| /* |
| * ARM hflags |
| * |
| * This code is licensed under the GNU GPL v2 or later. |
| * |
| * SPDX-License-Identifier: GPL-2.0-or-later |
| */ |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "cpu-features.h" |
| #include "exec/helper-proto.h" |
| #include "cpregs.h" |
| |
| static inline bool fgt_svc(CPUARMState *env, int el) |
| { |
| /* |
| * Assuming fine-grained-traps are active, return true if we |
| * should be trapping on SVC instructions. Only AArch64 can |
| * trap on an SVC at EL1, but we don't need to special-case this |
| * because if this is AArch32 EL1 then arm_fgt_active() is false. |
| * We also know el is 0 or 1. |
| */ |
| return el == 0 ? |
| FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL0) : |
| FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, SVC_EL1); |
| } |
| |
| /* Return true if memory alignment should be enforced. */ |
| static bool aprofile_require_alignment(CPUARMState *env, int el, uint64_t sctlr) |
| { |
| #ifdef CONFIG_USER_ONLY |
| return false; |
| #else |
| /* Check the alignment enable bit. */ |
| if (sctlr & SCTLR_A) { |
| return true; |
| } |
| |
| /* |
| * With PMSA, when the MPU is disabled, all memory types in the |
| * default map are Normal, so don't need aligment enforcing. |
| */ |
| if (arm_feature(env, ARM_FEATURE_PMSA)) { |
| return false; |
| } |
| |
| /* |
| * With VMSA, if translation is disabled, then the default memory type |
| * is Device(-nGnRnE) instead of Normal, which requires that alignment |
| * be enforced. Since this affects all ram, it is most efficient |
| * to handle this during translation. |
| */ |
| if (sctlr & SCTLR_M) { |
| /* Translation enabled: memory type in PTE via MAIR_ELx. */ |
| return false; |
| } |
| if (el < 2 && (arm_hcr_el2_eff(env) & (HCR_DC | HCR_VM))) { |
| /* Stage 2 translation enabled: memory type in PTE. */ |
| return false; |
| } |
| return true; |
| #endif |
| } |
| |
| static CPUARMTBFlags rebuild_hflags_common(CPUARMState *env, int fp_el, |
| ARMMMUIdx mmu_idx, |
| CPUARMTBFlags flags) |
| { |
| DP_TBFLAG_ANY(flags, FPEXC_EL, fp_el); |
| DP_TBFLAG_ANY(flags, MMUIDX, arm_to_core_mmu_idx(mmu_idx)); |
| |
| if (arm_singlestep_active(env)) { |
| DP_TBFLAG_ANY(flags, SS_ACTIVE, 1); |
| } |
| |
| return flags; |
| } |
| |
| static CPUARMTBFlags rebuild_hflags_common_32(CPUARMState *env, int fp_el, |
| ARMMMUIdx mmu_idx, |
| CPUARMTBFlags flags) |
| { |
| bool sctlr_b = arm_sctlr_b(env); |
| |
| if (sctlr_b) { |
| DP_TBFLAG_A32(flags, SCTLR__B, 1); |
| } |
| if (arm_cpu_data_is_big_endian_a32(env, sctlr_b)) { |
| DP_TBFLAG_ANY(flags, BE_DATA, 1); |
| } |
| DP_TBFLAG_A32(flags, NS, !access_secure_reg(env)); |
| |
| return rebuild_hflags_common(env, fp_el, mmu_idx, flags); |
| } |
| |
| static CPUARMTBFlags rebuild_hflags_m32(CPUARMState *env, int fp_el, |
| ARMMMUIdx mmu_idx) |
| { |
| CPUARMTBFlags flags = {}; |
| uint32_t ccr = env->v7m.ccr[env->v7m.secure]; |
| |
| /* Without HaveMainExt, CCR.UNALIGN_TRP is RES1. */ |
