| /* |
| * Xilinx MicroBlaze emulation for qemu: main translation routines. |
| * |
| * Copyright (c) 2009 Edgar E. Iglesias. |
| * Copyright (c) 2009-2012 PetaLogix Qld Pty Ltd. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "disas/disas.h" |
| #include "exec/exec-all.h" |
| #include "tcg-op.h" |
| #include "exec/helper-proto.h" |
| #include "microblaze-decode.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/helper-gen.h" |
| #include "exec/translator.h" |
| #include "qemu/qemu-print.h" |
| |
| #include "trace-tcg.h" |
| #include "exec/log.h" |
| |
| |
| #define SIM_COMPAT 0 |
| #define DISAS_GNU 1 |
| #define DISAS_MB 1 |
| #if DISAS_MB && !SIM_COMPAT |
| # define LOG_DIS(...) qemu_log_mask(CPU_LOG_TB_IN_ASM, ## __VA_ARGS__) |
| #else |
| # define LOG_DIS(...) do { } while (0) |
| #endif |
| |
| #define D(x) |
| |
| #define EXTRACT_FIELD(src, start, end) \ |
| (((src) >> start) & ((1 << (end - start + 1)) - 1)) |
| |
| /* is_jmp field values */ |
| #define DISAS_JUMP DISAS_TARGET_0 /* only pc was modified dynamically */ |
| #define DISAS_UPDATE DISAS_TARGET_1 /* cpu state was modified dynamically */ |
| #define DISAS_TB_JUMP DISAS_TARGET_2 /* only pc was modified statically */ |
| |
| static TCGv_i32 env_debug; |
| static TCGv_i32 cpu_R[32]; |
| static TCGv_i64 cpu_SR[14]; |
| static TCGv_i32 env_imm; |
| static TCGv_i32 env_btaken; |
| static TCGv_i64 env_btarget; |
| static TCGv_i32 env_iflags; |
| static TCGv env_res_addr; |
| static TCGv_i32 env_res_val; |
| |
| #include "exec/gen-icount.h" |
| |
| /* This is the state at translation time. */ |
| typedef struct DisasContext { |
| MicroBlazeCPU *cpu; |
| uint32_t pc; |
| |
| /* Decoder. */ |
| int type_b; |
| uint32_t ir; |
| uint8_t opcode; |
| uint8_t rd, ra, rb; |
| uint16_t imm; |
| |
| unsigned int cpustate_changed; |
| unsigned int delayed_branch; |
| unsigned int tb_flags, synced_flags; /* tb dependent flags. */ |
| unsigned int clear_imm; |
| int is_jmp; |
| |
| #define JMP_NOJMP 0 |
| #define JMP_DIRECT 1 |
| #define JMP_DIRECT_CC 2 |
| #define JMP_INDIRECT 3 |
| unsigned int jmp; |
| uint32_t jmp_pc; |
| |
| int abort_at_next_insn; |
| struct TranslationBlock *tb; |
| int singlestep_enabled; |
| } DisasContext; |
| |
| static const char *regnames[] = |
| { |
| "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7", |
| "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15", |
| "r16", "r17", "r18", "r19", "r20", "r21", "r22", "r23", |
| "r24", "r25", "r26", "r27", "r28", "r29", "r30", "r31", |
| }; |
| |
| static const char *special_regnames[] = |
| { |
| "rpc", "rmsr", "sr2", "rear", "sr4", "resr", "sr6", "rfsr", |
| "sr8", "sr9", "sr10", "rbtr", "sr12", "redr" |
| }; |
| |
| static inline void t_sync_flags(DisasContext *dc) |
| { |
| /* Synch the tb dependent flags between translator and runtime. */ |
| if (dc->tb_flags != dc->synced_flags) { |
| tcg_gen_movi_i32(env_iflags, dc->tb_flags); |
| dc->synced_flags = dc->tb_flags; |
| } |
| } |
| |
| static inline void t_gen_raise_exception(DisasContext *dc, uint32_t index) |
| { |
| TCGv_i32 tmp = tcg_const_i32(index); |
| |
| t_sync_flags(dc); |
| tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc); |
| gen_helper_raise_exception(cpu_env, tmp); |
| tcg_temp_free_i32(tmp); |
| dc->is_jmp = DISAS_UPDATE; |
| } |
| |
| static inline bool use_goto_tb(DisasContext *dc, target_ulong dest) |
| { |
| #ifndef CONFIG_USER_ONLY |
| return (dc->tb->pc & TARGET_PAGE_MASK) == (dest & TARGET_PAGE_MASK); |
| #else |
| return true; |
| #endif |
| } |
| |
| static void gen_goto_tb(DisasContext *dc, int n, target_ulong dest) |
| { |
| if (use_goto_tb(dc, dest)) { |
| tcg_gen_goto_tb(n); |
| tcg_gen_movi_i64(cpu_SR[SR_PC], dest); |
| tcg_gen_exit_tb(dc->tb, n); |
| } else { |
| tcg_gen_movi_i64(cpu_SR[SR_PC], dest); |
| tcg_gen_exit_tb(NULL, 0); |
| } |
| } |
| |
| static void read_carry(DisasContext *dc, TCGv_i32 d) |
| { |
| tcg_gen_extrl_i64_i32(d, cpu_SR[SR_MSR]); |
| tcg_gen_shri_i32(d, d, 31); |
| } |
| |
| /* |
| * write_carry sets the carry bits in MSR based on bit 0 of v. |
| * v[31:1] are ignored. |
| */ |
| static void write_carry(DisasContext *dc, TCGv_i32 v) |
| { |
| TCGv_i64 t0 = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(t0, v); |
| /* Deposit bit 0 into MSR_C and the alias MSR_CC. */ |
| tcg_gen_deposit_i64(cpu_SR[SR_MSR], cpu_SR[SR_MSR], t0, 2, 1); |
| tcg_gen_deposit_i64(cpu_SR[SR_MSR], cpu_SR[SR_MSR], t0, 31, 1); |
| tcg_temp_free_i64(t0); |
| } |
| |
| static void write_carryi(DisasContext *dc, bool carry) |
| { |
| TCGv_i32 t0 = tcg_temp_new_i32(); |
| tcg_gen_movi_i32(t0, carry); |
| write_carry(dc, t0); |
| tcg_temp_free_i32(t0); |
| } |
| |
| /* |
| * Returns true if the insn an illegal operation. |
| * If exceptions are enabled, an exception is raised. |
| */ |
| static bool trap_illegal(DisasContext *dc, bool cond) |
| { |
| if (cond && (dc->tb_flags & MSR_EE_FLAG) |
| && (dc->cpu->env.pvr.regs[2] & PVR2_ILL_OPCODE_EXC_MASK)) { |
| tcg_gen_movi_i64(cpu_SR[SR_ESR], ESR_EC_ILLEGAL_OP); |
| t_gen_raise_exception(dc, EXCP_HW_EXCP); |
| } |
| return cond; |
| } |
| |
| /* |
| * Returns true if the insn is illegal in userspace. |
| * If exceptions are enabled, an exception is raised. |
| */ |
| static bool trap_userspace(DisasContext *dc, bool cond) |
| { |
| int mem_index = cpu_mmu_index(&dc->cpu->env, false); |
| bool cond_user = cond && mem_index == MMU_USER_IDX; |
| |
| if (cond_user && (dc->tb_flags & MSR_EE_FLAG)) { |
| tcg_gen_movi_i64(cpu_SR[SR_ESR], ESR_EC_PRIVINSN); |
| t_gen_raise_exception(dc, EXCP_HW_EXCP); |
| } |
| return cond_user; |
| } |
| |
| /* True if ALU operand b is a small immediate that may deserve |
| faster treatment. */ |
| static inline int dec_alu_op_b_is_small_imm(DisasContext *dc) |
| { |
| /* Immediate insn without the imm prefix ? */ |
| return dc->type_b && !(dc->tb_flags & IMM_FLAG); |
| } |
| |
| static inline TCGv_i32 *dec_alu_op_b(DisasContext *dc) |
| { |
| if (dc->type_b) { |
| if (dc->tb_flags & IMM_FLAG) |
| tcg_gen_ori_i32(env_imm, env_imm, dc->imm); |
| else |
