| /* |
| * x86 SVM helpers (sysemu only) |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "cpu.h" |
| #include "exec/helper-proto.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "tcg/helper-tcg.h" |
| |
| /* Secure Virtual Machine helpers */ |
| |
| static void svm_save_seg(CPUX86State *env, int mmu_idx, hwaddr addr, |
| const SegmentCache *sc) |
| { |
| cpu_stw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, selector), |
| sc->selector, mmu_idx, 0); |
| cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, base), |
| sc->base, mmu_idx, 0); |
| cpu_stl_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, limit), |
| sc->limit, mmu_idx, 0); |
| cpu_stw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, attrib), |
| ((sc->flags >> 8) & 0xff) |
| | ((sc->flags >> 12) & 0x0f00), |
| mmu_idx, 0); |
| } |
| |
| /* |
| * VMRUN and VMLOAD canonicalizes (i.e., sign-extend to bit 63) all base |
| * addresses in the segment registers that have been loaded. |
| */ |
| static inline void svm_canonicalization(CPUX86State *env, target_ulong *seg_base) |
| { |
| uint16_t shift_amt = 64 - cpu_x86_virtual_addr_width(env); |
| *seg_base = ((((long) *seg_base) << shift_amt) >> shift_amt); |
| } |
| |
| static void svm_load_seg(CPUX86State *env, int mmu_idx, hwaddr addr, |
| SegmentCache *sc) |
| { |
| unsigned int flags; |
| |
| sc->selector = |
| cpu_lduw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, selector), |
| mmu_idx, 0); |
| sc->base = |
| cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, base), |
| mmu_idx, 0); |
| sc->limit = |
| cpu_ldl_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, limit), |
| mmu_idx, 0); |
| flags = |
| cpu_lduw_mmuidx_ra(env, addr + offsetof(struct vmcb_seg, attrib), |
| mmu_idx, 0); |
| sc->flags = ((flags & 0xff) << 8) | ((flags & 0x0f00) << 12); |
| |
| svm_canonicalization(env, &sc->base); |
| } |
| |
| static void svm_load_seg_cache(CPUX86State *env, int mmu_idx, |
| hwaddr addr, int seg_reg) |
| { |
| SegmentCache sc; |
| |
| svm_load_seg(env, mmu_idx, addr, &sc); |
| cpu_x86_load_seg_cache(env, seg_reg, sc.selector, |
| sc.base, sc.limit, sc.flags); |
| } |
| |
| static inline bool is_efer_invalid_state (CPUX86State *env) |
| { |
| if (!(env->efer & MSR_EFER_SVME)) { |
| return true; |
| } |
| |
| if (env->efer & MSR_EFER_RESERVED) { |
| return true; |
| } |
| |
| if ((env->efer & (MSR_EFER_LMA | MSR_EFER_LME)) && |
| !(env->features[FEAT_8000_0001_EDX] & CPUID_EXT2_LM)) { |
| return true; |
| } |
| |
| if ((env->efer & MSR_EFER_LME) && (env->cr[0] & CR0_PG_MASK) |
| && !(env->cr[4] & CR4_PAE_MASK)) { |
| return true; |
| } |
| |
| if ((env->efer & MSR_EFER_LME) && (env->cr[0] & CR0_PG_MASK) |
| && !(env->cr[0] & CR0_PE_MASK)) { |
| return true; |
| } |
| |
| if ((env->efer & MSR_EFER_LME) && (env->cr[0] & CR0_PG_MASK) |
| && (env->cr[4] & CR4_PAE_MASK) |
| && (env->segs[R_CS].flags & DESC_L_MASK) |
| && (env->segs[R_CS].flags & DESC_B_MASK)) { |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static inline bool virtual_gif_enabled(CPUX86State *env) |
| { |
| if (likely(env->hflags & HF_GUEST_MASK)) { |
| return (env->features[FEAT_SVM] & CPUID_SVM_VGIF) |
| && (env->int_ctl & V_GIF_ENABLED_MASK); |
| } |
| return false; |
| } |
| |
| static inline bool virtual_vm_load_save_enabled(CPUX86State *env, uint32_t exit_code, uintptr_t retaddr) |
| { |
| uint64_t lbr_ctl; |
| |
| if (likely(env->hflags & HF_GUEST_MASK)) { |
| if (likely(!(env->hflags2 & HF2_NPT_MASK)) || !(env->efer & MSR_EFER_LMA)) { |
| cpu_vmexit(env, exit_code, 0, retaddr); |
| } |
| |
