| /* |
| * QEMU ESP/NCR53C9x emulation |
| * |
| * Copyright (c) 2005-2006 Fabrice Bellard |
| * Copyright (c) 2012 Herve Poussineau |
| * Copyright (c) 2023 Mark Cave-Ayland |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/sysbus.h" |
| #include "migration/vmstate.h" |
| #include "hw/irq.h" |
| #include "hw/scsi/esp.h" |
| #include "trace.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| |
| /* |
| * On Sparc32, this is the ESP (NCR53C90) part of chip STP2000 (Master I/O), |
| * also produced as NCR89C100. See |
| * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt |
| * and |
| * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR53C9X.txt |
| * |
| * On Macintosh Quadra it is a NCR53C96. |
| */ |
| |
| static void esp_raise_irq(ESPState *s) |
| { |
| if (!(s->rregs[ESP_RSTAT] & STAT_INT)) { |
| s->rregs[ESP_RSTAT] |= STAT_INT; |
| qemu_irq_raise(s->irq); |
| trace_esp_raise_irq(); |
| } |
| } |
| |
| static void esp_lower_irq(ESPState *s) |
| { |
| if (s->rregs[ESP_RSTAT] & STAT_INT) { |
| s->rregs[ESP_RSTAT] &= ~STAT_INT; |
| qemu_irq_lower(s->irq); |
| trace_esp_lower_irq(); |
| } |
| } |
| |
| static void esp_raise_drq(ESPState *s) |
| { |
| if (!(s->drq_state)) { |
| qemu_irq_raise(s->drq_irq); |
| trace_esp_raise_drq(); |
| s->drq_state = true; |
| } |
| } |
| |
| static void esp_lower_drq(ESPState *s) |
| { |
| if (s->drq_state) { |
| qemu_irq_lower(s->drq_irq); |
| trace_esp_lower_drq(); |
| s->drq_state = false; |
| } |
| } |
| |
| static const char *esp_phase_names[8] = { |
| "DATA OUT", "DATA IN", "COMMAND", "STATUS", |
| "(reserved)", "(reserved)", "MESSAGE OUT", "MESSAGE IN" |
| }; |
| |
| static void esp_set_phase(ESPState *s, uint8_t phase) |
| { |
| s->rregs[ESP_RSTAT] &= ~7; |
| s->rregs[ESP_RSTAT] |= phase; |
| |
| trace_esp_set_phase(esp_phase_names[phase]); |
| } |
| |
| static uint8_t esp_get_phase(ESPState *s) |
| { |
| return s->rregs[ESP_RSTAT] & 7; |
| } |
| |
| void esp_dma_enable(ESPState *s, int irq, int level) |
| { |
| if (level) { |
| s->dma_enabled = 1; |
| trace_esp_dma_enable(); |
| if (s->dma_cb) { |
| s->dma_cb(s); |
| s->dma_cb = NULL; |
| } |
| } else { |
| trace_esp_dma_disable(); |
| s->dma_enabled = 0; |
| } |
| } |
| |
| void esp_request_cancelled(SCSIRequest *req) |
| { |
| ESPState *s = req->hba_private; |
| |
| if (req == s->current_req) { |
| scsi_req_unref(s->current_req); |
| s->current_req = NULL; |
| s->current_dev = NULL; |
| s->async_len = 0; |
| } |
| } |
| |
| static void esp_update_drq(ESPState *s) |
| { |
| bool to_device; |
| |
| switch (esp_get_phase(s)) { |
| case STAT_MO: |
| case STAT_CD: |
| case STAT_DO: |
| to_device = true; |
| break; |
| |
| case STAT_DI: |
| case STAT_ST: |
| case STAT_MI: |
| to_device = false; |
| break; |
| |
| default: |
| return; |
| } |
| |
| if (s->dma) { |
| /* DMA request so update DRQ according to transfer direction */ |
| if (to_device) { |
| if (fifo8_num_free(&s->fifo) < 2) { |
| esp_lower_drq(s); |
| } else { |
| esp_raise_drq(s); |
| } |
| } else { |
| if (fifo8_num_used(&s->fifo) < 2) { |
| esp_lower_drq(s); |
| } else { |
| esp_raise_drq(s); |
| } |
| } |
| } else { |
| /* Not a DMA request */ |
| esp_lower_drq(s); |
| } |
| } |
| |
| static void esp_fifo_push(ESPState *s, uint8_t val) |
| { |
| if (fifo8_num_used(&s->fifo) == s->fifo.capacity) { |
| trace_esp_error_fifo_overrun(); |
| } else { |
| fifo8_push(&s->fifo, val); |
| } |
| |
| esp_update_drq(s); |
| } |
| |
| static void esp_fifo_push_buf(ESPState *s, uint8_t *buf, int len) |
| { |
| fifo8_push_all(&s->fifo, buf, len); |
| esp_update_drq(s); |
| } |
| |
| static uint8_t esp_fifo_pop(ESPState *s) |
| { |
| uint8_t val; |
| |
| if (fifo8_is_empty(&s->fifo)) { |
| val = 0; |
| } else { |
| val = fifo8_pop(&s->fifo); |
| } |
| |
| esp_update_drq(s); |
| return val; |
| } |
| |
| static uint32_t esp_fifo_pop_buf(ESPState *s, uint8_t *dest, int maxlen) |
| { |