| tcg_gen_movi_i32(env_imm, (int32_t)((int16_t)dc->imm)); |
| return &env_imm; |
| } else |
| return &cpu_R[dc->rb]; |
| } |
| |
| static void dec_add(DisasContext *dc) |
| { |
| unsigned int k, c; |
| TCGv_i32 cf; |
| |
| k = dc->opcode & 4; |
| c = dc->opcode & 2; |
| |
| LOG_DIS("add%s%s%s r%d r%d r%d\n", |
| dc->type_b ? "i" : "", k ? "k" : "", c ? "c" : "", |
| dc->rd, dc->ra, dc->rb); |
| |
| /* Take care of the easy cases first. */ |
| if (k) { |
| /* k - keep carry, no need to update MSR. */ |
| /* If rd == r0, it's a nop. */ |
| if (dc->rd) { |
| tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); |
| |
| if (c) { |
| /* c - Add carry into the result. */ |
| cf = tcg_temp_new_i32(); |
| |
| read_carry(dc, cf); |
| tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf); |
| tcg_temp_free_i32(cf); |
| } |
| } |
| return; |
| } |
| |
| /* From now on, we can assume k is zero. So we need to update MSR. */ |
| /* Extract carry. */ |
| cf = tcg_temp_new_i32(); |
| if (c) { |
| read_carry(dc, cf); |
| } else { |
| tcg_gen_movi_i32(cf, 0); |
| } |
| |
| if (dc->rd) { |
| TCGv_i32 ncf = tcg_temp_new_i32(); |
| gen_helper_carry(ncf, cpu_R[dc->ra], *(dec_alu_op_b(dc)), cf); |
| tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); |
| tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf); |
| write_carry(dc, ncf); |
| tcg_temp_free_i32(ncf); |
| } else { |
| gen_helper_carry(cf, cpu_R[dc->ra], *(dec_alu_op_b(dc)), cf); |
| write_carry(dc, cf); |
| } |
| tcg_temp_free_i32(cf); |
| } |
| |
| static void dec_sub(DisasContext *dc) |
| { |
| unsigned int u, cmp, k, c; |
| TCGv_i32 cf, na; |
| |
| u = dc->imm & 2; |
| k = dc->opcode & 4; |
| c = dc->opcode & 2; |
| cmp = (dc->imm & 1) && (!dc->type_b) && k; |
| |
| if (cmp) { |
| LOG_DIS("cmp%s r%d, r%d ir=%x\n", u ? "u" : "", dc->rd, dc->ra, dc->ir); |
| if (dc->rd) { |
| if (u) |
| gen_helper_cmpu(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); |
| else |
| gen_helper_cmp(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); |
| } |
| return; |
| } |
| |
| LOG_DIS("sub%s%s r%d, r%d r%d\n", |
| k ? "k" : "", c ? "c" : "", dc->rd, dc->ra, dc->rb); |
| |
| /* Take care of the easy cases first. */ |
| if (k) { |
| /* k - keep carry, no need to update MSR. */ |
| /* If rd == r0, it's a nop. */ |
| if (dc->rd) { |
| tcg_gen_sub_i32(cpu_R[dc->rd], *(dec_alu_op_b(dc)), cpu_R[dc->ra]); |
| |
| if (c) { |
| /* c - Add carry into the result. */ |
| cf = tcg_temp_new_i32(); |
| |
| read_carry(dc, cf); |
| tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf); |
| tcg_temp_free_i32(cf); |
| } |
| } |
| return; |
| } |
| |
| /* From now on, we can assume k is zero. So we need to update MSR. */ |
| /* Extract carry. And complement a into na. */ |
| cf = tcg_temp_new_i32(); |
| na = tcg_temp_new_i32(); |
| if (c) { |
| read_carry(dc, cf); |
| } else { |
| tcg_gen_movi_i32(cf, 1); |
| } |
| |
| /* d = b + ~a + c. carry defaults to 1. */ |
| tcg_gen_not_i32(na, cpu_R[dc->ra]); |
| |
| if (dc->rd) { |
| TCGv_i32 ncf = tcg_temp_new_i32(); |
| gen_helper_carry(ncf, na, *(dec_alu_op_b(dc)), cf); |
| tcg_gen_add_i32(cpu_R[dc->rd], na, *(dec_alu_op_b(dc))); |
| tcg_gen_add_i32(cpu_R[dc->rd], cpu_R[dc->rd], cf); |
| write_carry(dc, ncf); |
| tcg_temp_free_i32(ncf); |
| } else { |
| gen_helper_carry(cf, na, *(dec_alu_op_b(dc)), cf); |
| write_carry(dc, cf); |
| } |
| tcg_temp_free_i32(cf); |
| tcg_temp_free_i32(na); |
| } |
| |
| static void dec_pattern(DisasContext *dc) |
| { |
| unsigned int mode; |
| |
| if (trap_illegal(dc, !dc->cpu->cfg.use_pcmp_instr)) { |
| return; |
| } |
| |
| mode = dc->opcode & 3; |
| switch (mode) { |
| case 0: |
| /* pcmpbf. */ |
| LOG_DIS("pcmpbf r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); |
| if (dc->rd) |
| gen_helper_pcmpbf(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 2: |
| LOG_DIS("pcmpeq r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); |
| if (dc->rd) { |
| tcg_gen_setcond_i32(TCG_COND_EQ, cpu_R[dc->rd], |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| } |
| break; |
| case 3: |
| LOG_DIS("pcmpne r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); |
| if (dc->rd) { |
| tcg_gen_setcond_i32(TCG_COND_NE, cpu_R[dc->rd], |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| } |
| break; |
| default: |
| cpu_abort(CPU(dc->cpu), |
| "unsupported pattern insn opcode=%x\n", dc->opcode); |
| break; |
| } |
| } |
| |
| static void dec_and(DisasContext *dc) |
| { |
| unsigned int not; |
| |
| if (!dc->type_b && (dc->imm & (1 << 10))) { |
| dec_pattern(dc); |
| return; |
| } |
| |
| not = dc->opcode & (1 << 1); |
| LOG_DIS("and%s\n", not ? "n" : ""); |
| |
| if (!dc->rd) |
| return; |
| |
| if (not) { |
| tcg_gen_andc_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); |
| } else |
| tcg_gen_and_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); |
| } |
| |
| static void dec_or(DisasContext *dc) |
| { |
| if (!dc->type_b && (dc->imm & (1 << 10))) { |
| dec_pattern(dc); |
| return; |
| } |
| |
| LOG_DIS("or r%d r%d r%d imm=%x\n", dc->rd, dc->ra, dc->rb, dc->imm); |
| if (dc->rd) |
| tcg_gen_or_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); |
| } |
| |
| static void dec_xor(DisasContext *dc) |
| { |
| if (!dc->type_b && (dc->imm & (1 << 10))) { |
| dec_pattern(dc); |
| return; |
| } |
| |
| LOG_DIS("xor r%d\n", dc->rd); |
| if (dc->rd) |
| tcg_gen_xor_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); |
| } |
| |
| static inline void msr_read(DisasContext *dc, TCGv_i32 d) |
| { |
| tcg_gen_extrl_i64_i32(d, cpu_SR[SR_MSR]); |
| } |
| |
| static inline void msr_write(DisasContext *dc, TCGv_i32 v) |
| { |
| TCGv_i64 t; |
| |
| t = tcg_temp_new_i64(); |
| dc->cpustate_changed = 1; |
| /* PVR bit is not writable. */ |
| tcg_gen_extu_i32_i64(t, v); |
| tcg_gen_andi_i64(t, t, ~MSR_PVR); |
| tcg_gen_andi_i64(cpu_SR[SR_MSR], cpu_SR[SR_MSR], MSR_PVR); |
| tcg_gen_or_i64(cpu_SR[SR_MSR], cpu_SR[SR_MSR], t); |
| tcg_temp_free_i64(t); |
| } |
| |
| static void dec_msr(DisasContext *dc) |
| { |
| CPUState *cs = CPU(dc->cpu); |
| TCGv_i32 t0, t1; |