| lbr_ctl = x86_ldl_phys(env_cpu(env), env->vm_vmcb + offsetof(struct vmcb, |
| control.lbr_ctl)); |
| return (env->features[FEAT_SVM] & CPUID_SVM_V_VMSAVE_VMLOAD) |
| && (lbr_ctl & V_VMLOAD_VMSAVE_ENABLED_MASK); |
| |
| } |
| |
| return false; |
| } |
| |
| static inline bool virtual_gif_set(CPUX86State *env) |
| { |
| return !virtual_gif_enabled(env) || (env->int_ctl & V_GIF_MASK); |
| } |
| |
| void helper_vmrun(CPUX86State *env, int aflag, int next_eip_addend) |
| { |
| CPUState *cs = env_cpu(env); |
| X86CPU *cpu = env_archcpu(env); |
| target_ulong addr; |
| uint64_t nested_ctl; |
| uint32_t event_inj; |
| uint32_t asid; |
| uint64_t new_cr0; |
| uint64_t new_cr3; |
| uint64_t new_cr4; |
| uint64_t new_dr6; |
| uint64_t new_dr7; |
| |
| if (aflag == 2) { |
| addr = env->regs[R_EAX]; |
| } else { |
| addr = (uint32_t)env->regs[R_EAX]; |
| } |
| |
| /* Exceptions are checked before the intercept. */ |
| if (addr & (0xfff | ((~0ULL) << env_archcpu(env)->phys_bits))) { |
| raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); |
| } |
| |
| cpu_svm_check_intercept_param(env, SVM_EXIT_VMRUN, 0, GETPC()); |
| |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmrun! " TARGET_FMT_lx "\n", addr); |
| |
| env->vm_vmcb = addr; |
| |
| /* save the current CPU state in the hsave page */ |
| x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.base), |
| env->gdt.base); |
| x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.gdtr.limit), |
| env->gdt.limit); |
| |
| x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.base), |
| env->idt.base); |
| x86_stl_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.idtr.limit), |
| env->idt.limit); |
| |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.cr0), env->cr[0]); |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.cr2), env->cr[2]); |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.cr3), env->cr[3]); |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.cr4), env->cr[4]); |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.dr6), env->dr[6]); |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.dr7), env->dr[7]); |
| |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.efer), env->efer); |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.rflags), |
| cpu_compute_eflags(env)); |
| |
| svm_save_seg(env, MMU_PHYS_IDX, |
| env->vm_hsave + offsetof(struct vmcb, save.es), |
| &env->segs[R_ES]); |
| svm_save_seg(env, MMU_PHYS_IDX, |
| env->vm_hsave + offsetof(struct vmcb, save.cs), |
| &env->segs[R_CS]); |
| svm_save_seg(env, MMU_PHYS_IDX, |
| env->vm_hsave + offsetof(struct vmcb, save.ss), |
| &env->segs[R_SS]); |
| svm_save_seg(env, MMU_PHYS_IDX, |
| env->vm_hsave + offsetof(struct vmcb, save.ds), |
| &env->segs[R_DS]); |
| |
| x86_stq_phys(cs, env->vm_hsave + offsetof(struct vmcb, save.rip), |
| env->eip + next_eip_addend); |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); |
| x86_stq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); |
| |
| /* load the interception bitmaps so we do not need to access the |
| vmcb in svm mode */ |
| env->intercept = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, |
| control.intercept)); |
| env->intercept_cr_read = x86_lduw_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_cr_read)); |
| env->intercept_cr_write = x86_lduw_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_cr_write)); |
| env->intercept_dr_read = x86_lduw_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_dr_read)); |
| env->intercept_dr_write = x86_lduw_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_dr_write)); |
