDEFINED on error. Note
* that whether an operand is visible is orthogonal to whether it is
* "implicit", i.e., whether it is encoded in a field in the
* instruction.
*/
int xtensa_operand_is_visible(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Check if an operand is an input ('i'), output ('o'), or inout ('m')
* operand. Note: The output operand of a conditional assignment
* (e.g., movnez) appears here as an inout ('m') even if it is declared
* in the TIE code as an output ('o'); this allows the compiler to
* properly handle register allocation for conditional assignments.
* Returns 0 on error.
*/
char xtensa_operand_inout(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Get and set the raw (encoded) value of the field for the specified
* operand. The "set" function does not check if the value fits in the
* field; that is done by the "encode" function below. Both of these
* functions return non-zero on error, e.g., if the field is not defined
* for the specified slot.
*/
int xtensa_operand_get_field(xtensa_isa isa, xtensa_opcode opc, int opnd,
xtensa_format fmt, int slot,
const xtensa_insnbuf slotbuf, uint32_t *valp);
int xtensa_operand_set_field(xtensa_isa isa, xtensa_opcode opc, int opnd,
xtensa_format fmt, int slot,
xtensa_insnbuf slotbuf, uint32_t val);
/*
* Encode and decode operands. The raw bits in the operand field may
* be encoded in a variety of different ways. These functions hide
* the details of that encoding. The result values are returned through
* the argument pointer. The return value is non-zero on error.
*/
int xtensa_operand_encode(xtensa_isa isa, xtensa_opcode opc, int opnd,
uint32_t *valp);
int xtensa_operand_decode(xtensa_isa isa, xtensa_opcode opc, int opnd,
uint32_t *valp);
/*
* An operand may be either a register operand or an immediate of some
* sort (e.g., PC-relative or not). The "is_register" function returns
* 0 if the operand is an immediate, 1 if it is a register, and
* XTENSA_UNDEFINED on error. The "regfile" function returns the
* regfile for a register operand, or XTENSA_UNDEFINED on error.
*/
int xtensa_operand_is_register(xtensa_isa isa, xtensa_opcode opc, int opnd);
xtensa_regfile xtensa_operand_regfile(xtensa_isa isa, xtensa_opcode opc,
int opnd);
/*
* Register operands may span multiple consecutive registers, e.g., a
* 64-bit data type may occupy two 32-bit registers. Only the first
* register is encoded in the operand field. This function specifies
* the number of consecutive registers occupied by this operand. For
* non-register operands, the return value is undefined. Returns
* XTENSA_UNDEFINED on error.
*/
int xtensa_operand_num_regs(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Some register operands do not completely identify the register being
* accessed. For example, the operand value may be added to an internal
* state value. By definition, this implies that the corresponding
* regfile is not allocatable. Unknown registers should generally be
* treated with worst-case assumptions. The function returns 0 if the
* register value is unknown, 1 if known, and XTENSA_UNDEFINED on
* error.
*/
int xtensa_operand_is_known_reg(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* Check if an immediate operand is PC-relative. Returns 0 for register
* operands and non-PC-relative immediates, 1 for PC-relative
* immediates, and XTENSA_UNDEFINED on error.
*/
int xtensa_operand_is_PCrelative(xtensa_isa isa, xtensa_opcode opc, int opnd);
/*
* For PC-relative offset operands, the interpretation of the offset may
* vary between opcodes, e.g., is it relative to the current PC or that
* of the next instruction? The following functions are defined to
* perform PC-relative relocations and to undo them (as in the
* disassembler). The "do_reloc" function takes the desired address
* value and the PC of the current instruction and sets the value to the
* corresponding PC-relative offset (which can then be encoded and
* stored into the operand field). The "undo_reloc" function takes the
* unencoded offset value and the current PC and sets the value to the
* appropriate address. The return values are non-zero on error. Note
* that these functions do not replace the encode/decode functions; the
* operands must be encoded/decoded separately and the encode functions
* are responsible for detecting invalid operand values.
*/
int xtensa_operand_do_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd,
uint32_t *valp, uint32_t pc);
int xtensa_operand_undo_reloc(xtensa_isa isa, xtensa_opcode opc, int opnd,
uint32_t *valp, uint32_t pc);
/* State Operands. */
/*
* Get the state accessed by a state operand. Returns XTENSA_UNDEFINED
* on error.
*/
xtensa_state xtensa_stateOperand_state(xtensa_isa isa, xtensa_opcode opc,
int stOp);
/*
* Check if a state operand is an input ('i'), output ('o'), or inout
* ('m') operand. Returns 0 on error.
*/
char xtensa_stateOperand_inout(xtensa_isa isa, xtensa_opcode opc, int stOp);
/* Interface Operands. */
/*
* Get the external interface accessed by an interface operand.
* Returns XTENSA_UNDEFINED on error.
*/
xtensa_interface xtensa_interfaceOperand_interface(xtensa_isa isa,
xtensa_opcode opc,
int ifOp);
/* Register Files. */
/*
* Regfiles include both "real" regfiles and "views", where a view
* allows a group of adjacent registers in a real "parent" regfile to be
* viewed as a single register. A regfile view has all the same
* properties as its parent except for its (long) name, bit width, number
* of entries, and default ctype. You can use the parent function to
* distinguish these two classes.
*/
/*
* Look up a regfile by either its name or its abbreviated "short name".
* Returns XTENSA_UNDEFINED on error. The "lookup_shortname" function
* ignores "view" regfiles since they always have the same shortname as
* their parents.