| if (ccr & R_V7M_CCR_UNALIGN_TRP_MASK) { |
| DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); |
| } |
| |
| if (arm_v7m_is_handler_mode(env)) { |
| DP_TBFLAG_M32(flags, HANDLER, 1); |
| } |
| |
| /* |
| * v8M always applies stack limit checks unless CCR.STKOFHFNMIGN |
| * is suppressing them because the requested execution priority |
| * is less than 0. |
| */ |
| if (arm_feature(env, ARM_FEATURE_V8) && |
| !((mmu_idx & ARM_MMU_IDX_M_NEGPRI) && |
| (ccr & R_V7M_CCR_STKOFHFNMIGN_MASK))) { |
| DP_TBFLAG_M32(flags, STACKCHECK, 1); |
| } |
| |
| if (arm_feature(env, ARM_FEATURE_M_SECURITY) && env->v7m.secure) { |
| DP_TBFLAG_M32(flags, SECURE, 1); |
| } |
| |
| return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); |
| } |
| |
| /* This corresponds to the ARM pseudocode function IsFullA64Enabled(). */ |
| static bool sme_fa64(CPUARMState *env, int el) |
| { |
| if (!cpu_isar_feature(aa64_sme_fa64, env_archcpu(env))) { |
| return false; |
| } |
| |
| if (el <= 1 && !el_is_in_host(env, el)) { |
| if (!FIELD_EX64(env->vfp.smcr_el[1], SMCR, FA64)) { |
| return false; |
| } |
| } |
| if (el <= 2 && arm_is_el2_enabled(env)) { |
| if (!FIELD_EX64(env->vfp.smcr_el[2], SMCR, FA64)) { |
| return false; |
| } |
| } |
| if (arm_feature(env, ARM_FEATURE_EL3)) { |
| if (!FIELD_EX64(env->vfp.smcr_el[3], SMCR, FA64)) { |
| return false; |
| } |
| } |
| |
| return true; |
| } |
| |
| static CPUARMTBFlags rebuild_hflags_a32(CPUARMState *env, int fp_el, |
| ARMMMUIdx mmu_idx) |
| { |
| CPUARMTBFlags flags = {}; |
| int el = arm_current_el(env); |
| uint64_t sctlr = arm_sctlr(env, el); |
| |
| if (aprofile_require_alignment(env, el, sctlr)) { |
| DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); |
| } |
| |
| if (arm_el_is_aa64(env, 1)) { |
| DP_TBFLAG_A32(flags, VFPEN, 1); |
| } |
| |
| if (el < 2 && env->cp15.hstr_el2 && arm_is_el2_enabled(env) && |
| (arm_hcr_el2_eff(env) & (HCR_E2H | HCR_TGE)) != (HCR_E2H | HCR_TGE)) { |
| DP_TBFLAG_A32(flags, HSTR_ACTIVE, 1); |
| } |
| |
| if (arm_fgt_active(env, el)) { |
| DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); |
| if (fgt_svc(env, el)) { |
| DP_TBFLAG_ANY(flags, FGT_SVC, 1); |
| } |
| } |
| |
| if (env->uncached_cpsr & CPSR_IL) { |
| DP_TBFLAG_ANY(flags, PSTATE__IL, 1); |
| } |
| |
| /* |
| * The SME exception we are testing for is raised via |
| * AArch64.CheckFPAdvSIMDEnabled(), as called from |
| * AArch32.CheckAdvSIMDOrFPEnabled(). |
| */ |
| if (el == 0 |
| && FIELD_EX64(env->svcr, SVCR, SM) |
| && (!arm_is_el2_enabled(env) |
| || (arm_el_is_aa64(env, 2) && !(env->cp15.hcr_el2 & HCR_TGE))) |
| && arm_el_is_aa64(env, 1) |
| && !sme_fa64(env, el)) { |
| DP_TBFLAG_A32(flags, SME_TRAP_NONSTREAMING, 1); |
| } |
| |
| if (arm_aa32_secure_pl1_0(env)) { |
| DP_TBFLAG_A32(flags, S_PL1_0, 1); |
| } |
| |
| return rebuild_hflags_common_32(env, fp_el, mmu_idx, flags); |
| } |
| |
| static CPUARMTBFlags rebuild_hflags_a64(CPUARMState *env, int el, int fp_el, |
| ARMMMUIdx mmu_idx) |
| { |