| env->intercept_exceptions = x86_ldl_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.intercept_exceptions |
| )); |
| |
| env->hflags &= ~HF_INHIBIT_IRQ_MASK; |
| if (x86_ldl_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, control.int_state)) & |
| SVM_INTERRUPT_SHADOW_MASK) { |
| env->hflags |= HF_INHIBIT_IRQ_MASK; |
| } |
| |
| nested_ctl = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, |
| control.nested_ctl)); |
| asid = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, |
| control.asid)); |
| |
| uint64_t msrpm_base_pa = x86_ldq_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.msrpm_base_pa)); |
| uint64_t iopm_base_pa = x86_ldq_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, control.iopm_base_pa)); |
| |
| if ((msrpm_base_pa & ~0xfff) >= (1ull << cpu->phys_bits) - SVM_MSRPM_SIZE) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| |
| if ((iopm_base_pa & ~0xfff) >= (1ull << cpu->phys_bits) - SVM_IOPM_SIZE) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| |
| env->nested_pg_mode = 0; |
| |
| if (!cpu_svm_has_intercept(env, SVM_EXIT_VMRUN)) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| if (asid == 0) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| |
| if (nested_ctl & SVM_NPT_ENABLED) { |
| env->nested_cr3 = x86_ldq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, |
| control.nested_cr3)); |
| env->hflags2 |= HF2_NPT_MASK; |
| |
| env->nested_pg_mode = get_pg_mode(env) & PG_MODE_SVM_MASK; |
| |
| tlb_flush_by_mmuidx(cs, 1 << MMU_NESTED_IDX); |
| } |
| |
| /* enable intercepts */ |
| env->hflags |= HF_GUEST_MASK; |
| |
| env->tsc_offset = x86_ldq_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, control.tsc_offset)); |
| |
| new_cr0 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr0)); |
| if (new_cr0 & SVM_CR0_RESERVED_MASK) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| if ((new_cr0 & CR0_NW_MASK) && !(new_cr0 & CR0_CD_MASK)) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| new_cr3 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr3)); |
| if ((env->efer & MSR_EFER_LMA) && |
| (new_cr3 & ((~0ULL) << cpu->phys_bits))) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| new_cr4 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cr4)); |
| if (new_cr4 & cr4_reserved_bits(env)) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| /* clear exit_info_2 so we behave like the real hardware */ |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), 0); |
| |
| cpu_x86_update_cr0(env, new_cr0); |
| cpu_x86_update_cr4(env, new_cr4); |
| cpu_x86_update_cr3(env, new_cr3); |
| env->cr[2] = x86_ldq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr2)); |
| env->int_ctl = x86_ldl_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.int_ctl)); |
| env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); |
| if (env->int_ctl & V_INTR_MASKING_MASK) { |
| env->hflags2 |= HF2_VINTR_MASK; |
| if (env->eflags & IF_MASK) { |
| env->hflags2 |= HF2_HIF_MASK; |
| } |
| } |
| |
| cpu_load_efer(env, |
| x86_ldq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.efer))); |
| env->eflags = 0; |
| cpu_load_eflags(env, x86_ldq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, |
| save.rflags)), |
| ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK)); |
| |
| svm_load_seg_cache(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.es), R_ES); |
| svm_load_seg_cache(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.cs), R_CS); |
| svm_load_seg_cache(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.ss), R_SS); |
| svm_load_seg_cache(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.ds), R_DS); |