| uint32_t len = fifo8_pop_buf(&s->fifo, dest, maxlen); |
| |
| esp_update_drq(s); |
| return len; |
| } |
| |
| static uint32_t esp_get_tc(ESPState *s) |
| { |
| uint32_t dmalen; |
| |
| dmalen = s->rregs[ESP_TCLO]; |
| dmalen |= s->rregs[ESP_TCMID] << 8; |
| dmalen |= s->rregs[ESP_TCHI] << 16; |
| |
| return dmalen; |
| } |
| |
| static void esp_set_tc(ESPState *s, uint32_t dmalen) |
| { |
| uint32_t old_tc = esp_get_tc(s); |
| |
| s->rregs[ESP_TCLO] = dmalen; |
| s->rregs[ESP_TCMID] = dmalen >> 8; |
| s->rregs[ESP_TCHI] = dmalen >> 16; |
| |
| if (old_tc && dmalen == 0) { |
| s->rregs[ESP_RSTAT] |= STAT_TC; |
| } |
| } |
| |
| static uint32_t esp_get_stc(ESPState *s) |
| { |
| uint32_t dmalen; |
| |
| dmalen = s->wregs[ESP_TCLO]; |
| dmalen |= s->wregs[ESP_TCMID] << 8; |
| dmalen |= s->wregs[ESP_TCHI] << 16; |
| |
| return dmalen; |
| } |
| |
| static uint8_t esp_pdma_read(ESPState *s) |
| { |
| uint8_t val; |
| |
| val = esp_fifo_pop(s); |
| return val; |
| } |
| |
| static void esp_pdma_write(ESPState *s, uint8_t val) |
| { |
| uint32_t dmalen = esp_get_tc(s); |
| |
| esp_fifo_push(s, val); |
| |
| if (dmalen && s->drq_state) { |
| dmalen--; |
| esp_set_tc(s, dmalen); |
| } |
| } |
| |
| static int esp_select(ESPState *s) |
| { |
| int target; |
| |
| target = s->wregs[ESP_WBUSID] & BUSID_DID; |
| |
| s->ti_size = 0; |
| s->rregs[ESP_RSEQ] = SEQ_0; |
| |
| if (s->current_req) { |
| /* Started a new command before the old one finished. Cancel it. */ |
| scsi_req_cancel(s->current_req); |
| } |
| |
| s->current_dev = scsi_device_find(&s->bus, 0, target, 0); |
| if (!s->current_dev) { |
| /* No such drive */ |
| s->rregs[ESP_RSTAT] = 0; |
| s->rregs[ESP_RINTR] = INTR_DC; |
| esp_raise_irq(s); |
| return -1; |
| } |
| |
| /* |
| * Note that we deliberately don't raise the IRQ here: this will be done |
| * either in esp_transfer_data() or esp_command_complete() |
| */ |
| return 0; |
| } |
| |
| static void esp_do_dma(ESPState *s); |
| static void esp_do_nodma(ESPState *s); |
| |
| static void do_command_phase(ESPState *s) |
| { |
| uint32_t cmdlen; |
| int32_t datalen; |
| SCSIDevice *current_lun; |
| uint8_t buf[ESP_CMDFIFO_SZ]; |
| |
| trace_esp_do_command_phase(s->lun); |
| cmdlen = fifo8_num_used(&s->cmdfifo); |
| if (!cmdlen || !s->current_dev) { |
| return; |
| } |
| fifo8_pop_buf(&s->cmdfifo, buf, cmdlen); |
| |
| current_lun = scsi_device_find(&s->bus, 0, s->current_dev->id, s->lun); |
| if (!current_lun) { |
| /* No such drive */ |
| s->rregs[ESP_RSTAT] = 0; |
| s->rregs[ESP_RINTR] = INTR_DC; |
| s->rregs[ESP_RSEQ] = SEQ_0; |
| esp_raise_irq(s); |
| return; |
| } |
| |
| s->current_req = scsi_req_new(current_lun, 0, s->lun, buf, cmdlen, s); |
| datalen = scsi_req_enqueue(s->current_req); |
| s->ti_size = datalen; |
| fifo8_reset(&s->cmdfifo); |
| s->data_ready = false; |
| if (datalen != 0) { |
| /* |
| * Switch to DATA phase but wait until initial data xfer is |
| * complete before raising the command completion interrupt |
| */ |
| if (datalen > 0) { |
| esp_set_phase(s, STAT_DI); |
| } else { |
| esp_set_phase(s, STAT_DO); |
| } |
| scsi_req_continue(s->current_req); |
| return; |
| } |
| } |
| |
| static void do_message_phase(ESPState *s) |
| { |
| if (s->cmdfifo_cdb_offset) { |
| uint8_t message = fifo8_is_empty(&s->cmdfifo) ? 0 : |
| fifo8_pop(&s->cmdfifo); |
| |
| trace_esp_do_identify(message); |
| s->lun = message & 7; |
| s->cmdfifo_cdb_offset--; |
| } |
| |
| /* Ignore extended messages for now */ |
| if (s->cmdfifo_cdb_offset) { |
| int len = MIN(s->cmdfifo_cdb_offset, fifo8_num_used(&s->cmdfifo)); |
| fifo8_drop(&s->cmdfifo, len); |
| s->cmdfifo_cdb_offset = 0; |
| } |
| } |
| |
| static void do_cmd(ESPState *s) |
| { |
| do_message_phase(s); |
| assert(s->cmdfifo_cdb_offset == 0); |
| do_command_phase(s); |
| } |
| |
| static void handle_satn(ESPState *s) |
| { |
| if (s->dma && !s->dma_enabled) { |
| s->dma_cb = handle_satn; |
| return; |
| } |
| |