| CPUARMTBFlags flags = {}; |
| ARMMMUIdx stage1 = stage_1_mmu_idx(mmu_idx); |
| uint64_t tcr = regime_tcr(env, mmu_idx); |
| uint64_t hcr = arm_hcr_el2_eff(env); |
| uint64_t sctlr; |
| int tbii, tbid; |
| |
| DP_TBFLAG_ANY(flags, AARCH64_STATE, 1); |
| |
| /* Get control bits for tagged addresses. */ |
| tbid = aa64_va_parameter_tbi(tcr, mmu_idx); |
| tbii = tbid & ~aa64_va_parameter_tbid(tcr, mmu_idx); |
| |
| DP_TBFLAG_A64(flags, TBII, tbii); |
| DP_TBFLAG_A64(flags, TBID, tbid); |
| |
| if (cpu_isar_feature(aa64_sve, env_archcpu(env))) { |
| int sve_el = sve_exception_el(env, el); |
| |
| /* |
| * If either FP or SVE are disabled, translator does not need len. |
| * If SVE EL > FP EL, FP exception has precedence, and translator |
| * does not need SVE EL. Save potential re-translations by forcing |
| * the unneeded data to zero. |
| */ |
| if (fp_el != 0) { |
| if (sve_el > fp_el) { |
| sve_el = 0; |
| } |
| } else if (sve_el == 0) { |
| DP_TBFLAG_A64(flags, VL, sve_vqm1_for_el(env, el)); |
| } |
| DP_TBFLAG_A64(flags, SVEEXC_EL, sve_el); |
| } |
| if (cpu_isar_feature(aa64_sme, env_archcpu(env))) { |
| int sme_el = sme_exception_el(env, el); |
| bool sm = FIELD_EX64(env->svcr, SVCR, SM); |
| |
| DP_TBFLAG_A64(flags, SMEEXC_EL, sme_el); |
| if (sme_el == 0) { |
| /* Similarly, do not compute SVL if SME is disabled. */ |
| int svl = sve_vqm1_for_el_sm(env, el, true); |
| DP_TBFLAG_A64(flags, SVL, svl); |
| if (sm) { |
| /* If SVE is disabled, we will not have set VL above. */ |
| DP_TBFLAG_A64(flags, VL, svl); |
| } |
| } |
| if (sm) { |
| DP_TBFLAG_A64(flags, PSTATE_SM, 1); |
| DP_TBFLAG_A64(flags, SME_TRAP_NONSTREAMING, !sme_fa64(env, el)); |
| } |
| DP_TBFLAG_A64(flags, PSTATE_ZA, FIELD_EX64(env->svcr, SVCR, ZA)); |
| } |
| |
| sctlr = regime_sctlr(env, stage1); |
| |
| if (aprofile_require_alignment(env, el, sctlr)) { |
| DP_TBFLAG_ANY(flags, ALIGN_MEM, 1); |
| } |
| |
| if (arm_cpu_data_is_big_endian_a64(el, sctlr)) { |
| DP_TBFLAG_ANY(flags, BE_DATA, 1); |
| } |
| |
| if (cpu_isar_feature(aa64_pauth, env_archcpu(env))) { |
| /* |
| * In order to save space in flags, we record only whether |
| * pauth is "inactive", meaning all insns are implemented as |
| * a nop, or "active" when some action must be performed. |
| * The decision of which action to take is left to a helper. |
| */ |
| if (sctlr & (SCTLR_EnIA | SCTLR_EnIB | SCTLR_EnDA | SCTLR_EnDB)) { |
| DP_TBFLAG_A64(flags, PAUTH_ACTIVE, 1); |
| } |
| } |
| |
| if (cpu_isar_feature(aa64_bti, env_archcpu(env))) { |
| /* Note that SCTLR_EL[23].BT == SCTLR_BT1. */ |
| if (sctlr & (el == 0 ? SCTLR_BT0 : SCTLR_BT1)) { |
| DP_TBFLAG_A64(flags, BT, 1); |
| } |
| } |
| |
| if (cpu_isar_feature(aa64_lse2, env_archcpu(env))) { |
| if (sctlr & SCTLR_nAA) { |
| DP_TBFLAG_A64(flags, NAA, 1); |
| } |
| } |
| |
| /* Compute the condition for using AccType_UNPRIV for LDTR et al. */ |
| if (!(env->pstate & PSTATE_UAO)) { |
| switch (mmu_idx) { |
| case ARMMMUIdx_E10_1: |
| case ARMMMUIdx_E10_1_PAN: |