| svm_load_seg(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.idtr), &env->idt); |
| svm_load_seg(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.gdtr), &env->gdt); |
| |
| env->eip = x86_ldq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.rip)); |
| |
| env->regs[R_ESP] = x86_ldq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.rsp)); |
| env->regs[R_EAX] = x86_ldq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.rax)); |
| |
| new_dr7 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.dr7)); |
| new_dr6 = x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.dr6)); |
| |
| #ifdef TARGET_X86_64 |
| if (new_dr7 & DR_RESERVED_MASK) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| if (new_dr6 & DR_RESERVED_MASK) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| #endif |
| |
| cpu_x86_update_dr7(env, new_dr7); |
| env->dr[6] = new_dr6; |
| |
| if (is_efer_invalid_state(env)) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| |
| switch (x86_ldub_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.tlb_ctl))) { |
| case TLB_CONTROL_DO_NOTHING: |
| break; |
| case TLB_CONTROL_FLUSH_ALL_ASID: |
| /* FIXME: this is not 100% correct but should work for now */ |
| tlb_flush(cs); |
| break; |
| } |
| |
| env->hflags2 |= HF2_GIF_MASK; |
| |
| if (ctl_has_irq(env)) { |
| cs->interrupt_request |= CPU_INTERRUPT_VIRQ; |
| } |
| |
| if (virtual_gif_set(env)) { |
| env->hflags2 |= HF2_VGIF_MASK; |
| } |
| |
| /* maybe we need to inject an event */ |
| event_inj = x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, |
| control.event_inj)); |
| if (event_inj & SVM_EVTINJ_VALID) { |
| uint8_t vector = event_inj & SVM_EVTINJ_VEC_MASK; |
| uint16_t valid_err = event_inj & SVM_EVTINJ_VALID_ERR; |
| uint32_t event_inj_err = x86_ldl_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.event_inj_err)); |
| |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "Injecting(%#hx): ", valid_err); |
| /* FIXME: need to implement valid_err */ |
| switch (event_inj & SVM_EVTINJ_TYPE_MASK) { |
| case SVM_EVTINJ_TYPE_INTR: |
| cs->exception_index = vector; |
| env->error_code = event_inj_err; |
| env->exception_is_int = 0; |
| env->exception_next_eip = -1; |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "INTR"); |
| /* XXX: is it always correct? */ |
| do_interrupt_x86_hardirq(env, vector, 1); |
| break; |
| case SVM_EVTINJ_TYPE_NMI: |
| cs->exception_index = EXCP02_NMI; |
| env->error_code = event_inj_err; |
| env->exception_is_int = 0; |
| env->exception_next_eip = env->eip; |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "NMI"); |
| cpu_loop_exit(cs); |
| break; |
| case SVM_EVTINJ_TYPE_EXEPT: |
| if (vector == EXCP02_NMI || vector >= 31) { |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| } |
| cs->exception_index = vector; |
| env->error_code = event_inj_err; |
| env->exception_is_int = 0; |
| env->exception_next_eip = -1; |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "EXEPT"); |
| cpu_loop_exit(cs); |
| break; |
| case SVM_EVTINJ_TYPE_SOFT: |
| cs->exception_index = vector; |
| env->error_code = event_inj_err; |
| env->exception_is_int = 1; |
| env->exception_next_eip = env->eip; |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "SOFT"); |
| cpu_loop_exit(cs); |
| break; |
| default: |
| cpu_vmexit(env, SVM_EXIT_ERR, 0, GETPC()); |
| break; |
| } |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, " %#x %#x\n", cs->exception_index, |
| env->error_code); |
| } |
| } |
| |
| void helper_vmmcall(CPUX86State *env) |
| { |
| cpu_svm_check_intercept_param(env, SVM_EXIT_VMMCALL, 0, GETPC()); |
| raise_exception(env, EXCP06_ILLOP); |