*/
xtensa_regfile xtensa_regfile_lookup(xtensa_isa isa, const char *name);
xtensa_regfile xtensa_regfile_lookup_shortname(xtensa_isa isa,
const char *shortname);
/*
* Get the name or abbreviated "short name" of a regfile.
* Returns null on error.
*/
const char *xtensa_regfile_name(xtensa_isa isa, xtensa_regfile rf);
const char *xtensa_regfile_shortname(xtensa_isa isa, xtensa_regfile rf);
/*
* Get the parent regfile of a "view" regfile. If the regfile is not a
* view, the result is the same as the input parameter. Returns
* XTENSA_UNDEFINED on error.
*/
xtensa_regfile xtensa_regfile_view_parent(xtensa_isa isa, xtensa_regfile rf);
/*
* Get the bit width of a regfile or regfile view.
* Returns XTENSA_UNDEFINED on error.
*/
int xtensa_regfile_num_bits(xtensa_isa isa, xtensa_regfile rf);
/*
* Get the number of regfile entries. Returns XTENSA_UNDEFINED on
* error.
*/
int xtensa_regfile_num_entries(xtensa_isa isa, xtensa_regfile rf);
/* Processor States. */
/* Look up a state by name. Returns XTENSA_UNDEFINED on error. */
xtensa_state xtensa_state_lookup(xtensa_isa isa, const char *name);
/* Get the name for a processor state. Returns null on error. */
const char *xtensa_state_name(xtensa_isa isa, xtensa_state st);
/*
* Get the bit width for a processor state.
* Returns XTENSA_UNDEFINED on error.
*/
int xtensa_state_num_bits(xtensa_isa isa, xtensa_state st);
/*
* Check if a state is exported from the processor core. Returns 0 if
* the condition is false, 1 if the condition is true, and
* XTENSA_UNDEFINED on error.
*/
int xtensa_state_is_exported(xtensa_isa isa, xtensa_state st);
/*
* Check for a "shared_or" state. Returns 0 if the condition is false,
* 1 if the condition is true, and XTENSA_UNDEFINED on error.
*/
int xtensa_state_is_shared_or(xtensa_isa isa, xtensa_state st);
/* Sysregs ("special registers" and "user registers"). */
/*
* Look up a register by its number and whether it is a "user register"
* or a "special register". Returns XTENSA_UNDEFINED if the sysreg does
* not exist.
*/
xtensa_sysreg xtensa_sysreg_lookup(xtensa_isa isa, int num, int is_user);
/*
* Check if there exists a sysreg with a given name.
* If not, this function returns XTENSA_UNDEFINED.
*/
xtensa_sysreg xtensa_sysreg_lookup_name(xtensa_isa isa, const char *name);
/* Get the name of a sysreg. Returns null on error. */
const char *xtensa_sysreg_name(xtensa_isa isa, xtensa_sysreg sysreg);
/* Get the register number. Returns XTENSA_UNDEFINED on error. */
int xtensa_sysreg_number(xtensa_isa isa, xtensa_sysreg sysreg);
/*
* Check if a sysreg is a "special register" or a "user register".
* Returns 0 for special registers, 1 for user registers and
* XTENSA_UNDEFINED on error.
*/
int xtensa_sysreg_is_user(xtensa_isa isa, xtensa_sysreg sysreg);
/* Interfaces. */
/*
* Find an interface by name. The return value is XTENSA_UNDEFINED if
* the specified interface is not found.
*/
xtensa_interface xtensa_interface_lookup(xtensa_isa isa, const char *ifname);
/* Get the name of an interface. Returns null on error. */
const char *xtensa_interface_name(xtensa_isa isa, xtensa_interface intf);
/*
* Get the bit width for an interface.
* Returns XTENSA_UNDEFINED on error.
*/
int xtensa_interface_num_bits(xtensa_isa isa, xtensa_interface intf);
/*
* Check if an interface is an input ('i') or output ('o') with respect
* to the Xtensa processor core. Returns 0 on error.
*/
char xtensa_interface_inout(xtensa_isa isa, xtensa_interface intf);
/*
* Check if accessing an interface has potential side effects.
* Currently "data" interfaces have side effects and "control"
* interfaces do not. Returns 1 if there are side effects, 0 if not,
* and XTENSA_UNDEFINED on error.
*/
int xtensa_interface_has_side_effect(xtensa_isa isa, xtensa_interface intf);
/*
* Some interfaces may be related such that accessing one interface
* has side effects on a set of related interfaces. The interfaces
* are partitioned into equivalence classes of related interfaces, and
* each class is assigned a unique identifier number. This function
* returns the class identifier for an interface, or XTENSA_UNDEFINED
* on error. These identifiers can be compared to determine if two
* interfaces are related; the specific values of the identifiers have
* no particular meaning otherwise.
*/
int xtensa_interface_class_id(xtensa_isa isa, xtensa_interface intf);
/* Functional Units. */
/*
* Find a functional unit by name. The return value is XTENSA_UNDEFINED if
* the specified unit is not found.
*/
xtensa_funcUnit xtensa_funcUnit_lookup(xtensa_isa isa, const char *fname);
/* Get the name of a functional unit. Returns null on error. */
const char *xtensa_funcUnit_name(xtensa_isa isa, xtensa_funcUnit fun);
/*
* Functional units may be replicated. See how many instances of a
* particular function unit exist. Returns XTENSA_UNDEFINED on error.
*/
int xtensa_funcUnit_num_copies(xtensa_isa isa, xtensa_funcUnit fun);
#ifdef __cplusplus
}
#endif
#endif /* HW_XTENSA_XTENSA_ISA_H */