| unsigned int sr, rn; |
| bool to, clrset, extended = false; |
| |
| sr = extract32(dc->imm, 0, 14); |
| to = extract32(dc->imm, 14, 1); |
| clrset = extract32(dc->imm, 15, 1) == 0; |
| dc->type_b = 1; |
| if (to) { |
| dc->cpustate_changed = 1; |
| } |
| |
| /* Extended MSRs are only available if addr_size > 32. */ |
| if (dc->cpu->cfg.addr_size > 32) { |
| /* The E-bit is encoded differently for To/From MSR. */ |
| static const unsigned int e_bit[] = { 19, 24 }; |
| |
| extended = extract32(dc->imm, e_bit[to], 1); |
| } |
| |
| /* msrclr and msrset. */ |
| if (clrset) { |
| bool clr = extract32(dc->ir, 16, 1); |
| |
| LOG_DIS("msr%s r%d imm=%x\n", clr ? "clr" : "set", |
| dc->rd, dc->imm); |
| |
| if (!dc->cpu->cfg.use_msr_instr) { |
| /* nop??? */ |
| return; |
| } |
| |
| if (trap_userspace(dc, dc->imm != 4 && dc->imm != 0)) { |
| return; |
| } |
| |
| if (dc->rd) |
| msr_read(dc, cpu_R[dc->rd]); |
| |
| t0 = tcg_temp_new_i32(); |
| t1 = tcg_temp_new_i32(); |
| msr_read(dc, t0); |
| tcg_gen_mov_i32(t1, *(dec_alu_op_b(dc))); |
| |
| if (clr) { |
| tcg_gen_not_i32(t1, t1); |
| tcg_gen_and_i32(t0, t0, t1); |
| } else |
| tcg_gen_or_i32(t0, t0, t1); |
| msr_write(dc, t0); |
| tcg_temp_free_i32(t0); |
| tcg_temp_free_i32(t1); |
| tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc + 4); |
| dc->is_jmp = DISAS_UPDATE; |
| return; |
| } |
| |
| if (trap_userspace(dc, to)) { |
| return; |
| } |
| |
| #if !defined(CONFIG_USER_ONLY) |
| /* Catch read/writes to the mmu block. */ |
| if ((sr & ~0xff) == 0x1000) { |
| TCGv_i32 tmp_ext = tcg_const_i32(extended); |
| TCGv_i32 tmp_sr; |
| |
| sr &= 7; |
| tmp_sr = tcg_const_i32(sr); |
| LOG_DIS("m%ss sr%d r%d imm=%x\n", to ? "t" : "f", sr, dc->ra, dc->imm); |
| if (to) { |
| gen_helper_mmu_write(cpu_env, tmp_ext, tmp_sr, cpu_R[dc->ra]); |
| } else { |
| gen_helper_mmu_read(cpu_R[dc->rd], cpu_env, tmp_ext, tmp_sr); |
| } |
| tcg_temp_free_i32(tmp_sr); |
| tcg_temp_free_i32(tmp_ext); |
| return; |
| } |
| #endif |
| |
| if (to) { |
| LOG_DIS("m%ss sr%x r%d imm=%x\n", to ? "t" : "f", sr, dc->ra, dc->imm); |
| switch (sr) { |
| case 0: |
| break; |
| case 1: |
| msr_write(dc, cpu_R[dc->ra]); |
| break; |
| case SR_EAR: |
| case SR_ESR: |
| case SR_FSR: |
| tcg_gen_extu_i32_i64(cpu_SR[sr], cpu_R[dc->ra]); |
| break; |
| case 0x800: |
| tcg_gen_st_i32(cpu_R[dc->ra], |
| cpu_env, offsetof(CPUMBState, slr)); |
| break; |
| case 0x802: |
| tcg_gen_st_i32(cpu_R[dc->ra], |
| cpu_env, offsetof(CPUMBState, shr)); |
| break; |
| default: |
| cpu_abort(CPU(dc->cpu), "unknown mts reg %x\n", sr); |
| break; |
| } |
| } else { |
| LOG_DIS("m%ss r%d sr%x imm=%x\n", to ? "t" : "f", dc->rd, sr, dc->imm); |
| |
| switch (sr) { |
| case 0: |
| tcg_gen_movi_i32(cpu_R[dc->rd], dc->pc); |
| break; |
| case 1: |
| msr_read(dc, cpu_R[dc->rd]); |
| break; |
| case SR_EAR: |
| if (extended) { |
| tcg_gen_extrh_i64_i32(cpu_R[dc->rd], cpu_SR[sr]); |
| break; |
| } |
| case SR_ESR: |
| case SR_FSR: |
| case SR_BTR: |
| tcg_gen_extrl_i64_i32(cpu_R[dc->rd], cpu_SR[sr]); |
| break; |
| case 0x800: |
| tcg_gen_ld_i32(cpu_R[dc->rd], |
| cpu_env, offsetof(CPUMBState, slr)); |
| break; |
| case 0x802: |
| tcg_gen_ld_i32(cpu_R[dc->rd], |
| cpu_env, offsetof(CPUMBState, shr)); |
| break; |
| case 0x2000 ... 0x200c: |
| rn = sr & 0xf; |
| tcg_gen_ld_i32(cpu_R[dc->rd], |
| cpu_env, offsetof(CPUMBState, pvr.regs[rn])); |
| break; |
| default: |
| cpu_abort(cs, "unknown mfs reg %x\n", sr); |
| break; |
| } |
| } |
| |
| if (dc->rd == 0) { |
| tcg_gen_movi_i32(cpu_R[0], 0); |
| } |
| } |
| |
| /* Multiplier unit. */ |
| static void dec_mul(DisasContext *dc) |
| { |
| TCGv_i32 tmp; |
| unsigned int subcode; |
| |
| if (trap_illegal(dc, !dc->cpu->cfg.use_hw_mul)) { |
| return; |
| } |
| |
| subcode = dc->imm & 3; |
| |
| if (dc->type_b) { |
| LOG_DIS("muli r%d r%d %x\n", dc->rd, dc->ra, dc->imm); |
| tcg_gen_mul_i32(cpu_R[dc->rd], cpu_R[dc->ra], *(dec_alu_op_b(dc))); |
| return; |
| } |
| |
| /* mulh, mulhsu and mulhu are not available if C_USE_HW_MUL is < 2. */ |
| if (subcode >= 1 && subcode <= 3 && dc->cpu->cfg.use_hw_mul < 2) { |
| /* nop??? */ |
| } |
| |
| tmp = tcg_temp_new_i32(); |
| switch (subcode) { |
| case 0: |
| LOG_DIS("mul r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); |
| tcg_gen_mul_i32(cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 1: |
| LOG_DIS("mulh r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); |
| tcg_gen_muls2_i32(tmp, cpu_R[dc->rd], |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 2: |
| LOG_DIS("mulhsu r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); |
| tcg_gen_mulsu2_i32(tmp, cpu_R[dc->rd], |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 3: |
| LOG_DIS("mulhu r%d r%d r%d\n", dc->rd, dc->ra, dc->rb); |
| tcg_gen_mulu2_i32(tmp, cpu_R[dc->rd], cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| default: |
| cpu_abort(CPU(dc->cpu), "unknown MUL insn %x\n", subcode); |
| break; |
| } |
| tcg_temp_free_i32(tmp); |
| } |
| |
| /* Div unit. */ |
| static void dec_div(DisasContext *dc) |
| { |
| unsigned int u; |
| |
| u = dc->imm & 2; |
| LOG_DIS("div\n"); |
| |
| if (trap_illegal(dc, !dc->cpu->cfg.use_div)) { |
| return; |
| } |
| |
| if (u) |
| gen_helper_divu(cpu_R[dc->rd], cpu_env, *(dec_alu_op_b(dc)), |
| cpu_R[dc->ra]); |
| else |
| gen_helper_divs(cpu_R[dc->rd], cpu_env, *(dec_alu_op_b(dc)), |
| cpu_R[dc->ra]); |
| if (!dc->rd) |
| tcg_gen_movi_i32(cpu_R[dc->rd], 0); |
| } |
| |
| static void dec_barrel(DisasContext *dc) |
| { |
| TCGv_i32 t0; |
| unsigned int imm_w, imm_s; |
| bool s, t, e = false, i = false; |
| |
| if (trap_illegal(dc, !dc->cpu->cfg.use_barrel)) { |
| return; |
| } |
| |
| if (dc->type_b) { |
| /* Insert and extract are only available in immediate mode. */ |
| i = extract32(dc->imm, 15, 1); |
| e = extract32(dc->imm, 14, 1); |
| } |
| s = extract32(dc->imm, 10, 1); |
| t = extract32(dc->imm, 9, 1); |
| imm_w = extract32(dc->imm, 6, 5); |
| imm_s = extract32(dc->imm, 0, 5); |
| |
| LOG_DIS("bs%s%s%s r%d r%d r%d\n", |
| e ? "e" : "", |
| s ? "l" : "r", t ? "a" : "l", dc->rd, dc->ra, dc->rb); |