| } |
| |
| void helper_vmload(CPUX86State *env, int aflag) |
| { |
| int mmu_idx = MMU_PHYS_IDX; |
| target_ulong addr; |
| |
| if (aflag == 2) { |
| addr = env->regs[R_EAX]; |
| } else { |
| addr = (uint32_t)env->regs[R_EAX]; |
| } |
| |
| /* Exceptions are checked before the intercept. */ |
| if (addr & (0xfff | ((~0ULL) << env_archcpu(env)->phys_bits))) { |
| raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); |
| } |
| |
| cpu_svm_check_intercept_param(env, SVM_EXIT_VMLOAD, 0, GETPC()); |
| |
| if (virtual_vm_load_save_enabled(env, SVM_EXIT_VMLOAD, GETPC())) { |
| mmu_idx = MMU_NESTED_IDX; |
| } |
| |
| svm_load_seg_cache(env, mmu_idx, |
| addr + offsetof(struct vmcb, save.fs), R_FS); |
| svm_load_seg_cache(env, mmu_idx, |
| addr + offsetof(struct vmcb, save.gs), R_GS); |
| svm_load_seg(env, mmu_idx, |
| addr + offsetof(struct vmcb, save.tr), &env->tr); |
| svm_load_seg(env, mmu_idx, |
| addr + offsetof(struct vmcb, save.ldtr), &env->ldt); |
| |
| #ifdef TARGET_X86_64 |
| env->kernelgsbase = |
| cpu_ldq_mmuidx_ra(env, |
| addr + offsetof(struct vmcb, save.kernel_gs_base), |
| mmu_idx, 0); |
| env->lstar = |
| cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.lstar), |
| mmu_idx, 0); |
| env->cstar = |
| cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.cstar), |
| mmu_idx, 0); |
| env->fmask = |
| cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sfmask), |
| mmu_idx, 0); |
| svm_canonicalization(env, &env->kernelgsbase); |
| #endif |
| env->star = |
| cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.star), |
| mmu_idx, 0); |
| env->sysenter_cs = |
| cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_cs), |
| mmu_idx, 0); |
| env->sysenter_esp = |
| cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_esp), |
| mmu_idx, 0); |
| env->sysenter_eip = |
| cpu_ldq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_eip), |
| mmu_idx, 0); |
| } |
| |
| void helper_vmsave(CPUX86State *env, int aflag) |
| { |
| int mmu_idx = MMU_PHYS_IDX; |
| target_ulong addr; |
| |
| if (aflag == 2) { |
| addr = env->regs[R_EAX]; |
| } else { |
| addr = (uint32_t)env->regs[R_EAX]; |
| } |
| |
| /* Exceptions are checked before the intercept. */ |
| if (addr & (0xfff | ((~0ULL) << env_archcpu(env)->phys_bits))) { |
| raise_exception_err_ra(env, EXCP0D_GPF, 0, GETPC()); |
| } |
| |
| cpu_svm_check_intercept_param(env, SVM_EXIT_VMSAVE, 0, GETPC()); |
| |
| if (virtual_vm_load_save_enabled(env, SVM_EXIT_VMSAVE, GETPC())) { |
| mmu_idx = MMU_NESTED_IDX; |
| } |
| |
| svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.fs), |
| &env->segs[R_FS]); |
| svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.gs), |
| &env->segs[R_GS]); |
| svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.tr), |
| &env->tr); |
| svm_save_seg(env, mmu_idx, addr + offsetof(struct vmcb, save.ldtr), |
| &env->ldt); |
| |
| #ifdef TARGET_X86_64 |
| cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.kernel_gs_base), |
| env->kernelgsbase, mmu_idx, 0); |
| cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.lstar), |
| env->lstar, mmu_idx, 0); |
| cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.cstar), |
| env->cstar, mmu_idx, 0); |
| cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sfmask), |
| env->fmask, mmu_idx, 0); |
| #endif |
| cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.star), |
| env->star, mmu_idx, 0); |
| cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_cs), |
| env->sysenter_cs, mmu_idx, 0); |
| cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_esp), |
| env->sysenter_esp, mmu_idx, 0); |
