blob: e4de86bc5e4d6552a58a80ea191dc2fd60eb3647 [file] [log] [blame]
/*
* PowerPC memory access emulation helpers for QEMU.
*
* Copyright (c) 2003-2007 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "cpu.h"
#include "exec/exec-all.h"
#include "qemu/host-utils.h"
#include "exec/helper-proto.h"
#include "helper_regs.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
//#define DEBUG_OP
static inline bool needs_byteswap(const CPUPPCState *env)
{
#if defined(TARGET_WORDS_BIGENDIAN)
return msr_le;
#else
return !msr_le;
#endif
}
/*****************************************************************************/
/* Memory load and stores */
static inline target_ulong addr_add(CPUPPCState *env, target_ulong addr,
target_long arg)
{
#if defined(TARGET_PPC64)
if (!msr_is_64bit(env, env->msr)) {
return (uint32_t)(addr + arg);
} else
#endif
{
return addr + arg;
}
}
void helper_lmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
{
for (; reg < 32; reg++) {
if (needs_byteswap(env)) {
env->gpr[reg] = bswap32(cpu_ldl_data(env, addr));
} else {
env->gpr[reg] = cpu_ldl_data(env, addr);
}
addr = addr_add(env, addr, 4);
}
}
void helper_stmw(CPUPPCState *env, target_ulong addr, uint32_t reg)
{
for (; reg < 32; reg++) {
if (needs_byteswap(env)) {
cpu_stl_data(env, addr, bswap32((uint32_t)env->gpr[reg]));
} else {
cpu_stl_data(env, addr, (uint32_t)env->gpr[reg]);
}
addr = addr_add(env, addr, 4);
}
}
void helper_lsw(CPUPPCState *env, target_ulong addr, uint32_t nb, uint32_t reg)
{
int sh;
for (; nb > 3; nb -= 4) {
env->gpr[reg] = cpu_ldl_data(env, addr);
reg = (reg + 1) % 32;
addr = addr_add(env, addr, 4);
}
if (unlikely(nb > 0)) {
env->gpr[reg] = 0;
for (sh = 24; nb > 0; nb--, sh -= 8) {
env->gpr[reg] |= cpu_ldub_data(env, addr) << sh;
addr = addr_add(env, addr, 1);
}
}
}
/* PPC32 specification says we must generate an exception if
* rA is in the range of registers to be loaded.
* In an other hand, IBM says this is valid, but rA won't be loaded.
* For now, I'll follow the spec...
*/
void helper_lswx(CPUPPCState *env, target_ulong addr, uint32_t reg,
uint32_t ra, uint32_t rb)
{
if (likely(xer_bc != 0)) {
int num_used_regs = (xer_bc + 3) / 4;
if (unlikely((ra != 0 && lsw_reg_in_range(reg, num_used_regs, ra)) ||
lsw_reg_in_range(reg, num_used_regs, rb))) {
env->nip += 4; /* Compensate the "nip - 4" from gen_lswx() */
helper_raise_exception_err(env, POWERPC_EXCP_PROGRAM,
POWERPC_EXCP_INVAL |
POWERPC_EXCP_INVAL_LSWX);
} else {
helper_lsw(env, addr, xer_bc, reg);
}
}
}
void helper_stsw(CPUPPCState *env, target_ulong addr, uint32_t nb,
uint32_t reg)
{
int sh;
for (; nb > 3; nb -= 4) {
cpu_stl_data(env, addr, env->gpr[reg]);
reg = (reg + 1) % 32;
addr = addr_add(env, addr, 4);
}
if (unlikely(nb > 0)) {
for (sh = 24; nb > 0; nb--, sh -= 8) {
cpu_stb_data(env, addr, (env->gpr[reg] >> sh) & 0xFF);
addr = addr_add(env, addr, 1);
}
}
}
static void do_dcbz(CPUPPCState *env, target_ulong addr, int dcache_line_size)
{
int i;
addr &= ~(dcache_line_size - 1);
for (i = 0; i < dcache_line_size; i += 4) {
cpu_stl_data(env, addr + i, 0);
}
if (env->reserve_addr == addr) {
env->reserve_addr = (target_ulong)-1ULL;
}
}
void helper_dcbz(CPUPPCState *env, target_ulong addr, uint32_t is_dcbzl)
{
int dcbz_size = env->dcache_line_size;
#if defined(TARGET_PPC64)
if (!is_dcbzl &&
(env->excp_model == POWERPC_EXCP_970) &&
((env->spr[SPR_970_HID5] >> 7) & 0x3) == 1) {
dcbz_size = 32;
}
#endif
/* XXX add e500mc support */
do_dcbz(env, addr, dcbz_size);
}
void helper_icbi(CPUPPCState *env, target_ulong addr)
{
addr &= ~(env->dcache_line_size - 1);
/* Invalidate one cache line :
* PowerPC specification says this is to be treated like a load
* (not a fetch) by the MMU. To be sure it will be so,
* do the load "by hand".