| if (esp_select(s) < 0) { |
| return; |
| } |
| |
| esp_set_phase(s, STAT_MO); |
| |
| if (s->dma) { |
| esp_do_dma(s); |
| } else { |
| esp_do_nodma(s); |
| } |
| } |
| |
| static void handle_s_without_atn(ESPState *s) |
| { |
| if (s->dma && !s->dma_enabled) { |
| s->dma_cb = handle_s_without_atn; |
| return; |
| } |
| |
| if (esp_select(s) < 0) { |
| return; |
| } |
| |
| esp_set_phase(s, STAT_CD); |
| s->cmdfifo_cdb_offset = 0; |
| |
| if (s->dma) { |
| esp_do_dma(s); |
| } else { |
| esp_do_nodma(s); |
| } |
| } |
| |
| static void handle_satn_stop(ESPState *s) |
| { |
| if (s->dma && !s->dma_enabled) { |
| s->dma_cb = handle_satn_stop; |
| return; |
| } |
| |
| if (esp_select(s) < 0) { |
| return; |
| } |
| |
| esp_set_phase(s, STAT_MO); |
| s->cmdfifo_cdb_offset = 0; |
| |
| if (s->dma) { |
| esp_do_dma(s); |
| } else { |
| esp_do_nodma(s); |
| } |
| } |
| |
| static void handle_pad(ESPState *s) |
| { |
| if (s->dma) { |
| esp_do_dma(s); |
| } else { |
| esp_do_nodma(s); |
| } |
| } |
| |
| static void write_response(ESPState *s) |
| { |
| trace_esp_write_response(s->status); |
| |
| if (s->dma) { |
| esp_do_dma(s); |
| } else { |
| esp_do_nodma(s); |
| } |
| } |
| |
| static bool esp_cdb_ready(ESPState *s) |
| { |
| int len = fifo8_num_used(&s->cmdfifo) - s->cmdfifo_cdb_offset; |
| const uint8_t *pbuf; |
| uint32_t n; |
| int cdblen; |
| |
| if (len <= 0) { |
| return false; |
| } |
| |
| pbuf = fifo8_peek_bufptr(&s->cmdfifo, len, &n); |
| if (n < len) { |
| /* |
| * In normal use the cmdfifo should never wrap, but include this check |
| * to prevent a malicious guest from reading past the end of the |
| * cmdfifo data buffer below |
| */ |
| return false; |
| } |
| |
| cdblen = scsi_cdb_length((uint8_t *)&pbuf[s->cmdfifo_cdb_offset]); |
| |
| return cdblen < 0 ? false : (len >= cdblen); |
| } |
| |
| static void esp_dma_ti_check(ESPState *s) |
| { |
| if (esp_get_tc(s) == 0 && fifo8_num_used(&s->fifo) < 2) { |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| esp_raise_irq(s); |
| } |
| } |
| |
| static void esp_do_dma(ESPState *s) |
| { |
| uint32_t len, cmdlen; |
| uint8_t buf[ESP_CMDFIFO_SZ]; |
| |
| len = esp_get_tc(s); |
| |
| switch (esp_get_phase(s)) { |
| case STAT_MO: |
| if (s->dma_memory_read) { |
| len = MIN(len, fifo8_num_free(&s->cmdfifo)); |
| s->dma_memory_read(s->dma_opaque, buf, len); |
| esp_set_tc(s, esp_get_tc(s) - len); |
| } else { |
| len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); |
| len = MIN(fifo8_num_free(&s->cmdfifo), len); |
| } |
| |
| fifo8_push_all(&s->cmdfifo, buf, len); |
| s->cmdfifo_cdb_offset += len; |
| |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_SELATN | CMD_DMA: |
| if (fifo8_num_used(&s->cmdfifo) >= 1) { |
| /* First byte received, switch to command phase */ |
| esp_set_phase(s, STAT_CD); |
| s->rregs[ESP_RSEQ] = SEQ_CD; |
| s->cmdfifo_cdb_offset = 1; |
| |
| if (fifo8_num_used(&s->cmdfifo) > 1) { |
| /* Process any additional command phase data */ |
| esp_do_dma(s); |
| } |
| } |
| break; |
| |
| case CMD_SELATNS | CMD_DMA: |
| if (fifo8_num_used(&s->cmdfifo) == 1) { |
| /* First byte received, stop in message out phase */ |
| s->rregs[ESP_RSEQ] = SEQ_MO; |
| s->cmdfifo_cdb_offset = 1; |
| |
| /* Raise command completion interrupt */ |
| s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; |
| esp_raise_irq(s); |
| } |
| break; |
| |
| case CMD_TI | CMD_DMA: |
| /* ATN remains asserted until TC == 0 */ |
| if (esp_get_tc(s) == 0) { |
| esp_set_phase(s, STAT_CD); |
| s->rregs[ESP_CMD] = 0; |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| esp_raise_irq(s); |
| } |
| break; |
| } |
| break; |
| |
| case STAT_CD: |
| cmdlen = fifo8_num_used(&s->cmdfifo); |
| trace_esp_do_dma(cmdlen, len); |
| if (s->dma_memory_read) { |
| len = MIN(len, fifo8_num_free(&s->cmdfifo)); |
| s->dma_memory_read(s->dma_opaque, buf, len); |
| fifo8_push_all(&s->cmdfifo, buf, len); |