| /* FEAT_NV: NV,NV1 == 1,1 means we don't do UNPRIV accesses */ |
| if ((hcr & (HCR_NV | HCR_NV1)) != (HCR_NV | HCR_NV1)) { |
| DP_TBFLAG_A64(flags, UNPRIV, 1); |
| } |
| break; |
| case ARMMMUIdx_E20_2: |
| case ARMMMUIdx_E20_2_PAN: |
| /* |
| * Note that EL20_2 is gated by HCR_EL2.E2H == 1, but EL20_0 is |
| * gated by HCR_EL2.<E2H,TGE> == '11', and so is LDTR. |
| */ |
| if (env->cp15.hcr_el2 & HCR_TGE) { |
| DP_TBFLAG_A64(flags, UNPRIV, 1); |
| } |
| break; |
| default: |
| break; |
| } |
| } |
| |
| if (env->pstate & PSTATE_IL) { |
| DP_TBFLAG_ANY(flags, PSTATE__IL, 1); |
| } |
| |
| if (arm_fgt_active(env, el)) { |
| DP_TBFLAG_ANY(flags, FGT_ACTIVE, 1); |
| if (FIELD_EX64(env->cp15.fgt_exec[FGTREG_HFGITR], HFGITR_EL2, ERET)) { |
| DP_TBFLAG_A64(flags, TRAP_ERET, 1); |
| } |
| if (fgt_svc(env, el)) { |
| DP_TBFLAG_ANY(flags, FGT_SVC, 1); |
| } |
| } |
| |
| /* |
| * ERET can also be trapped for FEAT_NV. arm_hcr_el2_eff() takes care |
| * of "is EL2 enabled" and the NV bit can only be set if FEAT_NV is present. |
| */ |
| if (el == 1 && (hcr & HCR_NV)) { |
| DP_TBFLAG_A64(flags, TRAP_ERET, 1); |
| DP_TBFLAG_A64(flags, NV, 1); |
| if (hcr & HCR_NV1) { |
| DP_TBFLAG_A64(flags, NV1, 1); |
| } |
| if (hcr & HCR_NV2) { |
| DP_TBFLAG_A64(flags, NV2, 1); |
| if (hcr & HCR_E2H) { |
| DP_TBFLAG_A64(flags, NV2_MEM_E20, 1); |
| } |
| if (env->cp15.sctlr_el[2] & SCTLR_EE) { |
| DP_TBFLAG_A64(flags, NV2_MEM_BE, 1); |
| } |
| } |
| } |
| |
| if (cpu_isar_feature(aa64_mte, env_archcpu(env))) { |
| /* |
| * Set MTE_ACTIVE if any access may be Checked, and leave clear |
| * if all accesses must be Unchecked: |
| * 1) If no TBI, then there are no tags in the address to check, |
| * 2) If Tag Check Override, then all accesses are Unchecked, |
| * 3) If Tag Check Fail == 0, then Checked access have no effect, |
| * 4) If no Allocation Tag Access, then all accesses are Unchecked. |
| */ |
| if (allocation_tag_access_enabled(env, el, sctlr)) { |
| DP_TBFLAG_A64(flags, ATA, 1); |
| if (tbid |
| && !(env->pstate & PSTATE_TCO) |
| && (sctlr & (el == 0 ? SCTLR_TCF0 : SCTLR_TCF))) { |
| DP_TBFLAG_A64(flags, MTE_ACTIVE, 1); |
| if (!EX_TBFLAG_A64(flags, UNPRIV)) { |
| /* |
| * In non-unpriv contexts (eg EL0), unpriv load/stores |
| * act like normal ones; duplicate the MTE info to |
| * avoid translate-a64.c having to check UNPRIV to see |
| * whether it is OK to index into MTE_ACTIVE[]. |
| */ |
| DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); |
| } |
| } |
| } |
| /* And again for unprivileged accesses, if required. */ |
| if (EX_TBFLAG_A64(flags, UNPRIV) |
| && tbid |
| && !(env->pstate & PSTATE_TCO) |
| && (sctlr & SCTLR_TCF0) |
| && allocation_tag_access_enabled(env, 0, sctlr)) { |
| DP_TBFLAG_A64(flags, MTE0_ACTIVE, 1); |
| } |
| /* |
| * For unpriv tag-setting accesses we also need ATA0. Again, in |
| * contexts where unpriv and normal insns are the same we |
| * duplicate the ATA bit to save effort for translate-a64.c. |
| */ |