| |
| if (e) { |
| if (imm_w + imm_s > 32 || imm_w == 0) { |
| /* These inputs have an undefined behavior. */ |
| qemu_log_mask(LOG_GUEST_ERROR, "bsefi: Bad input w=%d s=%d\n", |
| imm_w, imm_s); |
| } else { |
| tcg_gen_extract_i32(cpu_R[dc->rd], cpu_R[dc->ra], imm_s, imm_w); |
| } |
| } else if (i) { |
| int width = imm_w - imm_s + 1; |
| |
| if (imm_w < imm_s) { |
| /* These inputs have an undefined behavior. */ |
| qemu_log_mask(LOG_GUEST_ERROR, "bsifi: Bad input w=%d s=%d\n", |
| imm_w, imm_s); |
| } else { |
| tcg_gen_deposit_i32(cpu_R[dc->rd], cpu_R[dc->rd], cpu_R[dc->ra], |
| imm_s, width); |
| } |
| } else { |
| t0 = tcg_temp_new_i32(); |
| |
| tcg_gen_mov_i32(t0, *(dec_alu_op_b(dc))); |
| tcg_gen_andi_i32(t0, t0, 31); |
| |
| if (s) { |
| tcg_gen_shl_i32(cpu_R[dc->rd], cpu_R[dc->ra], t0); |
| } else { |
| if (t) { |
| tcg_gen_sar_i32(cpu_R[dc->rd], cpu_R[dc->ra], t0); |
| } else { |
| tcg_gen_shr_i32(cpu_R[dc->rd], cpu_R[dc->ra], t0); |
| } |
| } |
| tcg_temp_free_i32(t0); |
| } |
| } |
| |
| static void dec_bit(DisasContext *dc) |
| { |
| CPUState *cs = CPU(dc->cpu); |
| TCGv_i32 t0; |
| unsigned int op; |
| |
| op = dc->ir & ((1 << 9) - 1); |
| switch (op) { |
| case 0x21: |
| /* src. */ |
| t0 = tcg_temp_new_i32(); |
| |
| LOG_DIS("src r%d r%d\n", dc->rd, dc->ra); |
| tcg_gen_extrl_i64_i32(t0, cpu_SR[SR_MSR]); |
| tcg_gen_andi_i32(t0, t0, MSR_CC); |
| write_carry(dc, cpu_R[dc->ra]); |
| if (dc->rd) { |
| tcg_gen_shri_i32(cpu_R[dc->rd], cpu_R[dc->ra], 1); |
| tcg_gen_or_i32(cpu_R[dc->rd], cpu_R[dc->rd], t0); |
| } |
| tcg_temp_free_i32(t0); |
| break; |
| |
| case 0x1: |
| case 0x41: |
| /* srl. */ |
| LOG_DIS("srl r%d r%d\n", dc->rd, dc->ra); |
| |
| /* Update carry. Note that write carry only looks at the LSB. */ |
| write_carry(dc, cpu_R[dc->ra]); |
| if (dc->rd) { |
| if (op == 0x41) |
| tcg_gen_shri_i32(cpu_R[dc->rd], cpu_R[dc->ra], 1); |
| else |
| tcg_gen_sari_i32(cpu_R[dc->rd], cpu_R[dc->ra], 1); |
| } |
| break; |
| case 0x60: |
| LOG_DIS("ext8s r%d r%d\n", dc->rd, dc->ra); |
| tcg_gen_ext8s_i32(cpu_R[dc->rd], cpu_R[dc->ra]); |
| break; |
| case 0x61: |
| LOG_DIS("ext16s r%d r%d\n", dc->rd, dc->ra); |
| tcg_gen_ext16s_i32(cpu_R[dc->rd], cpu_R[dc->ra]); |
| break; |
| case 0x64: |
| case 0x66: |
| case 0x74: |
| case 0x76: |
| /* wdc. */ |
| LOG_DIS("wdc r%d\n", dc->ra); |
| trap_userspace(dc, true); |
| break; |
| case 0x68: |
| /* wic. */ |
| LOG_DIS("wic r%d\n", dc->ra); |
| trap_userspace(dc, true); |
| break; |
| case 0xe0: |
| if (trap_illegal(dc, !dc->cpu->cfg.use_pcmp_instr)) { |
| return; |
| } |
| if (dc->cpu->cfg.use_pcmp_instr) { |
| tcg_gen_clzi_i32(cpu_R[dc->rd], cpu_R[dc->ra], 32); |
| } |
| break; |
| case 0x1e0: |
| /* swapb */ |
| LOG_DIS("swapb r%d r%d\n", dc->rd, dc->ra); |
| tcg_gen_bswap32_i32(cpu_R[dc->rd], cpu_R[dc->ra]); |
| break; |
| case 0x1e2: |
| /*swaph */ |
| LOG_DIS("swaph r%d r%d\n", dc->rd, dc->ra); |
| tcg_gen_rotri_i32(cpu_R[dc->rd], cpu_R[dc->ra], 16); |
| break; |
| default: |
| cpu_abort(cs, "unknown bit oc=%x op=%x rd=%d ra=%d rb=%d\n", |
| dc->pc, op, dc->rd, dc->ra, dc->rb); |
| break; |
| } |
| } |
| |
| static inline void sync_jmpstate(DisasContext *dc) |
| { |
| if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) { |
| if (dc->jmp == JMP_DIRECT) { |
| tcg_gen_movi_i32(env_btaken, 1); |
| } |
| dc->jmp = JMP_INDIRECT; |
| tcg_gen_movi_i64(env_btarget, dc->jmp_pc); |
| } |
| } |
| |
| static void dec_imm(DisasContext *dc) |
| { |
| LOG_DIS("imm %x\n", dc->imm << 16); |
| tcg_gen_movi_i32(env_imm, (dc->imm << 16)); |
| dc->tb_flags |= IMM_FLAG; |
| dc->clear_imm = 0; |
| } |
| |
| static inline void compute_ldst_addr(DisasContext *dc, bool ea, TCGv t) |
| { |
| bool extimm = dc->tb_flags & IMM_FLAG; |
| /* Should be set to true if r1 is used by loadstores. */ |
| bool stackprot = false; |
| TCGv_i32 t32; |
| |
| /* All load/stores use ra. */ |
| if (dc->ra == 1 && dc->cpu->cfg.stackprot) { |
| stackprot = true; |
| } |
| |
| /* Treat the common cases first. */ |
| if (!dc->type_b) { |
| if (ea) { |
| int addr_size = dc->cpu->cfg.addr_size; |
| |
| if (addr_size == 32) { |
| tcg_gen_extu_i32_tl(t, cpu_R[dc->rb]); |
| return; |
| } |
| |
| tcg_gen_concat_i32_i64(t, cpu_R[dc->rb], cpu_R[dc->ra]); |
| if (addr_size < 64) { |
| /* Mask off out of range bits. */ |
| tcg_gen_andi_i64(t, t, MAKE_64BIT_MASK(0, addr_size)); |
| } |
| return; |
| } |
| |
| /* If any of the regs is r0, set t to the value of the other reg. */ |
| if (dc->ra == 0) { |
| tcg_gen_extu_i32_tl(t, cpu_R[dc->rb]); |
| return; |
| } else if (dc->rb == 0) { |
| tcg_gen_extu_i32_tl(t, cpu_R[dc->ra]); |
| return; |
| } |
| |
| if (dc->rb == 1 && dc->cpu->cfg.stackprot) { |
| stackprot = true; |
| } |
| |
| t32 = tcg_temp_new_i32(); |
| tcg_gen_add_i32(t32, cpu_R[dc->ra], cpu_R[dc->rb]); |
| tcg_gen_extu_i32_tl(t, t32); |
| tcg_temp_free_i32(t32); |
| |
| if (stackprot) { |
| gen_helper_stackprot(cpu_env, t); |
| } |
| return; |
| } |
| /* Immediate. */ |
| t32 = tcg_temp_new_i32(); |
| if (!extimm) { |
| tcg_gen_addi_i32(t32, cpu_R[dc->ra], (int16_t)dc->imm); |
| } else { |
| tcg_gen_add_i32(t32, cpu_R[dc->ra], *(dec_alu_op_b(dc))); |
| } |
| tcg_gen_extu_i32_tl(t, t32); |
| tcg_temp_free_i32(t32); |
| |
| if (stackprot) { |
| gen_helper_stackprot(cpu_env, t); |
| } |
| return; |
| } |
| |
| static void dec_load(DisasContext *dc) |
| { |
| TCGv_i32 v; |
| TCGv addr; |
| unsigned int size; |
| bool rev = false, ex = false, ea = false; |
| int mem_index = cpu_mmu_index(&dc->cpu->env, false); |
| MemOp mop; |
| |
| mop = dc->opcode & 3; |
| size = 1 << mop; |
| if (!dc->type_b) { |
| ea = extract32(dc->ir, 7, 1); |
| rev = extract32(dc->ir, 9, 1); |
| ex = extract32(dc->ir, 10, 1); |
| } |
| mop |= MO_TE; |
| if (rev) { |
| mop ^= MO_BSWAP; |
| } |
| |
| if (trap_illegal(dc, size > 4)) { |
| return; |
| } |
| |
| if (trap_userspace(dc, ea)) { |
| return; |
| } |
| |
| LOG_DIS("l%d%s%s%s%s\n", size, dc->type_b ? "i" : "", rev ? "r" : "", |
| ex ? "x" : "", |
| ea ? "ea" : ""); |
| |
| t_sync_flags(dc); |
| addr = tcg_temp_new(); |