| esp_set_tc(s, esp_get_tc(s) - len); |
| } else { |
| len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); |
| len = MIN(fifo8_num_free(&s->cmdfifo), len); |
| fifo8_push_all(&s->cmdfifo, buf, len); |
| } |
| trace_esp_handle_ti_cmd(cmdlen); |
| s->ti_size = 0; |
| if (esp_get_tc(s) == 0) { |
| /* Command has been received */ |
| do_cmd(s); |
| } |
| break; |
| |
| case STAT_DO: |
| if (!s->current_req) { |
| return; |
| } |
| if (s->async_len == 0 && esp_get_tc(s)) { |
| /* Defer until data is available. */ |
| return; |
| } |
| if (len > s->async_len) { |
| len = s->async_len; |
| } |
| |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_TI | CMD_DMA: |
| if (s->dma_memory_read) { |
| s->dma_memory_read(s->dma_opaque, s->async_buf, len); |
| esp_set_tc(s, esp_get_tc(s) - len); |
| } else { |
| /* Copy FIFO data to device */ |
| len = MIN(s->async_len, ESP_FIFO_SZ); |
| len = MIN(len, fifo8_num_used(&s->fifo)); |
| len = esp_fifo_pop_buf(s, s->async_buf, len); |
| } |
| |
| s->async_buf += len; |
| s->async_len -= len; |
| s->ti_size += len; |
| break; |
| |
| case CMD_PAD | CMD_DMA: |
| /* Copy TC zero bytes into the incoming stream */ |
| if (!s->dma_memory_read) { |
| len = MIN(s->async_len, ESP_FIFO_SZ); |
| len = MIN(len, fifo8_num_free(&s->fifo)); |
| } |
| |
| memset(s->async_buf, 0, len); |
| |
| s->async_buf += len; |
| s->async_len -= len; |
| s->ti_size += len; |
| break; |
| } |
| |
| if (s->async_len == 0 && fifo8_num_used(&s->fifo) < 2) { |
| /* Defer until the scsi layer has completed */ |
| scsi_req_continue(s->current_req); |
| return; |
| } |
| |
| esp_dma_ti_check(s); |
| break; |
| |
| case STAT_DI: |
| if (!s->current_req) { |
| return; |
| } |
| if (s->async_len == 0 && esp_get_tc(s)) { |
| /* Defer until data is available. */ |
| return; |
| } |
| if (len > s->async_len) { |
| len = s->async_len; |
| } |
| |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_TI | CMD_DMA: |
| if (s->dma_memory_write) { |
| s->dma_memory_write(s->dma_opaque, s->async_buf, len); |
| } else { |
| /* Copy device data to FIFO */ |
| len = MIN(len, fifo8_num_free(&s->fifo)); |
| esp_fifo_push_buf(s, s->async_buf, len); |
| } |
| |
| s->async_buf += len; |
| s->async_len -= len; |
| s->ti_size -= len; |
| esp_set_tc(s, esp_get_tc(s) - len); |
| break; |
| |
| case CMD_PAD | CMD_DMA: |
| /* Drop TC bytes from the incoming stream */ |
| if (!s->dma_memory_write) { |
| len = MIN(len, fifo8_num_free(&s->fifo)); |
| } |
| |
| s->async_buf += len; |
| s->async_len -= len; |
| s->ti_size -= len; |
| esp_set_tc(s, esp_get_tc(s) - len); |
| break; |
| } |
| |
| if (s->async_len == 0 && s->ti_size == 0 && esp_get_tc(s)) { |
| /* If the guest underflows TC then terminate SCSI request */ |
| scsi_req_continue(s->current_req); |
| return; |
| } |
| |
| if (s->async_len == 0 && fifo8_num_used(&s->fifo) < 2) { |
| /* Defer until the scsi layer has completed */ |
| scsi_req_continue(s->current_req); |
| return; |
| } |
| |
| esp_dma_ti_check(s); |
| break; |
| |
| case STAT_ST: |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_ICCS | CMD_DMA: |
| len = MIN(len, 1); |
| |
| if (len) { |
| buf[0] = s->status; |
| |
| if (s->dma_memory_write) { |
| s->dma_memory_write(s->dma_opaque, buf, len); |
| } else { |
| esp_fifo_push_buf(s, buf, len); |
| } |
| |
| esp_set_tc(s, esp_get_tc(s) - len); |
| esp_set_phase(s, STAT_MI); |
| |
| if (esp_get_tc(s) > 0) { |
| /* Process any message in phase data */ |
| esp_do_dma(s); |
| } |
| } |
| break; |
| |
| default: |
| /* Consume remaining data if the guest underflows TC */ |
| if (fifo8_num_used(&s->fifo) < 2) { |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| esp_raise_irq(s); |
| } |
| break; |
| } |
| break; |
| |
| case STAT_MI: |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_ICCS | CMD_DMA: |
| len = MIN(len, 1); |
| |
| if (len) { |
| buf[0] = 0; |
| |
| if (s->dma_memory_write) { |
| s->dma_memory_write(s->dma_opaque, buf, len); |