*/
cpu_ldl_data(env, addr);
}
/* XXX: to be tested */
target_ulong helper_lscbx(CPUPPCState *env, target_ulong addr, uint32_t reg,
uint32_t ra, uint32_t rb)
{
int i, c, d;
d = 24;
for (i = 0; i < xer_bc; i++) {
c = cpu_ldub_data(env, addr);
addr = addr_add(env, addr, 1);
/* ra (if not 0) and rb are never modified */
if (likely(reg != rb && (ra == 0 || reg != ra))) {
env->gpr[reg] = (env->gpr[reg] & ~(0xFF << d)) | (c << d);
}
if (unlikely(c == xer_cmp)) {
break;
}
if (likely(d != 0)) {
d -= 8;
} else {
d = 24;
reg++;
reg = reg & 0x1F;
}
}
return i;
}
/*****************************************************************************/
/* Altivec extension helpers */
#if defined(HOST_WORDS_BIGENDIAN)
#define HI_IDX 0
#define LO_IDX 1
#else
#define HI_IDX 1
#define LO_IDX 0
#endif
/* We use msr_le to determine index ordering in a vector. However,
byteswapping is not simply controlled by msr_le. We also need to take
into account endianness of the target. This is done for the little-endian
PPC64 user-mode target. */
#define LVE(name, access, swap, element) \
void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
target_ulong addr) \
{ \
size_t n_elems = ARRAY_SIZE(r->element); \
int adjust = HI_IDX*(n_elems - 1); \
int sh = sizeof(r->element[0]) >> 1; \
int index = (addr & 0xf) >> sh; \
if (msr_le) { \
index = n_elems - index - 1; \
} \
\
if (needs_byteswap(env)) { \
r->element[LO_IDX ? index : (adjust - index)] = \
swap(access(env, addr)); \
} else { \
r->element[LO_IDX ? index : (adjust - index)] = \
access(env, addr); \
} \
}
#define I(x) (x)
LVE(lvebx, cpu_ldub_data, I, u8)
LVE(lvehx, cpu_lduw_data, bswap16, u16)
LVE(lvewx, cpu_ldl_data, bswap32, u32)
#undef I
#undef LVE
#define STVE(name, access, swap, element) \
void helper_##name(CPUPPCState *env, ppc_avr_t *r, \
target_ulong addr) \
{ \
size_t n_elems = ARRAY_SIZE(r->element); \
int adjust = HI_IDX * (n_elems - 1); \
int sh = sizeof(r->element[0]) >> 1; \
int index = (addr & 0xf) >> sh; \
if (msr_le) { \
index = n_elems - index - 1; \
} \
\
if (needs_byteswap(env)) { \
access(env, addr, swap(r->element[LO_IDX ? index : \
(adjust - index)])); \
} else { \
access(env, addr, r->element[LO_IDX ? index : \
(adjust - index)]); \
} \
}
#define I(x) (x)
STVE(stvebx, cpu_stb_data, I, u8)
STVE(stvehx, cpu_stw_data, bswap16, u16)
STVE(stvewx, cpu_stl_data, bswap32, u32)
#undef I
#undef LVE
#undef HI_IDX
#undef LO_IDX
void helper_tbegin(CPUPPCState *env)
{
/* As a degenerate implementation, always fail tbegin. The reason
* given is "Nesting overflow". The "persistent" bit is set,
* providing a hint to the error handler to not retry. The TFIAR
* captures the address of the failure, which is this tbegin
* instruction. Instruction execution will continue with the
* next instruction in memory, which is precisely what we want.
*/
env->spr[SPR_TEXASR] =
(1ULL << TEXASR_FAILURE_PERSISTENT) |
(1ULL << TEXASR_NESTING_OVERFLOW) |
(msr_hv << TEXASR_PRIVILEGE_HV) |
(msr_pr << TEXASR_PRIVILEGE_PR) |
(1ULL << TEXASR_FAILURE_SUMMARY) |
(1ULL << TEXASR_TFIAR_EXACT);
env->spr[SPR_TFIAR] = env->nip | (msr_hv << 1) | msr_pr;
env->spr[SPR_TFHAR] = env->nip + 4;
env->crf[0] = 0xB; /* 0b1010 = transaction failure */
}