| /* |
| * PowerPC emulation helpers for QEMU. |
| * |
| * Copyright (c) 2003-2007 Jocelyn Mayer |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "hw/ppc/ppc.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "qemu/log.h" |
| #include "qemu/main-loop.h" |
| |
| /*****************************************************************************/ |
| /* SPR accesses */ |
| |
| target_ulong helper_load_tbl(CPUPPCState *env) |
| { |
| return (target_ulong)cpu_ppc_load_tbl(env); |
| } |
| |
| target_ulong helper_load_tbu(CPUPPCState *env) |
| { |
| return cpu_ppc_load_tbu(env); |
| } |
| |
| target_ulong helper_load_atbl(CPUPPCState *env) |
| { |
| return (target_ulong)cpu_ppc_load_atbl(env); |
| } |
| |
| target_ulong helper_load_atbu(CPUPPCState *env) |
| { |
| return cpu_ppc_load_atbu(env); |
| } |
| |
| target_ulong helper_load_vtb(CPUPPCState *env) |
| { |
| return cpu_ppc_load_vtb(env); |
| } |
| |
| #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) |
| target_ulong helper_load_purr(CPUPPCState *env) |
| { |
| return (target_ulong)cpu_ppc_load_purr(env); |
| } |
| |
| void helper_store_purr(CPUPPCState *env, target_ulong val) |
| { |
| CPUState *cs = env_cpu(env); |
| CPUState *ccs; |
| |
| if (ppc_cpu_lpar_single_threaded(cs)) { |
| cpu_ppc_store_purr(env, val); |
| return; |
| } |
| |
| THREAD_SIBLING_FOREACH(cs, ccs) { |
| CPUPPCState *cenv = &POWERPC_CPU(ccs)->env; |
| cpu_ppc_store_purr(cenv, val); |
| } |
| } |
| #endif |
| |
| #if !defined(CONFIG_USER_ONLY) |
| void helper_store_tbl(CPUPPCState *env, target_ulong val) |
| { |
| CPUState *cs = env_cpu(env); |
| CPUState *ccs; |
| |
| if (ppc_cpu_lpar_single_threaded(cs)) { |
| cpu_ppc_store_tbl(env, val); |
| return; |
| } |
| |
| THREAD_SIBLING_FOREACH(cs, ccs) { |
| CPUPPCState *cenv = &POWERPC_CPU(ccs)->env; |
| cpu_ppc_store_tbl(cenv, val); |
| } |
| } |
| |
| void helper_store_tbu(CPUPPCState *env, target_ulong val) |
| { |
| CPUState *cs = env_cpu(env); |
| CPUState *ccs; |
| |
| if (ppc_cpu_lpar_single_threaded(cs)) { |
| cpu_ppc_store_tbu(env, val); |
| return; |
| } |
| |
| THREAD_SIBLING_FOREACH(cs, ccs) { |
| CPUPPCState *cenv = &POWERPC_CPU(ccs)->env; |
| cpu_ppc_store_tbu(cenv, val); |
| } |
| } |
| |
| void helper_store_atbl(CPUPPCState *env, target_ulong val) |
| { |
| cpu_ppc_store_atbl(env, val); |
| } |
| |
| void helper_store_atbu(CPUPPCState *env, target_ulong val) |
| { |
| cpu_ppc_store_atbu(env, val); |
| } |
| |
| target_ulong helper_load_decr(CPUPPCState *env) |
| { |
| return cpu_ppc_load_decr(env); |
| } |
| |
| void helper_store_decr(CPUPPCState *env, target_ulong val) |
| { |
| cpu_ppc_store_decr(env, val); |
| } |
| |
| target_ulong helper_load_hdecr(CPUPPCState *env) |
| { |
| return cpu_ppc_load_hdecr(env); |
| } |
| |
| void helper_store_hdecr(CPUPPCState *env, target_ulong val) |
| { |
| CPUState *cs = env_cpu(env); |