| compute_ldst_addr(dc, ea, addr); |
| /* Extended addressing bypasses the MMU. */ |
| mem_index = ea ? MMU_NOMMU_IDX : mem_index; |
| |
| /* |
| * When doing reverse accesses we need to do two things. |
| * |
| * 1. Reverse the address wrt endianness. |
| * 2. Byteswap the data lanes on the way back into the CPU core. |
| */ |
| if (rev && size != 4) { |
| /* Endian reverse the address. t is addr. */ |
| switch (size) { |
| case 1: |
| { |
| /* 00 -> 11 |
| 01 -> 10 |
| 10 -> 10 |
| 11 -> 00 */ |
| TCGv low = tcg_temp_new(); |
| |
| tcg_gen_andi_tl(low, addr, 3); |
| tcg_gen_sub_tl(low, tcg_const_tl(3), low); |
| tcg_gen_andi_tl(addr, addr, ~3); |
| tcg_gen_or_tl(addr, addr, low); |
| tcg_temp_free(low); |
| break; |
| } |
| |
| case 2: |
| /* 00 -> 10 |
| 10 -> 00. */ |
| tcg_gen_xori_tl(addr, addr, 2); |
| break; |
| default: |
| cpu_abort(CPU(dc->cpu), "Invalid reverse size\n"); |
| break; |
| } |
| } |
| |
| /* lwx does not throw unaligned access errors, so force alignment */ |
| if (ex) { |
| tcg_gen_andi_tl(addr, addr, ~3); |
| } |
| |
| /* If we get a fault on a dslot, the jmpstate better be in sync. */ |
| sync_jmpstate(dc); |
| |
| /* Verify alignment if needed. */ |
| /* |
| * Microblaze gives MMU faults priority over faults due to |
| * unaligned addresses. That's why we speculatively do the load |
| * into v. If the load succeeds, we verify alignment of the |
| * address and if that succeeds we write into the destination reg. |
| */ |
| v = tcg_temp_new_i32(); |
| tcg_gen_qemu_ld_i32(v, addr, mem_index, mop); |
| |
| if ((dc->cpu->env.pvr.regs[2] & PVR2_UNALIGNED_EXC_MASK) && size > 1) { |
| tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc); |
| gen_helper_memalign(cpu_env, addr, tcg_const_i32(dc->rd), |
| tcg_const_i32(0), tcg_const_i32(size - 1)); |
| } |
| |
| if (ex) { |
| tcg_gen_mov_tl(env_res_addr, addr); |
| tcg_gen_mov_i32(env_res_val, v); |
| } |
| if (dc->rd) { |
| tcg_gen_mov_i32(cpu_R[dc->rd], v); |
| } |
| tcg_temp_free_i32(v); |
| |
| if (ex) { /* lwx */ |
| /* no support for AXI exclusive so always clear C */ |
| write_carryi(dc, 0); |
| } |
| |
| tcg_temp_free(addr); |
| } |
| |
| static void dec_store(DisasContext *dc) |
| { |
| TCGv addr; |
| TCGLabel *swx_skip = NULL; |
| unsigned int size; |
| bool rev = false, ex = false, ea = false; |
| int mem_index = cpu_mmu_index(&dc->cpu->env, false); |
| MemOp mop; |
| |
| mop = dc->opcode & 3; |
| size = 1 << mop; |
| if (!dc->type_b) { |
| ea = extract32(dc->ir, 7, 1); |
| rev = extract32(dc->ir, 9, 1); |
| ex = extract32(dc->ir, 10, 1); |
| } |
| mop |= MO_TE; |
| if (rev) { |
| mop ^= MO_BSWAP; |
| } |
| |
| if (trap_illegal(dc, size > 4)) { |
| return; |
| } |
| |
| trap_userspace(dc, ea); |
| |
| LOG_DIS("s%d%s%s%s%s\n", size, dc->type_b ? "i" : "", rev ? "r" : "", |
| ex ? "x" : "", |
| ea ? "ea" : ""); |
| t_sync_flags(dc); |
| /* If we get a fault on a dslot, the jmpstate better be in sync. */ |
| sync_jmpstate(dc); |
| /* SWX needs a temp_local. */ |
| addr = ex ? tcg_temp_local_new() : tcg_temp_new(); |
| compute_ldst_addr(dc, ea, addr); |
| /* Extended addressing bypasses the MMU. */ |
| mem_index = ea ? MMU_NOMMU_IDX : mem_index; |
| |
| if (ex) { /* swx */ |
| TCGv_i32 tval; |
| |
| /* swx does not throw unaligned access errors, so force alignment */ |
| tcg_gen_andi_tl(addr, addr, ~3); |
| |
| write_carryi(dc, 1); |
| swx_skip = gen_new_label(); |
| tcg_gen_brcond_tl(TCG_COND_NE, env_res_addr, addr, swx_skip); |
| |
| /* Compare the value loaded at lwx with current contents of |
| the reserved location. |
| FIXME: This only works for system emulation where we can expect |
| this compare and the following write to be atomic. For user |
| emulation we need to add atomicity between threads. */ |
| tval = tcg_temp_new_i32(); |
| tcg_gen_qemu_ld_i32(tval, addr, cpu_mmu_index(&dc->cpu->env, false), |
| MO_TEUL); |
| tcg_gen_brcond_i32(TCG_COND_NE, env_res_val, tval, swx_skip); |
| write_carryi(dc, 0); |
| tcg_temp_free_i32(tval); |
| } |
| |
| if (rev && size != 4) { |
| /* Endian reverse the address. t is addr. */ |
| switch (size) { |
| case 1: |
| { |
| /* 00 -> 11 |
| 01 -> 10 |
| 10 -> 10 |
| 11 -> 00 */ |
| TCGv low = tcg_temp_new(); |
| |
| tcg_gen_andi_tl(low, addr, 3); |
| tcg_gen_sub_tl(low, tcg_const_tl(3), low); |
| tcg_gen_andi_tl(addr, addr, ~3); |
| tcg_gen_or_tl(addr, addr, low); |
| tcg_temp_free(low); |
| break; |
| } |
| |
| case 2: |
| /* 00 -> 10 |
| 10 -> 00. */ |
| /* Force addr into the temp. */ |
| tcg_gen_xori_tl(addr, addr, 2); |
| break; |
| default: |
| cpu_abort(CPU(dc->cpu), "Invalid reverse size\n"); |
| break; |
| } |
| } |
| tcg_gen_qemu_st_i32(cpu_R[dc->rd], addr, mem_index, mop); |
| |
| /* Verify alignment if needed. */ |
| if ((dc->cpu->env.pvr.regs[2] & PVR2_UNALIGNED_EXC_MASK) && size > 1) { |
| tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc); |
| /* FIXME: if the alignment is wrong, we should restore the value |
| * in memory. One possible way to achieve this is to probe |
| * the MMU prior to the memaccess, thay way we could put |
| * the alignment checks in between the probe and the mem |
| * access. |
| */ |
| gen_helper_memalign(cpu_env, addr, tcg_const_i32(dc->rd), |
| tcg_const_i32(1), tcg_const_i32(size - 1)); |
| } |
| |
| if (ex) { |
| gen_set_label(swx_skip); |
| } |
| |
| tcg_temp_free(addr); |
| } |
| |
| static inline void eval_cc(DisasContext *dc, unsigned int cc, |
| TCGv_i32 d, TCGv_i32 a) |
| { |
| static const int mb_to_tcg_cc[] = { |
| [CC_EQ] = TCG_COND_EQ, |
| [CC_NE] = TCG_COND_NE, |
| [CC_LT] = TCG_COND_LT, |
| [CC_LE] = TCG_COND_LE, |
| [CC_GE] = TCG_COND_GE, |
| [CC_GT] = TCG_COND_GT, |
| }; |
| |
| switch (cc) { |
| case CC_EQ: |
| case CC_NE: |
| case CC_LT: |
| case CC_LE: |
| case CC_GE: |
| case CC_GT: |
| tcg_gen_setcondi_i32(mb_to_tcg_cc[cc], d, a, 0); |
| break; |
| default: |
| cpu_abort(CPU(dc->cpu), "Unknown condition code %x.\n", cc); |
| break; |
| } |
| } |
| |
| static void eval_cond_jmp(DisasContext *dc, TCGv_i64 pc_true, TCGv_i64 pc_false) |
| { |
| TCGv_i64 tmp_btaken = tcg_temp_new_i64(); |