| cpu_stq_mmuidx_ra(env, addr + offsetof(struct vmcb, save.sysenter_eip), |
| env->sysenter_eip, mmu_idx, 0); |
| } |
| |
| void helper_stgi(CPUX86State *env) |
| { |
| cpu_svm_check_intercept_param(env, SVM_EXIT_STGI, 0, GETPC()); |
| |
| if (virtual_gif_enabled(env)) { |
| env->int_ctl |= V_GIF_MASK; |
| env->hflags2 |= HF2_VGIF_MASK; |
| } else { |
| env->hflags2 |= HF2_GIF_MASK; |
| } |
| } |
| |
| void helper_clgi(CPUX86State *env) |
| { |
| cpu_svm_check_intercept_param(env, SVM_EXIT_CLGI, 0, GETPC()); |
| |
| if (virtual_gif_enabled(env)) { |
| env->int_ctl &= ~V_GIF_MASK; |
| env->hflags2 &= ~HF2_VGIF_MASK; |
| } else { |
| env->hflags2 &= ~HF2_GIF_MASK; |
| } |
| } |
| |
| bool cpu_svm_has_intercept(CPUX86State *env, uint32_t type) |
| { |
| switch (type) { |
| case SVM_EXIT_READ_CR0 ... SVM_EXIT_READ_CR0 + 8: |
| if (env->intercept_cr_read & (1 << (type - SVM_EXIT_READ_CR0))) { |
| return true; |
| } |
| break; |
| case SVM_EXIT_WRITE_CR0 ... SVM_EXIT_WRITE_CR0 + 8: |
| if (env->intercept_cr_write & (1 << (type - SVM_EXIT_WRITE_CR0))) { |
| return true; |
| } |
| break; |
| case SVM_EXIT_READ_DR0 ... SVM_EXIT_READ_DR0 + 7: |
| if (env->intercept_dr_read & (1 << (type - SVM_EXIT_READ_DR0))) { |
| return true; |
| } |
| break; |
| case SVM_EXIT_WRITE_DR0 ... SVM_EXIT_WRITE_DR0 + 7: |
| if (env->intercept_dr_write & (1 << (type - SVM_EXIT_WRITE_DR0))) { |
| return true; |
| } |
| break; |
| case SVM_EXIT_EXCP_BASE ... SVM_EXIT_EXCP_BASE + 31: |
| if (env->intercept_exceptions & (1 << (type - SVM_EXIT_EXCP_BASE))) { |
| return true; |
| } |
| break; |
| default: |
| if (env->intercept & (1ULL << (type - SVM_EXIT_INTR))) { |
| return true; |
| } |
| break; |
| } |
| return false; |
| } |
| |
| void cpu_svm_check_intercept_param(CPUX86State *env, uint32_t type, |
| uint64_t param, uintptr_t retaddr) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| if (likely(!(env->hflags & HF_GUEST_MASK))) { |
| return; |
| } |
| |
| if (!cpu_svm_has_intercept(env, type)) { |
| return; |
| } |
| |
| if (type == SVM_EXIT_MSR) { |
| /* FIXME: this should be read in at vmrun (faster this way?) */ |
| uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, |
| control.msrpm_base_pa)); |
| uint32_t t0, t1; |
| |
| switch ((uint32_t)env->regs[R_ECX]) { |
| case 0 ... 0x1fff: |
| t0 = (env->regs[R_ECX] * 2) % 8; |
| t1 = (env->regs[R_ECX] * 2) / 8; |
| break; |
| case 0xc0000000 ... 0xc0001fff: |
| t0 = (8192 + env->regs[R_ECX] - 0xc0000000) * 2; |
| t1 = (t0 / 8); |
| t0 %= 8; |
| break; |
| case 0xc0010000 ... 0xc0011fff: |
| t0 = (16384 + env->regs[R_ECX] - 0xc0010000) * 2; |
| t1 = (t0 / 8); |
| t0 %= 8; |
| break; |
| default: |
| cpu_vmexit(env, type, param, retaddr); |
| t0 = 0; |
| t1 = 0; |
| break; |
| } |
| if (x86_ldub_phys(cs, addr + t1) & ((1 << param) << t0)) { |
| cpu_vmexit(env, type, param, retaddr); |
| } |
| return; |
| } |
| |
| cpu_vmexit(env, type, param, retaddr); |
| } |
| |
| void helper_svm_check_intercept(CPUX86State *env, uint32_t type) |
| { |
| cpu_svm_check_intercept_param(env, type, 0, GETPC()); |
| } |
| |
| void helper_svm_check_io(CPUX86State *env, uint32_t port, uint32_t param, |
| uint32_t next_eip_addend) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| if (env->intercept & (1ULL << (SVM_EXIT_IOIO - SVM_EXIT_INTR))) { |
| /* FIXME: this should be read in at vmrun (faster this way?) */ |
| uint64_t addr = x86_ldq_phys(cs, env->vm_vmcb + |
| offsetof(struct vmcb, control.iopm_base_pa)); |
| uint16_t mask = (1 << ((param >> 4) & 7)) - 1; |
| |
| if (x86_lduw_phys(cs, addr + port / 8) & (mask << (port & 7))) { |