| CPUState *ccs; |
| |
| if (ppc_cpu_lpar_single_threaded(cs)) { |
| cpu_ppc_store_hdecr(env, val); |
| return; |
| } |
| |
| THREAD_SIBLING_FOREACH(cs, ccs) { |
| CPUPPCState *cenv = &POWERPC_CPU(ccs)->env; |
| cpu_ppc_store_hdecr(cenv, val); |
| } |
| } |
| |
| void helper_store_vtb(CPUPPCState *env, target_ulong val) |
| { |
| CPUState *cs = env_cpu(env); |
| CPUState *ccs; |
| |
| if (ppc_cpu_lpar_single_threaded(cs)) { |
| cpu_ppc_store_vtb(env, val); |
| return; |
| } |
| |
| THREAD_SIBLING_FOREACH(cs, ccs) { |
| CPUPPCState *cenv = &POWERPC_CPU(ccs)->env; |
| cpu_ppc_store_vtb(cenv, val); |
| } |
| } |
| |
| void helper_store_tbu40(CPUPPCState *env, target_ulong val) |
| { |
| CPUState *cs = env_cpu(env); |
| CPUState *ccs; |
| |
| if (ppc_cpu_lpar_single_threaded(cs)) { |
| cpu_ppc_store_tbu40(env, val); |
| return; |
| } |
| |
| THREAD_SIBLING_FOREACH(cs, ccs) { |
| CPUPPCState *cenv = &POWERPC_CPU(ccs)->env; |
| cpu_ppc_store_tbu40(cenv, val); |
| } |
| } |
| |
| target_ulong helper_load_40x_pit(CPUPPCState *env) |
| { |
| return load_40x_pit(env); |
| } |
| |
| void helper_store_40x_pit(CPUPPCState *env, target_ulong val) |
| { |
| store_40x_pit(env, val); |
| } |
| |
| void helper_store_40x_tcr(CPUPPCState *env, target_ulong val) |
| { |
| store_40x_tcr(env, val); |
| } |
| |
| void helper_store_40x_tsr(CPUPPCState *env, target_ulong val) |
| { |
| store_40x_tsr(env, val); |
| } |
| |
| void helper_store_booke_tcr(CPUPPCState *env, target_ulong val) |
| { |
| store_booke_tcr(env, val); |
| } |
| |
| void helper_store_booke_tsr(CPUPPCState *env, target_ulong val) |
| { |
| store_booke_tsr(env, val); |
| } |
| |
| #if defined(TARGET_PPC64) && !defined(CONFIG_USER_ONLY) |
| /* |
| * qemu-user breaks with pnv headers, so they go under ifdefs for now. |
| * A clean up may be to move powernv specific registers and helpers into |
| * target/ppc/pnv_helper.c |
| */ |
| #include "hw/ppc/pnv_core.h" |
| #include "hw/ppc/pnv_chip.h" |
| /* |
| * POWER processor Timebase Facility |
| */ |
| |
| /* |
| * The TBST is the timebase state machine, which is a per-core machine that |
| * is used to synchronize the core TB with the ChipTOD. States 3,4,5 are |
| * not used in POWER8/9/10. |
| * |
| * The state machine gets driven by writes to TFMR SPR from the core, and |
| * by signals from the ChipTOD. The state machine table for common |
| * transitions is as follows (according to hardware specs, not necessarily |
| * this implementation): |
| * |
| * | Cur | Event | New | |
| * +----------------+----------------------------------+-----+ |
| * | 0 RESET | TFMR |= LOAD_TOD_MOD | 1 | |
| * | 1 SEND_TOD_MOD | "immediate transition" | 2 | |
| * | 2 NOT_SET | mttbu/mttbu40/mttbl | 2 | |
| * | 2 NOT_SET | TFMR |= MOVE_CHIP_TOD_TO_TB | 6 | |
| * | 6 SYNC_WAIT | "sync pulse from ChipTOD" | 7 | |