| TCGv_i64 tmp_zero = tcg_const_i64(0); |
| |
| tcg_gen_extu_i32_i64(tmp_btaken, env_btaken); |
| tcg_gen_movcond_i64(TCG_COND_NE, cpu_SR[SR_PC], |
| tmp_btaken, tmp_zero, |
| pc_true, pc_false); |
| |
| tcg_temp_free_i64(tmp_btaken); |
| tcg_temp_free_i64(tmp_zero); |
| } |
| |
| static void dec_bcc(DisasContext *dc) |
| { |
| unsigned int cc; |
| unsigned int dslot; |
| |
| cc = EXTRACT_FIELD(dc->ir, 21, 23); |
| dslot = dc->ir & (1 << 25); |
| LOG_DIS("bcc%s r%d %x\n", dslot ? "d" : "", dc->ra, dc->imm); |
| |
| dc->delayed_branch = 1; |
| if (dslot) { |
| dc->delayed_branch = 2; |
| dc->tb_flags |= D_FLAG; |
| tcg_gen_st_i32(tcg_const_i32(dc->type_b && (dc->tb_flags & IMM_FLAG)), |
| cpu_env, offsetof(CPUMBState, bimm)); |
| } |
| |
| if (dec_alu_op_b_is_small_imm(dc)) { |
| int32_t offset = (int32_t)((int16_t)dc->imm); /* sign-extend. */ |
| |
| tcg_gen_movi_i64(env_btarget, dc->pc + offset); |
| dc->jmp = JMP_DIRECT_CC; |
| dc->jmp_pc = dc->pc + offset; |
| } else { |
| dc->jmp = JMP_INDIRECT; |
| tcg_gen_extu_i32_i64(env_btarget, *(dec_alu_op_b(dc))); |
| tcg_gen_addi_i64(env_btarget, env_btarget, dc->pc); |
| tcg_gen_andi_i64(env_btarget, env_btarget, UINT32_MAX); |
| } |
| eval_cc(dc, cc, env_btaken, cpu_R[dc->ra]); |
| } |
| |
| static void dec_br(DisasContext *dc) |
| { |
| unsigned int dslot, link, abs, mbar; |
| |
| dslot = dc->ir & (1 << 20); |
| abs = dc->ir & (1 << 19); |
| link = dc->ir & (1 << 18); |
| |
| /* Memory barrier. */ |
| mbar = (dc->ir >> 16) & 31; |
| if (mbar == 2 && dc->imm == 4) { |
| /* mbar IMM & 16 decodes to sleep. */ |
| if (dc->rd & 16) { |
| TCGv_i32 tmp_hlt = tcg_const_i32(EXCP_HLT); |
| TCGv_i32 tmp_1 = tcg_const_i32(1); |
| |
| LOG_DIS("sleep\n"); |
| |
| t_sync_flags(dc); |
| tcg_gen_st_i32(tmp_1, cpu_env, |
| -offsetof(MicroBlazeCPU, env) |
| +offsetof(CPUState, halted)); |
| tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc + 4); |
| gen_helper_raise_exception(cpu_env, tmp_hlt); |
| tcg_temp_free_i32(tmp_hlt); |
| tcg_temp_free_i32(tmp_1); |
| return; |
| } |
| LOG_DIS("mbar %d\n", dc->rd); |
| /* Break the TB. */ |
| dc->cpustate_changed = 1; |
| return; |
| } |
| |
| LOG_DIS("br%s%s%s%s imm=%x\n", |
| abs ? "a" : "", link ? "l" : "", |
| dc->type_b ? "i" : "", dslot ? "d" : "", |
| dc->imm); |
| |
| dc->delayed_branch = 1; |
| if (dslot) { |
| dc->delayed_branch = 2; |
| dc->tb_flags |= D_FLAG; |
| tcg_gen_st_i32(tcg_const_i32(dc->type_b && (dc->tb_flags & IMM_FLAG)), |
| cpu_env, offsetof(CPUMBState, bimm)); |
| } |
| if (link && dc->rd) |
| tcg_gen_movi_i32(cpu_R[dc->rd], dc->pc); |
| |
| dc->jmp = JMP_INDIRECT; |
| if (abs) { |
| tcg_gen_movi_i32(env_btaken, 1); |
| tcg_gen_extu_i32_i64(env_btarget, *(dec_alu_op_b(dc))); |
| if (link && !dslot) { |
| if (!(dc->tb_flags & IMM_FLAG) && (dc->imm == 8 || dc->imm == 0x18)) |
| t_gen_raise_exception(dc, EXCP_BREAK); |
| if (dc->imm == 0) { |
| if (trap_userspace(dc, true)) { |
| return; |
| } |
| |
| t_gen_raise_exception(dc, EXCP_DEBUG); |
| } |
| } |
| } else { |
| if (dec_alu_op_b_is_small_imm(dc)) { |
| dc->jmp = JMP_DIRECT; |
| dc->jmp_pc = dc->pc + (int32_t)((int16_t)dc->imm); |
| } else { |
| tcg_gen_movi_i32(env_btaken, 1); |
| tcg_gen_extu_i32_i64(env_btarget, *(dec_alu_op_b(dc))); |
| tcg_gen_addi_i64(env_btarget, env_btarget, dc->pc); |
| tcg_gen_andi_i64(env_btarget, env_btarget, UINT32_MAX); |
| } |
| } |
| } |
| |
| static inline void do_rti(DisasContext *dc) |
| { |
| TCGv_i32 t0, t1; |
| t0 = tcg_temp_new_i32(); |
| t1 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(t1, cpu_SR[SR_MSR]); |
| tcg_gen_shri_i32(t0, t1, 1); |
| tcg_gen_ori_i32(t1, t1, MSR_IE); |
| tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM)); |
| |
| tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM)); |
| tcg_gen_or_i32(t1, t1, t0); |
| msr_write(dc, t1); |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t0); |
| dc->tb_flags &= ~DRTI_FLAG; |
| } |
| |
| static inline void do_rtb(DisasContext *dc) |
| { |
| TCGv_i32 t0, t1; |
| t0 = tcg_temp_new_i32(); |
| t1 = tcg_temp_new_i32(); |
| tcg_gen_extrl_i64_i32(t1, cpu_SR[SR_MSR]); |
| tcg_gen_andi_i32(t1, t1, ~MSR_BIP); |
| tcg_gen_shri_i32(t0, t1, 1); |
| tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM)); |
| |
| tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM)); |
| tcg_gen_or_i32(t1, t1, t0); |
| msr_write(dc, t1); |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t0); |
| dc->tb_flags &= ~DRTB_FLAG; |
| } |
| |
| static inline void do_rte(DisasContext *dc) |
| { |
| TCGv_i32 t0, t1; |
| t0 = tcg_temp_new_i32(); |
| t1 = tcg_temp_new_i32(); |
| |
| tcg_gen_extrl_i64_i32(t1, cpu_SR[SR_MSR]); |
| tcg_gen_ori_i32(t1, t1, MSR_EE); |
| tcg_gen_andi_i32(t1, t1, ~MSR_EIP); |
| tcg_gen_shri_i32(t0, t1, 1); |
| tcg_gen_andi_i32(t0, t0, (MSR_VM | MSR_UM)); |
| |
| tcg_gen_andi_i32(t1, t1, ~(MSR_VM | MSR_UM)); |
| tcg_gen_or_i32(t1, t1, t0); |
| msr_write(dc, t1); |
| tcg_temp_free_i32(t1); |
| tcg_temp_free_i32(t0); |
| dc->tb_flags &= ~DRTE_FLAG; |
| } |
| |
| static void dec_rts(DisasContext *dc) |
| { |
| unsigned int b_bit, i_bit, e_bit; |
| TCGv_i64 tmp64; |
| |
| i_bit = dc->ir & (1 << 21); |
| b_bit = dc->ir & (1 << 22); |
| e_bit = dc->ir & (1 << 23); |
| |
| if (trap_userspace(dc, i_bit || b_bit || e_bit)) { |
| return; |
| } |
| |
| dc->delayed_branch = 2; |
| dc->tb_flags |= D_FLAG; |
| tcg_gen_st_i32(tcg_const_i32(dc->type_b && (dc->tb_flags & IMM_FLAG)), |
| cpu_env, offsetof(CPUMBState, bimm)); |
| |
| if (i_bit) { |
| LOG_DIS("rtid ir=%x\n", dc->ir); |
| dc->tb_flags |= DRTI_FLAG; |
| } else if (b_bit) { |
| LOG_DIS("rtbd ir=%x\n", dc->ir); |
| dc->tb_flags |= DRTB_FLAG; |
| } else if (e_bit) { |
| LOG_DIS("rted ir=%x\n", dc->ir); |
| dc->tb_flags |= DRTE_FLAG; |
| } else |
| LOG_DIS("rts ir=%x\n", dc->ir); |
| |
| dc->jmp = JMP_INDIRECT; |
| tcg_gen_movi_i32(env_btaken, 1); |
| |
| tmp64 = tcg_temp_new_i64(); |
| tcg_gen_extu_i32_i64(env_btarget, *(dec_alu_op_b(dc))); |
| tcg_gen_extu_i32_i64(tmp64, cpu_R[dc->ra]); |
| tcg_gen_add_i64(env_btarget, env_btarget, tmp64); |