| } else { |
| esp_fifo_push_buf(s, buf, len); |
| } |
| |
| esp_set_tc(s, esp_get_tc(s) - len); |
| |
| /* Raise end of command interrupt */ |
| s->rregs[ESP_RINTR] |= INTR_FC; |
| esp_raise_irq(s); |
| } |
| break; |
| } |
| break; |
| } |
| } |
| |
| static void esp_nodma_ti_dataout(ESPState *s) |
| { |
| int len; |
| |
| if (!s->current_req) { |
| return; |
| } |
| if (s->async_len == 0) { |
| /* Defer until data is available. */ |
| return; |
| } |
| len = MIN(s->async_len, ESP_FIFO_SZ); |
| len = MIN(len, fifo8_num_used(&s->fifo)); |
| esp_fifo_pop_buf(s, s->async_buf, len); |
| s->async_buf += len; |
| s->async_len -= len; |
| s->ti_size += len; |
| |
| if (s->async_len == 0) { |
| scsi_req_continue(s->current_req); |
| return; |
| } |
| |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| esp_raise_irq(s); |
| } |
| |
| static void esp_do_nodma(ESPState *s) |
| { |
| uint8_t buf[ESP_FIFO_SZ]; |
| uint32_t cmdlen; |
| int len; |
| |
| switch (esp_get_phase(s)) { |
| case STAT_MO: |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_SELATN: |
| /* Copy FIFO into cmdfifo */ |
| len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); |
| len = MIN(fifo8_num_free(&s->cmdfifo), len); |
| fifo8_push_all(&s->cmdfifo, buf, len); |
| |
| if (fifo8_num_used(&s->cmdfifo) >= 1) { |
| /* First byte received, switch to command phase */ |
| esp_set_phase(s, STAT_CD); |
| s->rregs[ESP_RSEQ] = SEQ_CD; |
| s->cmdfifo_cdb_offset = 1; |
| |
| if (fifo8_num_used(&s->cmdfifo) > 1) { |
| /* Process any additional command phase data */ |
| esp_do_nodma(s); |
| } |
| } |
| break; |
| |
| case CMD_SELATNS: |
| /* Copy one byte from FIFO into cmdfifo */ |
| len = esp_fifo_pop_buf(s, buf, |
| MIN(fifo8_num_used(&s->fifo), 1)); |
| len = MIN(fifo8_num_free(&s->cmdfifo), len); |
| fifo8_push_all(&s->cmdfifo, buf, len); |
| |
| if (fifo8_num_used(&s->cmdfifo) >= 1) { |
| /* First byte received, stop in message out phase */ |
| s->rregs[ESP_RSEQ] = SEQ_MO; |
| s->cmdfifo_cdb_offset = 1; |
| |
| /* Raise command completion interrupt */ |
| s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; |
| esp_raise_irq(s); |
| } |
| break; |
| |
| case CMD_TI: |
| /* Copy FIFO into cmdfifo */ |
| len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); |
| len = MIN(fifo8_num_free(&s->cmdfifo), len); |
| fifo8_push_all(&s->cmdfifo, buf, len); |
| |
| /* ATN remains asserted until FIFO empty */ |
| s->cmdfifo_cdb_offset = fifo8_num_used(&s->cmdfifo); |
| esp_set_phase(s, STAT_CD); |
| s->rregs[ESP_CMD] = 0; |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| esp_raise_irq(s); |
| break; |
| } |
| break; |
| |
| case STAT_CD: |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_TI: |
| /* Copy FIFO into cmdfifo */ |
| len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); |
| len = MIN(fifo8_num_free(&s->cmdfifo), len); |
| fifo8_push_all(&s->cmdfifo, buf, len); |
| |
| cmdlen = fifo8_num_used(&s->cmdfifo); |
| trace_esp_handle_ti_cmd(cmdlen); |
| |
| /* CDB may be transferred in one or more TI commands */ |
| if (esp_cdb_ready(s)) { |
| /* Command has been received */ |
| do_cmd(s); |
| } else { |
| /* |
| * If data was transferred from the FIFO then raise bus |
| * service interrupt to indicate transfer complete. Otherwise |
| * defer until the next FIFO write. |
| */ |
| if (len) { |
| /* Raise interrupt to indicate transfer complete */ |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| esp_raise_irq(s); |
| } |
| } |
| break; |
| |
| case CMD_SEL | CMD_DMA: |
| case CMD_SELATN | CMD_DMA: |
| /* Copy FIFO into cmdfifo */ |
| len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); |
| len = MIN(fifo8_num_free(&s->cmdfifo), len); |
| fifo8_push_all(&s->cmdfifo, buf, len); |
| |
| /* Handle when DMA transfer is terminated by non-DMA FIFO write */ |
| if (esp_cdb_ready(s)) { |
| /* Command has been received */ |
| do_cmd(s); |
| } |
| break; |