| /* next env->eip */ |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.exit_info_2), |
| env->eip + next_eip_addend); |
| cpu_vmexit(env, SVM_EXIT_IOIO, param | (port << 16), GETPC()); |
| } |
| } |
| } |
| |
| void cpu_vmexit(CPUX86State *env, uint32_t exit_code, uint64_t exit_info_1, |
| uintptr_t retaddr) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| cpu_restore_state(cs, retaddr); |
| |
| qemu_log_mask(CPU_LOG_TB_IN_ASM, "vmexit(%08x, %016" PRIx64 ", %016" |
| PRIx64 ", " TARGET_FMT_lx ")!\n", |
| exit_code, exit_info_1, |
| x86_ldq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, |
| control.exit_info_2)), |
| env->eip); |
| |
| cs->exception_index = EXCP_VMEXIT; |
| x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, control.exit_code), |
| exit_code); |
| |
| x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, |
| control.exit_info_1), exit_info_1), |
| |
| /* remove any pending exception */ |
| env->old_exception = -1; |
| cpu_loop_exit(cs); |
| } |
| |
| void do_vmexit(CPUX86State *env) |
| { |
| CPUState *cs = env_cpu(env); |
| |
| if (env->hflags & HF_INHIBIT_IRQ_MASK) { |
| x86_stl_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.int_state), |
| SVM_INTERRUPT_SHADOW_MASK); |
| env->hflags &= ~HF_INHIBIT_IRQ_MASK; |
| } else { |
| x86_stl_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.int_state), 0); |
| } |
| env->hflags2 &= ~HF2_NPT_MASK; |
| tlb_flush_by_mmuidx(cs, 1 << MMU_NESTED_IDX); |
| |
| /* Save the VM state in the vmcb */ |
| svm_save_seg(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.es), |
| &env->segs[R_ES]); |
| svm_save_seg(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.cs), |
| &env->segs[R_CS]); |
| svm_save_seg(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.ss), |
| &env->segs[R_SS]); |
| svm_save_seg(env, MMU_PHYS_IDX, |
| env->vm_vmcb + offsetof(struct vmcb, save.ds), |
| &env->segs[R_DS]); |
| |
| x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.base), |
| env->gdt.base); |
| x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.gdtr.limit), |
| env->gdt.limit); |
| |
| x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.base), |
| env->idt.base); |
| x86_stl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.idtr.limit), |
| env->idt.limit); |
| |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.efer), env->efer); |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr0), env->cr[0]); |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr2), env->cr[2]); |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr3), env->cr[3]); |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.cr4), env->cr[4]); |
| x86_stl_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.int_ctl), env->int_ctl); |
| |
| x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rflags), |
| cpu_compute_eflags(env)); |
| x86_stq_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.rip), |
| env->eip); |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.rsp), env->regs[R_ESP]); |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.rax), env->regs[R_EAX]); |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.dr7), env->dr[7]); |
| x86_stq_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, save.dr6), env->dr[6]); |
| x86_stb_phys(cs, env->vm_vmcb + offsetof(struct vmcb, save.cpl), |
| env->hflags & HF_CPL_MASK); |
| |
| /* Reload the host state from vm_hsave */ |
| env->hflags2 &= ~(HF2_HIF_MASK | HF2_VINTR_MASK); |
| env->hflags &= ~HF_GUEST_MASK; |
| env->intercept = 0; |
| env->intercept_exceptions = 0; |
| |
| /* Clears the V_IRQ and V_INTR_MASKING bits inside the processor. */ |