| * | 7 GET_TOD | ChipTOD xscom MOVE_TOD_TO_TB_REG | 8 | |
| * | 8 TB_RUNNING | mttbu/mttbu40 | 8 | |
| * | 8 TB_RUNNING | TFMR |= LOAD_TOD_MOD | 1 | |
| * | 8 TB_RUNNING | mttbl | 9 | |
| * | 9 TB_ERROR | TFMR |= CLEAR_TB_ERRORS | 0 | |
| * |
| * - LOAD_TOD_MOD will also move states 2,6 to state 1, omitted from table |
| * because it's not a typical init flow. |
| * |
| * - The ERROR state can be entered from most/all other states on invalid |
| * states (e.g., if some TFMR control bit is set from a state where it's |
| * not listed to cause a transition away from), omitted to avoid clutter. |
| * |
| * Note: mttbl causes a timebase error because this inevitably causes |
| * ticks to be lost and TB to become unsynchronized, whereas TB can be |
| * adjusted using mttbu* without losing ticks. mttbl behaviour is not |
| * modelled. |
| * |
| * Note: the TB state machine does not actually cause any real TB adjustment! |
| * TB starts out synchronized across all vCPUs (hardware threads) in |
| * QMEU, so for now the purpose of the TBST and ChipTOD model is simply |
| * to step through firmware initialisation sequences. |
| */ |
| static unsigned int tfmr_get_tb_state(uint64_t tfmr) |
| { |
| return (tfmr & TFMR_TBST_ENCODED) >> (63 - 31); |
| } |
| |
| static uint64_t tfmr_new_tb_state(uint64_t tfmr, unsigned int tbst) |
| { |
| tfmr &= ~TFMR_TBST_LAST; |
| tfmr |= (tfmr & TFMR_TBST_ENCODED) >> 4; /* move state to last state */ |
| tfmr &= ~TFMR_TBST_ENCODED; |
| tfmr |= (uint64_t)tbst << (63 - 31); /* move new state to state */ |
| |
| if (tbst == TBST_TB_RUNNING) { |
| tfmr |= TFMR_TB_VALID; |
| } else { |
| tfmr &= ~TFMR_TB_VALID; |
| } |
| |
| return tfmr; |
| } |
| |
| static void write_tfmr(CPUPPCState *env, target_ulong val) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| if (ppc_cpu_core_single_threaded(cs)) { |
| env->spr[SPR_TFMR] = val; |
| } else { |
| CPUState *ccs; |
| THREAD_SIBLING_FOREACH(cs, ccs) { |
| CPUPPCState *cenv = &POWERPC_CPU(ccs)->env; |
| cenv->spr[SPR_TFMR] = val; |
| } |
| } |
| } |
| |
| static PnvCoreTODState *cpu_get_tbst(PowerPCCPU *cpu) |
| { |
| PnvCore *pc = pnv_cpu_state(cpu)->pnv_core; |
| |
| if (pc->big_core && pc->tod_state.big_core_quirk) { |
| /* Must operate on the even small core */ |
| int core_id = CPU_CORE(pc)->core_id; |
| if (core_id & 1) { |
| pc = pc->chip->cores[core_id & ~1]; |
| } |
| } |
| |
| return &pc->tod_state; |
| } |
| |
| static void tb_state_machine_step(CPUPPCState *env) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| PnvCoreTODState *tod_state = cpu_get_tbst(cpu); |
| uint64_t tfmr = env->spr[SPR_TFMR]; |
| unsigned int tbst = tfmr_get_tb_state(tfmr); |
| |
| if (!(tfmr & TFMR_TB_ECLIPZ) || tbst == TBST_TB_ERROR) { |
| return; |
| } |
| |
| if (tod_state->tb_sync_pulse_timer) { |
| tod_state->tb_sync_pulse_timer--; |
| } else { |
| tfmr |= TFMR_TB_SYNC_OCCURED; |