| |
| case CMD_SEL: |
| case CMD_SELATN: |
| /* FIFO already contain entire CDB: copy to cmdfifo and execute */ |
| len = esp_fifo_pop_buf(s, buf, fifo8_num_used(&s->fifo)); |
| len = MIN(fifo8_num_free(&s->cmdfifo), len); |
| fifo8_push_all(&s->cmdfifo, buf, len); |
| |
| do_cmd(s); |
| break; |
| } |
| break; |
| |
| case STAT_DO: |
| /* Accumulate data in FIFO until non-DMA TI is executed */ |
| break; |
| |
| case STAT_DI: |
| if (!s->current_req) { |
| return; |
| } |
| if (s->async_len == 0) { |
| /* Defer until data is available. */ |
| return; |
| } |
| if (fifo8_is_empty(&s->fifo)) { |
| esp_fifo_push(s, s->async_buf[0]); |
| s->async_buf++; |
| s->async_len--; |
| s->ti_size--; |
| } |
| |
| if (s->async_len == 0) { |
| scsi_req_continue(s->current_req); |
| return; |
| } |
| |
| /* If preloading the FIFO, defer until TI command issued */ |
| if (s->rregs[ESP_CMD] != CMD_TI) { |
| return; |
| } |
| |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| esp_raise_irq(s); |
| break; |
| |
| case STAT_ST: |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_ICCS: |
| esp_fifo_push(s, s->status); |
| esp_set_phase(s, STAT_MI); |
| |
| /* Process any message in phase data */ |
| esp_do_nodma(s); |
| break; |
| } |
| break; |
| |
| case STAT_MI: |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_ICCS: |
| esp_fifo_push(s, 0); |
| |
| /* Raise end of command interrupt */ |
| s->rregs[ESP_RINTR] |= INTR_FC; |
| esp_raise_irq(s); |
| break; |
| } |
| break; |
| } |
| } |
| |
| void esp_command_complete(SCSIRequest *req, size_t resid) |
| { |
| ESPState *s = req->hba_private; |
| int to_device = (esp_get_phase(s) == STAT_DO); |
| |
| trace_esp_command_complete(); |
| |
| /* |
| * Non-DMA transfers from the target will leave the last byte in |
| * the FIFO so don't reset ti_size in this case |
| */ |
| if (s->dma || to_device) { |
| if (s->ti_size != 0) { |
| trace_esp_command_complete_unexpected(); |
| } |
| } |
| |
| s->async_len = 0; |
| if (req->status) { |
| trace_esp_command_complete_fail(); |
| } |
| s->status = req->status; |
| |
| /* |
| * Switch to status phase. For non-DMA transfers from the target the last |
| * byte is still in the FIFO |
| */ |
| s->ti_size = 0; |
| |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_SEL | CMD_DMA: |
| case CMD_SEL: |
| case CMD_SELATN | CMD_DMA: |
| case CMD_SELATN: |
| /* |
| * No data phase for sequencer command so raise deferred bus service |
| * and function complete interrupt |
| */ |
| s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; |
| s->rregs[ESP_RSEQ] = SEQ_CD; |
| break; |
| |
| case CMD_TI | CMD_DMA: |
| case CMD_TI: |
| s->rregs[ESP_CMD] = 0; |
| break; |
| } |
| |
| /* Raise bus service interrupt to indicate change to STATUS phase */ |
| esp_set_phase(s, STAT_ST); |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| esp_raise_irq(s); |
| |
| if (s->current_req) { |
| scsi_req_unref(s->current_req); |
| s->current_req = NULL; |
| s->current_dev = NULL; |
| } |
| } |
| |
| void esp_transfer_data(SCSIRequest *req, uint32_t len) |
| { |
| ESPState *s = req->hba_private; |
| uint32_t dmalen = esp_get_tc(s); |
| |
| trace_esp_transfer_data(dmalen, s->ti_size); |
| s->async_len = len; |
| s->async_buf = scsi_req_get_buf(req); |
| |
| if (!s->data_ready) { |
| s->data_ready = true; |
| |
| switch (s->rregs[ESP_CMD]) { |
| case CMD_SEL | CMD_DMA: |
| case CMD_SEL: |
| case CMD_SELATN | CMD_DMA: |
| case CMD_SELATN: |
| /* |
| * Initial incoming data xfer is complete for sequencer command |
| * so raise deferred bus service and function complete interrupt |
| */ |
| s->rregs[ESP_RINTR] |= INTR_BS | INTR_FC; |
| s->rregs[ESP_RSEQ] = SEQ_CD; |
| break; |
| |
| case CMD_SELATNS | CMD_DMA: |
| case CMD_SELATNS: |
| /* |
| * Initial incoming data xfer is complete so raise command |
| * completion interrupt |
| */ |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| s->rregs[ESP_RSEQ] = SEQ_MO; |