| cs->interrupt_request &= ~CPU_INTERRUPT_VIRQ; |
| env->int_ctl = 0; |
| |
| /* Clears the TSC_OFFSET inside the processor. */ |
| env->tsc_offset = 0; |
| |
| env->gdt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, |
| save.gdtr.base)); |
| env->gdt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb, |
| save.gdtr.limit)); |
| |
| env->idt.base = x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, |
| save.idtr.base)); |
| env->idt.limit = x86_ldl_phys(cs, env->vm_hsave + offsetof(struct vmcb, |
| save.idtr.limit)); |
| |
| cpu_x86_update_cr0(env, x86_ldq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, |
| save.cr0)) | |
| CR0_PE_MASK); |
| cpu_x86_update_cr4(env, x86_ldq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, |
| save.cr4))); |
| |
| /* |
| * Resets the current ASID register to zero (host ASID; TLB flush). |
| * |
| * If the host is in PAE mode, the processor reloads the host's PDPEs |
| * from the page table indicated the host's CR3. FIXME: If the PDPEs |
| * contain illegal state, the processor causes a shutdown (QEMU does |
| * not implement PDPTRs). |
| */ |
| cpu_x86_update_cr3(env, x86_ldq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, |
| save.cr3))); |
| /* we need to set the efer after the crs so the hidden flags get |
| set properly */ |
| cpu_load_efer(env, x86_ldq_phys(cs, env->vm_hsave + offsetof(struct vmcb, |
| save.efer))); |
| |
| /* Completion of the VMRUN instruction clears the host EFLAGS.RF bit. */ |
| env->eflags = 0; |
| cpu_load_eflags(env, x86_ldq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, |
| save.rflags)), |
| ~(CC_O | CC_S | CC_Z | CC_A | CC_P | CC_C | DF_MASK | |
| RF_MASK | VM_MASK)); |
| |
| svm_load_seg_cache(env, MMU_PHYS_IDX, |
| env->vm_hsave + offsetof(struct vmcb, save.es), R_ES); |
| svm_load_seg_cache(env, MMU_PHYS_IDX, |
| env->vm_hsave + offsetof(struct vmcb, save.cs), R_CS); |
| svm_load_seg_cache(env, MMU_PHYS_IDX, |
| env->vm_hsave + offsetof(struct vmcb, save.ss), R_SS); |
| svm_load_seg_cache(env, MMU_PHYS_IDX, |
| env->vm_hsave + offsetof(struct vmcb, save.ds), R_DS); |
| |
| env->eip = x86_ldq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.rip)); |
| env->regs[R_ESP] = x86_ldq_phys(cs, env->vm_hsave + |
| offsetof(struct vmcb, save.rsp)); |
| env->regs[R_EAX] = x86_ldq_phys(cs, env->vm_hsave + |
| offsetof(struct vmcb, save.rax)); |
| |
| env->dr[6] = x86_ldq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.dr6)); |
| |
| /* Disables all breakpoints in the host DR7 register. */ |
| cpu_x86_update_dr7(env, |
| x86_ldq_phys(cs, |
| env->vm_hsave + offsetof(struct vmcb, save.dr7)) & ~0xff); |
| |
| /* other setups */ |
| x86_stl_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info), |
| x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, |
| control.event_inj))); |
| x86_stl_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.exit_int_info_err), |
| x86_ldl_phys(cs, env->vm_vmcb + offsetof(struct vmcb, |
| control.event_inj_err))); |
| x86_stl_phys(cs, |
| env->vm_vmcb + offsetof(struct vmcb, control.event_inj), 0); |
| |
| env->hflags2 &= ~HF2_GIF_MASK; |
| env->hflags2 &= ~HF2_VGIF_MASK; |
| |
| |
| /* FIXME: Checks the reloaded host state for consistency. */ |
| |
| /* |
| * EFLAGS.TF causes a #DB trap after the VMRUN completes on the host |
| * side (i.e., after the #VMEXIT from the guest). Since we're running |
| * in the main loop, call do_interrupt_all directly. |
| */ |
| if ((env->eflags & TF_MASK) != 0) { |
| env->dr[6] |= DR6_BS; |
| do_interrupt_all(X86_CPU(cs), EXCP01_DB, 0, 0, env->eip, 0); |
| } |
| } |