| write_tfmr(env, tfmr); |
| } |
| |
| if (tod_state->tb_state_timer) { |
| tod_state->tb_state_timer--; |
| return; |
| } |
| |
| if (tfmr & TFMR_LOAD_TOD_MOD) { |
| tfmr &= ~TFMR_LOAD_TOD_MOD; |
| if (tbst == TBST_GET_TOD) { |
| tfmr = tfmr_new_tb_state(tfmr, TBST_TB_ERROR); |
| tfmr |= TFMR_FIRMWARE_CONTROL_ERROR; |
| } else { |
| tfmr = tfmr_new_tb_state(tfmr, TBST_SEND_TOD_MOD); |
| /* State seems to transition immediately */ |
| tfmr = tfmr_new_tb_state(tfmr, TBST_NOT_SET); |
| } |
| } else if (tfmr & TFMR_MOVE_CHIP_TOD_TO_TB) { |
| if (tbst == TBST_SYNC_WAIT) { |
| tfmr = tfmr_new_tb_state(tfmr, TBST_GET_TOD); |
| tod_state->tb_state_timer = 3; |
| } else if (tbst == TBST_GET_TOD) { |
| if (tod_state->tod_sent_to_tb) { |
| tfmr = tfmr_new_tb_state(tfmr, TBST_TB_RUNNING); |
| tfmr &= ~TFMR_MOVE_CHIP_TOD_TO_TB; |
| tod_state->tb_ready_for_tod = 0; |
| tod_state->tod_sent_to_tb = 0; |
| } |
| } else { |
| qemu_log_mask(LOG_GUEST_ERROR, "TFMR error: MOVE_CHIP_TOD_TO_TB " |
| "state machine in invalid state 0x%x\n", tbst); |
| tfmr = tfmr_new_tb_state(tfmr, TBST_TB_ERROR); |
| tfmr |= TFMR_FIRMWARE_CONTROL_ERROR; |
| tod_state->tb_ready_for_tod = 0; |
| } |
| } |
| |
| write_tfmr(env, tfmr); |
| } |
| |
| target_ulong helper_load_tfmr(CPUPPCState *env) |
| { |
| tb_state_machine_step(env); |
| |
| return env->spr[SPR_TFMR] | TFMR_TB_ECLIPZ; |
| } |
| |
| void helper_store_tfmr(CPUPPCState *env, target_ulong val) |
| { |
| PowerPCCPU *cpu = env_archcpu(env); |
| PnvCoreTODState *tod_state = cpu_get_tbst(cpu); |
| uint64_t tfmr = env->spr[SPR_TFMR]; |
| uint64_t clear_on_write; |
| unsigned int tbst = tfmr_get_tb_state(tfmr); |
| |
| if (!(val & TFMR_TB_ECLIPZ)) { |
| qemu_log_mask(LOG_UNIMP, "TFMR non-ECLIPZ mode not implemented\n"); |
| tfmr &= ~TFMR_TBST_ENCODED; |
| tfmr &= ~TFMR_TBST_LAST; |
| goto out; |
| } |
| |
| /* Update control bits */ |
| tfmr = (tfmr & ~TFMR_CONTROL_MASK) | (val & TFMR_CONTROL_MASK); |
| |
| /* Several bits are clear-on-write, only one is implemented so far */ |
| clear_on_write = val & TFMR_FIRMWARE_CONTROL_ERROR; |
| tfmr &= ~clear_on_write; |
| |
| /* |
| * mtspr always clears this. The sync pulse timer makes it come back |
| * after the second mfspr. |
| */ |
| tfmr &= ~TFMR_TB_SYNC_OCCURED; |
| tod_state->tb_sync_pulse_timer = 1; |
| |
| if (((tfmr | val) & (TFMR_LOAD_TOD_MOD | TFMR_MOVE_CHIP_TOD_TO_TB)) == |
| (TFMR_LOAD_TOD_MOD | TFMR_MOVE_CHIP_TOD_TO_TB)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "TFMR error: LOAD_TOD_MOD and " |
| "MOVE_CHIP_TOD_TO_TB both set\n"); |
| tfmr = tfmr_new_tb_state(tfmr, TBST_TB_ERROR); |
| tfmr |= TFMR_FIRMWARE_CONTROL_ERROR; |
| tod_state->tb_ready_for_tod = 0; |
| goto out; |
| } |
| |
| if (tfmr & TFMR_CLEAR_TB_ERRORS) { |
| /* |
| * Workbook says TFMR_CLEAR_TB_ERRORS should be written twice. |
| * This is not simulated/required here. |