| break; |
| |
| case CMD_TI | CMD_DMA: |
| case CMD_TI: |
| /* |
| * Bus service interrupt raised because of initial change to |
| * DATA phase |
| */ |
| s->rregs[ESP_CMD] = 0; |
| s->rregs[ESP_RINTR] |= INTR_BS; |
| break; |
| } |
| |
| esp_raise_irq(s); |
| } |
| |
| /* |
| * Always perform the initial transfer upon reception of the next TI |
| * command to ensure the DMA/non-DMA status of the command is correct. |
| * It is not possible to use s->dma directly in the section below as |
| * some OSs send non-DMA NOP commands after a DMA transfer. Hence if the |
| * async data transfer is delayed then s->dma is set incorrectly. |
| */ |
| |
| if (s->rregs[ESP_CMD] == (CMD_TI | CMD_DMA)) { |
| /* When the SCSI layer returns more data, raise deferred INTR_BS */ |
| esp_dma_ti_check(s); |
| |
| esp_do_dma(s); |
| } else if (s->rregs[ESP_CMD] == CMD_TI) { |
| esp_do_nodma(s); |
| } |
| } |
| |
| static void handle_ti(ESPState *s) |
| { |
| uint32_t dmalen; |
| |
| if (s->dma && !s->dma_enabled) { |
| s->dma_cb = handle_ti; |
| return; |
| } |
| |
| if (s->dma) { |
| dmalen = esp_get_tc(s); |
| trace_esp_handle_ti(dmalen); |
| esp_do_dma(s); |
| } else { |
| trace_esp_handle_ti(s->ti_size); |
| esp_do_nodma(s); |
| |
| if (esp_get_phase(s) == STAT_DO) { |
| esp_nodma_ti_dataout(s); |
| } |
| } |
| } |
| |
| void esp_hard_reset(ESPState *s) |
| { |
| memset(s->rregs, 0, ESP_REGS); |
| memset(s->wregs, 0, ESP_REGS); |
| s->tchi_written = 0; |
| s->ti_size = 0; |
| s->async_len = 0; |
| fifo8_reset(&s->fifo); |
| fifo8_reset(&s->cmdfifo); |
| s->dma = 0; |
| s->dma_cb = NULL; |
| |
| s->rregs[ESP_CFG1] = 7; |
| } |
| |
| static void esp_soft_reset(ESPState *s) |
| { |
| qemu_irq_lower(s->irq); |
| qemu_irq_lower(s->drq_irq); |
| esp_hard_reset(s); |
| } |
| |
| static void esp_bus_reset(ESPState *s) |
| { |
| bus_cold_reset(BUS(&s->bus)); |
| } |
| |
| static void parent_esp_reset(ESPState *s, int irq, int level) |
| { |
| if (level) { |
| esp_soft_reset(s); |
| } |
| } |
| |
| static void esp_run_cmd(ESPState *s) |
| { |
| uint8_t cmd = s->rregs[ESP_CMD]; |
| |
| if (cmd & CMD_DMA) { |
| s->dma = 1; |
| /* Reload DMA counter. */ |
| if (esp_get_stc(s) == 0) { |
| esp_set_tc(s, 0x10000); |
| } else { |
| esp_set_tc(s, esp_get_stc(s)); |
| } |
| } else { |
| s->dma = 0; |
| } |
| switch (cmd & CMD_CMD) { |
| case CMD_NOP: |
| trace_esp_mem_writeb_cmd_nop(cmd); |
| break; |
| case CMD_FLUSH: |
| trace_esp_mem_writeb_cmd_flush(cmd); |
| fifo8_reset(&s->fifo); |
| break; |
| case CMD_RESET: |
| trace_esp_mem_writeb_cmd_reset(cmd); |
| esp_soft_reset(s); |
| break; |
| case CMD_BUSRESET: |
| trace_esp_mem_writeb_cmd_bus_reset(cmd); |
| esp_bus_reset(s); |
| if (!(s->wregs[ESP_CFG1] & CFG1_RESREPT)) { |
| s->rregs[ESP_RINTR] |= INTR_RST; |
| esp_raise_irq(s); |
| } |
| break; |
| case CMD_TI: |
| trace_esp_mem_writeb_cmd_ti(cmd); |
| handle_ti(s); |
| break; |
| case CMD_ICCS: |
| trace_esp_mem_writeb_cmd_iccs(cmd); |
| write_response(s); |
| break; |
| case CMD_MSGACC: |
| trace_esp_mem_writeb_cmd_msgacc(cmd); |
| s->rregs[ESP_RINTR] |= INTR_DC; |
| s->rregs[ESP_RSEQ] = 0; |
| s->rregs[ESP_RFLAGS] = 0; |
| esp_raise_irq(s); |
| break; |
| case CMD_PAD: |
| trace_esp_mem_writeb_cmd_pad(cmd); |
| handle_pad(s); |
| break; |
| case CMD_SATN: |
| trace_esp_mem_writeb_cmd_satn(cmd); |
| break; |
| case CMD_RSTATN: |
| trace_esp_mem_writeb_cmd_rstatn(cmd); |
| break; |
| case CMD_SEL: |
| trace_esp_mem_writeb_cmd_sel(cmd); |
| handle_s_without_atn(s); |
| break; |
| case CMD_SELATN: |
| trace_esp_mem_writeb_cmd_selatn(cmd); |
| handle_satn(s); |
| break; |
| case CMD_SELATNS: |
| trace_esp_mem_writeb_cmd_selatns(cmd); |
| handle_satn_stop(s); |
| break; |
| case CMD_ENSEL: |
| trace_esp_mem_writeb_cmd_ensel(cmd); |
| s->rregs[ESP_RINTR] = 0; |
| break; |
| case CMD_DISSEL: |
| trace_esp_mem_writeb_cmd_dissel(cmd); |
| s->rregs[ESP_RINTR] = 0; |
| esp_raise_irq(s); |