| if (EX_TBFLAG_A64(flags, UNPRIV)) { |
| if (allocation_tag_access_enabled(env, 0, sctlr)) { |
| DP_TBFLAG_A64(flags, ATA0, 1); |
| } |
| } else { |
| DP_TBFLAG_A64(flags, ATA0, EX_TBFLAG_A64(flags, ATA)); |
| } |
| /* Cache TCMA as well as TBI. */ |
| DP_TBFLAG_A64(flags, TCMA, aa64_va_parameter_tcma(tcr, mmu_idx)); |
| } |
| |
| return rebuild_hflags_common(env, fp_el, mmu_idx, flags); |
| } |
| |
| static CPUARMTBFlags rebuild_hflags_internal(CPUARMState *env) |
| { |
| int el = arm_current_el(env); |
| int fp_el = fp_exception_el(env, el); |
| ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); |
| |
| if (is_a64(env)) { |
| return rebuild_hflags_a64(env, el, fp_el, mmu_idx); |
| } else if (arm_feature(env, ARM_FEATURE_M)) { |
| return rebuild_hflags_m32(env, fp_el, mmu_idx); |
| } else { |
| return rebuild_hflags_a32(env, fp_el, mmu_idx); |
| } |
| } |
| |
| void arm_rebuild_hflags(CPUARMState *env) |
| { |
| env->hflags = rebuild_hflags_internal(env); |
| } |
| |
| /* |
| * If we have triggered a EL state change we can't rely on the |
| * translator having passed it to us, we need to recompute. |
| */ |
| void HELPER(rebuild_hflags_m32_newel)(CPUARMState *env) |
| { |
| int el = arm_current_el(env); |
| int fp_el = fp_exception_el(env, el); |
| ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); |
| |
| env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); |
| } |
| |
| void HELPER(rebuild_hflags_m32)(CPUARMState *env, int el) |
| { |
| int fp_el = fp_exception_el(env, el); |
| ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); |
| |
| env->hflags = rebuild_hflags_m32(env, fp_el, mmu_idx); |
| } |
| |
| /* |
| * If we have triggered a EL state change we can't rely on the |
| * translator having passed it to us, we need to recompute. |
| */ |
| void HELPER(rebuild_hflags_a32_newel)(CPUARMState *env) |
| { |
| int el = arm_current_el(env); |
| int fp_el = fp_exception_el(env, el); |
| ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); |
| env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); |
| } |
| |
| void HELPER(rebuild_hflags_a32)(CPUARMState *env, int el) |
| { |
| int fp_el = fp_exception_el(env, el); |
| ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); |
| |
| env->hflags = rebuild_hflags_a32(env, fp_el, mmu_idx); |
| } |
| |
| void HELPER(rebuild_hflags_a64)(CPUARMState *env, int el) |
| { |
| int fp_el = fp_exception_el(env, el); |
| ARMMMUIdx mmu_idx = arm_mmu_idx_el(env, el); |
| |
| env->hflags = rebuild_hflags_a64(env, el, fp_el, mmu_idx); |
| } |
| |
| void assert_hflags_rebuild_correctly(CPUARMState *env) |
| { |
| #ifdef CONFIG_DEBUG_TCG |
| CPUARMTBFlags c = env->hflags; |
| CPUARMTBFlags r = rebuild_hflags_internal(env); |
| |
| if (unlikely(c.flags != r.flags || c.flags2 != r.flags2)) { |
| fprintf(stderr, "TCG hflags mismatch " |
| "(current:(0x%08x,0x" TARGET_FMT_lx ")" |
| " rebuilt:(0x%08x,0x" TARGET_FMT_lx ")\n", |
| c.flags, c.flags2, r.flags, r.flags2); |
| abort(); |
| } |
| #endif |
| } |