| */ |
| tfmr = tfmr_new_tb_state(tfmr, TBST_RESET); |
| tfmr &= ~TFMR_CLEAR_TB_ERRORS; |
| tfmr &= ~TFMR_LOAD_TOD_MOD; |
| tfmr &= ~TFMR_MOVE_CHIP_TOD_TO_TB; |
| tfmr &= ~TFMR_FIRMWARE_CONTROL_ERROR; /* XXX: should this be cleared? */ |
| tod_state->tb_ready_for_tod = 0; |
| tod_state->tod_sent_to_tb = 0; |
| goto out; |
| } |
| |
| if (tbst == TBST_TB_ERROR) { |
| qemu_log_mask(LOG_GUEST_ERROR, "TFMR error: mtspr TFMR in TB_ERROR" |
| " state\n"); |
| tfmr |= TFMR_FIRMWARE_CONTROL_ERROR; |
| return; |
| } |
| |
| if (tfmr & TFMR_LOAD_TOD_MOD) { |
| /* Wait for an arbitrary 3 mfspr until the next state transition. */ |
| tod_state->tb_state_timer = 3; |
| } else if (tfmr & TFMR_MOVE_CHIP_TOD_TO_TB) { |
| if (tbst == TBST_NOT_SET) { |
| tfmr = tfmr_new_tb_state(tfmr, TBST_SYNC_WAIT); |
| tod_state->tb_ready_for_tod = 1; |
| tod_state->tb_state_timer = 3; /* arbitrary */ |
| } else { |
| qemu_log_mask(LOG_GUEST_ERROR, "TFMR error: MOVE_CHIP_TOD_TO_TB " |
| "not in TB not set state 0x%x\n", |
| tbst); |
| tfmr = tfmr_new_tb_state(tfmr, TBST_TB_ERROR); |
| tfmr |= TFMR_FIRMWARE_CONTROL_ERROR; |
| tod_state->tb_ready_for_tod = 0; |
| } |
| } |
| |
| out: |
| write_tfmr(env, tfmr); |
| } |
| #endif |
| |
| /*****************************************************************************/ |
| /* Embedded PowerPC specific helpers */ |
| |
| /* XXX: to be improved to check access rights when in user-mode */ |
| target_ulong helper_load_dcr(CPUPPCState *env, target_ulong dcrn) |
| { |
| uint32_t val = 0; |
| |
| if (unlikely(env->dcr_env == NULL)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "No DCR environment\n"); |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | |
| POWERPC_EXCP_INVAL_INVAL, GETPC()); |
| } else { |
| int ret; |
| |
| bql_lock(); |
| ret = ppc_dcr_read(env->dcr_env, (uint32_t)dcrn, &val); |
| bql_unlock(); |
| if (unlikely(ret != 0)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "DCR read error %d %03x\n", |
| (uint32_t)dcrn, (uint32_t)dcrn); |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | |
| POWERPC_EXCP_INVAL_INVAL, GETPC()); |
| } |
| } |
| return val; |
| } |
| |
| void helper_store_dcr(CPUPPCState *env, target_ulong dcrn, target_ulong val) |
| { |
| if (unlikely(env->dcr_env == NULL)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "No DCR environment\n"); |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | |
| POWERPC_EXCP_INVAL_INVAL, GETPC()); |
| } else { |
| int ret; |
| bql_lock(); |
| ret = ppc_dcr_write(env->dcr_env, (uint32_t)dcrn, (uint32_t)val); |
| bql_unlock(); |
| if (unlikely(ret != 0)) { |
| qemu_log_mask(LOG_GUEST_ERROR, "DCR write error %d %03x\n", |
| (uint32_t)dcrn, (uint32_t)dcrn); |
| raise_exception_err_ra(env, POWERPC_EXCP_PROGRAM, |
| POWERPC_EXCP_INVAL | |
| POWERPC_EXCP_INVAL_INVAL, GETPC()); |
| } |
| } |
| } |
| #endif |