| tcg_gen_andi_i64(env_btarget, env_btarget, UINT32_MAX); |
| tcg_temp_free_i64(tmp64); |
| } |
| |
| static int dec_check_fpuv2(DisasContext *dc) |
| { |
| if ((dc->cpu->cfg.use_fpu != 2) && (dc->tb_flags & MSR_EE_FLAG)) { |
| tcg_gen_movi_i64(cpu_SR[SR_ESR], ESR_EC_FPU); |
| t_gen_raise_exception(dc, EXCP_HW_EXCP); |
| } |
| return (dc->cpu->cfg.use_fpu == 2) ? 0 : PVR2_USE_FPU2_MASK; |
| } |
| |
| static void dec_fpu(DisasContext *dc) |
| { |
| unsigned int fpu_insn; |
| |
| if (trap_illegal(dc, !dc->cpu->cfg.use_fpu)) { |
| return; |
| } |
| |
| fpu_insn = (dc->ir >> 7) & 7; |
| |
| switch (fpu_insn) { |
| case 0: |
| gen_helper_fadd(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], |
| cpu_R[dc->rb]); |
| break; |
| |
| case 1: |
| gen_helper_frsub(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], |
| cpu_R[dc->rb]); |
| break; |
| |
| case 2: |
| gen_helper_fmul(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], |
| cpu_R[dc->rb]); |
| break; |
| |
| case 3: |
| gen_helper_fdiv(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra], |
| cpu_R[dc->rb]); |
| break; |
| |
| case 4: |
| switch ((dc->ir >> 4) & 7) { |
| case 0: |
| gen_helper_fcmp_un(cpu_R[dc->rd], cpu_env, |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 1: |
| gen_helper_fcmp_lt(cpu_R[dc->rd], cpu_env, |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 2: |
| gen_helper_fcmp_eq(cpu_R[dc->rd], cpu_env, |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 3: |
| gen_helper_fcmp_le(cpu_R[dc->rd], cpu_env, |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 4: |
| gen_helper_fcmp_gt(cpu_R[dc->rd], cpu_env, |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 5: |
| gen_helper_fcmp_ne(cpu_R[dc->rd], cpu_env, |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| case 6: |
| gen_helper_fcmp_ge(cpu_R[dc->rd], cpu_env, |
| cpu_R[dc->ra], cpu_R[dc->rb]); |
| break; |
| default: |
| qemu_log_mask(LOG_UNIMP, |
| "unimplemented fcmp fpu_insn=%x pc=%x" |
| " opc=%x\n", |
| fpu_insn, dc->pc, dc->opcode); |
| dc->abort_at_next_insn = 1; |
| break; |
| } |
| break; |
| |
| case 5: |
| if (!dec_check_fpuv2(dc)) { |
| return; |
| } |
| gen_helper_flt(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra]); |
| break; |
| |
| case 6: |
| if (!dec_check_fpuv2(dc)) { |
| return; |
| } |
| gen_helper_fint(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra]); |
| break; |
| |
| case 7: |
| if (!dec_check_fpuv2(dc)) { |
| return; |
| } |
| gen_helper_fsqrt(cpu_R[dc->rd], cpu_env, cpu_R[dc->ra]); |
| break; |
| |
| default: |
| qemu_log_mask(LOG_UNIMP, "unimplemented FPU insn fpu_insn=%x pc=%x" |
| " opc=%x\n", |
| fpu_insn, dc->pc, dc->opcode); |
| dc->abort_at_next_insn = 1; |
| break; |
| } |
| } |
| |
| static void dec_null(DisasContext *dc) |
| { |
| if (trap_illegal(dc, true)) { |
| return; |
| } |
| qemu_log_mask(LOG_GUEST_ERROR, "unknown insn pc=%x opc=%x\n", dc->pc, dc->opcode); |
| dc->abort_at_next_insn = 1; |
| } |
| |
| /* Insns connected to FSL or AXI stream attached devices. */ |
| static void dec_stream(DisasContext *dc) |
| { |
| TCGv_i32 t_id, t_ctrl; |
| int ctrl; |
| |
| LOG_DIS("%s%s imm=%x\n", dc->rd ? "get" : "put", |
| dc->type_b ? "" : "d", dc->imm); |
| |
| if (trap_userspace(dc, true)) { |
| return; |
| } |
| |
| t_id = tcg_temp_new_i32(); |
| if (dc->type_b) { |
| tcg_gen_movi_i32(t_id, dc->imm & 0xf); |
| ctrl = dc->imm >> 10; |
| } else { |
| tcg_gen_andi_i32(t_id, cpu_R[dc->rb], 0xf); |
| ctrl = dc->imm >> 5; |
| } |
| |
| t_ctrl = tcg_const_i32(ctrl); |
| |
| if (dc->rd == 0) { |
| gen_helper_put(t_id, t_ctrl, cpu_R[dc->ra]); |
| } else { |
| gen_helper_get(cpu_R[dc->rd], t_id, t_ctrl); |
| } |
| tcg_temp_free_i32(t_id); |
| tcg_temp_free_i32(t_ctrl); |
| } |
| |
| static struct decoder_info { |
| struct { |
| uint32_t bits; |
| uint32_t mask; |
| }; |
| void (*dec)(DisasContext *dc); |
| } decinfo[] = { |
| {DEC_ADD, dec_add}, |
| {DEC_SUB, dec_sub}, |
| {DEC_AND, dec_and}, |
| {DEC_XOR, dec_xor}, |
| {DEC_OR, dec_or}, |
| {DEC_BIT, dec_bit}, |
| {DEC_BARREL, dec_barrel}, |
| {DEC_LD, dec_load}, |
| {DEC_ST, dec_store}, |
| {DEC_IMM, dec_imm}, |
| {DEC_BR, dec_br}, |
| {DEC_BCC, dec_bcc}, |
| {DEC_RTS, dec_rts}, |
| {DEC_FPU, dec_fpu}, |
| {DEC_MUL, dec_mul}, |
| {DEC_DIV, dec_div}, |
| {DEC_MSR, dec_msr}, |
| {DEC_STREAM, dec_stream}, |
| {{0, 0}, dec_null} |
| }; |
| |
| static inline void decode(DisasContext *dc, uint32_t ir) |
| { |
| int i; |
| |
| dc->ir = ir; |
| LOG_DIS("%8.8x\t", dc->ir); |
| |
| if (ir == 0) { |
| trap_illegal(dc, dc->cpu->env.pvr.regs[2] & PVR2_OPCODE_0x0_ILL_MASK); |
| /* Don't decode nop/zero instructions any further. */ |
| return; |
| } |
| |
| /* bit 2 seems to indicate insn type. */ |
| dc->type_b = ir & (1 << 29); |
| |
| dc->opcode = EXTRACT_FIELD(ir, 26, 31); |
| dc->rd = EXTRACT_FIELD(ir, 21, 25); |
| dc->ra = EXTRACT_FIELD(ir, 16, 20); |
| dc->rb = EXTRACT_FIELD(ir, 11, 15); |
| dc->imm = EXTRACT_FIELD(ir, 0, 15); |
| |
| /* Large switch for all insns. */ |
| for (i = 0; i < ARRAY_SIZE(decinfo); i++) { |
| if ((dc->opcode & decinfo[i].mask) == decinfo[i].bits) { |
| decinfo[i].dec(dc); |
| break; |
| } |
| } |
| } |
| |
| /* generate intermediate code for basic block 'tb'. */ |
| void gen_intermediate_code(CPUState *cs, TranslationBlock *tb, int max_insns) |
| { |
| CPUMBState *env = cs->env_ptr; |
| MicroBlazeCPU *cpu = env_archcpu(env); |
| uint32_t pc_start; |
| struct DisasContext ctx; |
| struct DisasContext *dc = &ctx; |
| uint32_t page_start, org_flags; |
| uint32_t npc; |
| int num_insns; |
| |
| pc_start = tb->pc; |
| dc->cpu = cpu; |
| dc->tb = tb; |
| org_flags = dc->synced_flags = dc->tb_flags = tb->flags; |
| |
| dc->is_jmp = DISAS_NEXT; |
| dc->jmp = 0; |
| dc->delayed_branch = !!(dc->tb_flags & D_FLAG); |
| if (dc->delayed_branch) { |
| dc->jmp = JMP_INDIRECT; |
| } |
| dc->pc = pc_start; |
| dc->singlestep_enabled = cs->singlestep_enabled; |
| dc->cpustate_changed = 0; |
| dc->abort_at_next_insn = 0; |
| |
| if (pc_start & 3) { |
| cpu_abort(cs, "Microblaze: unaligned PC=%x\n", pc_start); |
| } |
| |
| page_start = pc_start & TARGET_PAGE_MASK; |
| num_insns = 0; |
| |
| gen_tb_start(tb); |
| do |
| { |
| tcg_gen_insn_start(dc->pc); |
| num_insns++; |
| |
| #if SIM_COMPAT |
| if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM)) { |
| tcg_gen_movi_i64(cpu_SR[SR_PC], dc->pc); |
| gen_helper_debug(); |
| } |
| #endif |
| |
| if (unlikely(cpu_breakpoint_test(cs, dc->pc, BP_ANY))) { |
| t_gen_raise_exception(dc, EXCP_DEBUG); |
| dc->is_jmp = DISAS_UPDATE; |
| /* The address covered by the breakpoint must be included in |
| [tb->pc, tb->pc + tb->size) in order to for it to be |
| properly cleared -- thus we increment the PC here so that |
| the logic setting tb->size below does the right thing. */ |
| dc->pc += 4; |
| break; |
| } |
| |
| /* Pretty disas. */ |
| LOG_DIS("%8.8x:\t", dc->pc); |
| |
| if (num_insns == max_insns && (tb_cflags(tb) & CF_LAST_IO)) { |
| gen_io_start(); |
| } |
| |
| dc->clear_imm = 1; |
| decode(dc, cpu_ldl_code(env, dc->pc)); |
| if (dc->clear_imm) |
| dc->tb_flags &= ~IMM_FLAG; |
| dc->pc += 4; |
| |
| if (dc->delayed_branch) { |
| dc->delayed_branch--; |
| if (!dc->delayed_branch) { |
| if (dc->tb_flags & DRTI_FLAG) |
| do_rti(dc); |
| if (dc->tb_flags & DRTB_FLAG) |
| do_rtb(dc); |
| if (dc->tb_flags & DRTE_FLAG) |
| do_rte(dc); |
| /* Clear the delay slot flag. */ |
| dc->tb_flags &= ~D_FLAG; |
| /* If it is a direct jump, try direct chaining. */ |
| if (dc->jmp == JMP_INDIRECT) { |
| eval_cond_jmp(dc, env_btarget, tcg_const_i64(dc->pc)); |
| dc->is_jmp = DISAS_JUMP; |
| } else if (dc->jmp == JMP_DIRECT) { |
| t_sync_flags(dc); |
| gen_goto_tb(dc, 0, dc->jmp_pc); |
| dc->is_jmp = DISAS_TB_JUMP; |
| } else if (dc->jmp == JMP_DIRECT_CC) { |
| TCGLabel *l1 = gen_new_label(); |
| t_sync_flags(dc); |
| /* Conditional jmp. */ |
| tcg_gen_brcondi_i32(TCG_COND_NE, env_btaken, 0, l1); |
| gen_goto_tb(dc, 1, dc->pc); |
| gen_set_label(l1); |
| gen_goto_tb(dc, 0, dc->jmp_pc); |
| |
| dc->is_jmp = DISAS_TB_JUMP; |
| } |
| break; |
| } |
| } |
| if (cs->singlestep_enabled) { |
| break; |
| } |
| } while (!dc->is_jmp && !dc->cpustate_changed |
| && !tcg_op_buf_full() |
| && !singlestep |
| && (dc->pc - page_start < TARGET_PAGE_SIZE) |
| && num_insns < max_insns); |
| |
| npc = dc->pc; |
| if (dc->jmp == JMP_DIRECT || dc->jmp == JMP_DIRECT_CC) { |
| if (dc->tb_flags & D_FLAG) { |
| dc->is_jmp = DISAS_UPDATE; |
| tcg_gen_movi_i64(cpu_SR[SR_PC], npc); |
| sync_jmpstate(dc); |
| } else |
| npc = dc->jmp_pc; |
| } |
| |
| /* Force an update if the per-tb cpu state has changed. */ |
| if (dc->is_jmp == DISAS_NEXT |
| && (dc->cpustate_changed || org_flags != dc->tb_flags)) { |
| dc->is_jmp = DISAS_UPDATE; |
| tcg_gen_movi_i64(cpu_SR[SR_PC], npc); |
| } |
| t_sync_flags(dc); |
| |
| if (unlikely(cs->singlestep_enabled)) { |
| TCGv_i32 tmp = tcg_const_i32(EXCP_DEBUG); |
| |
| if (dc->is_jmp != DISAS_JUMP) { |
| tcg_gen_movi_i64(cpu_SR[SR_PC], npc); |
| } |
| gen_helper_raise_exception(cpu_env, tmp); |
| tcg_temp_free_i32(tmp); |
| } else { |
| switch(dc->is_jmp) { |
| case DISAS_NEXT: |
| gen_goto_tb(dc, 1, npc); |
| break; |
| default: |
| case DISAS_JUMP: |
| case DISAS_UPDATE: |
| /* indicate that the hash table must be used |
| to find the next TB */ |
| tcg_gen_exit_tb(NULL, 0); |
| break; |
| case DISAS_TB_JUMP: |
| /* nothing more to generate */ |
| break; |
| } |
| } |
| gen_tb_end(tb, num_insns); |
| |
| tb->size = dc->pc - pc_start; |
| tb->icount = num_insns; |
| |
| #ifdef DEBUG_DISAS |
| #if !SIM_COMPAT |
| if (qemu_loglevel_mask(CPU_LOG_TB_IN_ASM) |
| && qemu_log_in_addr_range(pc_start)) { |
| qemu_log_lock(); |
| qemu_log("--------------\n"); |
| log_target_disas(cs, pc_start, dc->pc - pc_start); |
| qemu_log_unlock(); |
| } |
| #endif |
| #endif |
| assert(!dc->abort_at_next_insn); |
| } |
| |
| void mb_cpu_dump_state(CPUState *cs, FILE *f, int flags) |
| { |
| MicroBlazeCPU *cpu = MICROBLAZE_CPU(cs); |
| CPUMBState *env = &cpu->env; |
| int i; |
| |
| if (!env) { |
| return; |
| } |
| |
| qemu_fprintf(f, "IN: PC=%" PRIx64 " %s\n", |
| env->sregs[SR_PC], lookup_symbol(env->sregs[SR_PC])); |
| qemu_fprintf(f, "rmsr=%" PRIx64 " resr=%" PRIx64 " rear=%" PRIx64 " " |
| "debug=%x imm=%x iflags=%x fsr=%" PRIx64 "\n", |
| env->sregs[SR_MSR], env->sregs[SR_ESR], env->sregs[SR_EAR], |
| env->debug, env->imm, env->iflags, env->sregs[SR_FSR]); |
| qemu_fprintf(f, "btaken=%d btarget=%" PRIx64 " mode=%s(saved=%s) " |
| "eip=%d ie=%d\n", |
| env->btaken, env->btarget, |
| (env->sregs[SR_MSR] & MSR_UM) ? "user" : "kernel", |
| (env->sregs[SR_MSR] & MSR_UMS) ? "user" : "kernel", |
| (bool)(env->sregs[SR_MSR] & MSR_EIP), |
| (bool)(env->sregs[SR_MSR] & MSR_IE)); |
| |
| for (i = 0; i < 32; i++) { |
| qemu_fprintf(f, "r%2.2d=%8.8x ", i, env->regs[i]); |
| if ((i + 1) % 4 == 0) |
| qemu_fprintf(f, "\n"); |
| } |
| qemu_fprintf(f, "\n\n"); |
| } |
| |
| void mb_tcg_init(void) |
| { |
| int i; |
| |
| env_debug = tcg_global_mem_new_i32(cpu_env, |
| offsetof(CPUMBState, debug), |
| "debug0"); |
| env_iflags = tcg_global_mem_new_i32(cpu_env, |
| offsetof(CPUMBState, iflags), |
| "iflags"); |
| env_imm = tcg_global_mem_new_i32(cpu_env, |
| offsetof(CPUMBState, imm), |
| "imm"); |
| env_btarget = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUMBState, btarget), |
| "btarget"); |
| env_btaken = tcg_global_mem_new_i32(cpu_env, |
| offsetof(CPUMBState, btaken), |
| "btaken"); |
| env_res_addr = tcg_global_mem_new(cpu_env, |
| offsetof(CPUMBState, res_addr), |
| "res_addr"); |
| env_res_val = tcg_global_mem_new_i32(cpu_env, |
| offsetof(CPUMBState, res_val), |
| "res_val"); |
| for (i = 0; i < ARRAY_SIZE(cpu_R); i++) { |
| cpu_R[i] = tcg_global_mem_new_i32(cpu_env, |
| offsetof(CPUMBState, regs[i]), |
| regnames[i]); |
| } |
| for (i = 0; i < ARRAY_SIZE(cpu_SR); i++) { |
| cpu_SR[i] = tcg_global_mem_new_i64(cpu_env, |
| offsetof(CPUMBState, sregs[i]), |
| special_regnames[i]); |
| } |
| } |
| |
| void restore_state_to_opc(CPUMBState *env, TranslationBlock *tb, |
| target_ulong *data) |
| { |
| env->sregs[SR_PC] = data[0]; |
| } |