| break; |
| default: |
| trace_esp_error_unhandled_command(cmd); |
| break; |
| } |
| } |
| |
| uint64_t esp_reg_read(ESPState *s, uint32_t saddr) |
| { |
| uint32_t val; |
| |
| switch (saddr) { |
| case ESP_FIFO: |
| s->rregs[ESP_FIFO] = esp_fifo_pop(s); |
| val = s->rregs[ESP_FIFO]; |
| break; |
| case ESP_RINTR: |
| /* |
| * Clear sequence step, interrupt register and all status bits |
| * except TC |
| */ |
| val = s->rregs[ESP_RINTR]; |
| s->rregs[ESP_RINTR] = 0; |
| esp_lower_irq(s); |
| s->rregs[ESP_RSTAT] &= STAT_TC | 7; |
| /* |
| * According to the datasheet ESP_RSEQ should be cleared, but as the |
| * emulation currently defers information transfers to the next TI |
| * command leave it for now so that pedantic guests such as the old |
| * Linux 2.6 driver see the correct flags before the next SCSI phase |
| * transition. |
| * |
| * s->rregs[ESP_RSEQ] = SEQ_0; |
| */ |
| break; |
| case ESP_TCHI: |
| /* Return the unique id if the value has never been written */ |
| if (!s->tchi_written) { |
| val = s->chip_id; |
| } else { |
| val = s->rregs[saddr]; |
| } |
| break; |
| case ESP_RFLAGS: |
| /* Bottom 5 bits indicate number of bytes in FIFO */ |
| val = fifo8_num_used(&s->fifo); |
| break; |
| default: |
| val = s->rregs[saddr]; |
| break; |
| } |
| |
| trace_esp_mem_readb(saddr, val); |
| return val; |
| } |
| |
| void esp_reg_write(ESPState *s, uint32_t saddr, uint64_t val) |
| { |
| trace_esp_mem_writeb(saddr, s->wregs[saddr], val); |
| switch (saddr) { |
| case ESP_TCHI: |
| s->tchi_written = true; |
| /* fall through */ |
| case ESP_TCLO: |
| case ESP_TCMID: |
| s->rregs[ESP_RSTAT] &= ~STAT_TC; |
| break; |
| case ESP_FIFO: |
| if (!fifo8_is_full(&s->fifo)) { |
| esp_fifo_push(s, val); |
| } |
| esp_do_nodma(s); |
| break; |
| case ESP_CMD: |
| s->rregs[saddr] = val; |
| esp_run_cmd(s); |
| break; |
| case ESP_WBUSID ... ESP_WSYNO: |
| break; |
| case ESP_CFG1: |
| case ESP_CFG2: case ESP_CFG3: |
| case ESP_RES3: case ESP_RES4: |
| s->rregs[saddr] = val; |
| break; |
| case ESP_WCCF ... ESP_WTEST: |
| break; |
| default: |
| trace_esp_error_invalid_write(val, saddr); |
| return; |
| } |
| s->wregs[saddr] = val; |
| } |
| |
| static bool esp_mem_accepts(void *opaque, hwaddr addr, |
| unsigned size, bool is_write, |
| MemTxAttrs attrs) |
| { |
| return (size == 1) || (is_write && size == 4); |
| } |
| |
| static bool esp_is_before_version_5(void *opaque, int version_id) |
| { |
| ESPState *s = ESP(opaque); |
| |
| version_id = MIN(version_id, s->mig_version_id); |
| return version_id < 5; |
| } |
| |
| static bool esp_is_version_5(void *opaque, int version_id) |
| { |
| ESPState *s = ESP(opaque); |
| |
| version_id = MIN(version_id, s->mig_version_id); |
| return version_id >= 5; |
| } |
| |
| static bool esp_is_version_6(void *opaque, int version_id) |
| { |
| ESPState *s = ESP(opaque); |
| |
| version_id = MIN(version_id, s->mig_version_id); |
| return version_id >= 6; |
| } |
| |
| static bool esp_is_between_version_5_and_6(void *opaque, int version_id) |
| { |
| ESPState *s = ESP(opaque); |
| |
| version_id = MIN(version_id, s->mig_version_id); |
| return version_id >= 5 && version_id <= 6; |
| } |
| |
| int esp_pre_save(void *opaque) |
| { |
| ESPState *s = ESP(object_resolve_path_component( |
| OBJECT(opaque), "esp")); |
| |
| s->mig_version_id = vmstate_esp.version_id; |
| return 0; |
| } |
| |
| static int esp_post_load(void *opaque, int version_id) |
| { |
| ESPState *s = ESP(opaque); |
| int len, i; |
| |
| version_id = MIN(version_id, s->mig_version_id); |
| |
| if (version_id < 5) { |
| esp_set_tc(s, s->mig_dma_left); |
| |
| /* Migrate ti_buf to fifo */ |
| len = s->mig_ti_wptr - s->mig_ti_rptr; |
| for (i = 0; i < len; i++) { |
| fifo8_push(&s->fifo, s->mig_ti_buf[i]); |
| } |
| |
| /* Migrate cmdbuf to cmdfifo */ |
| for (i = 0; i < s->mig_cmdlen; i++) { |
| fifo8_push(&s->cmdfifo, s->mig_cmdbuf[i]); |
| } |
| } |
| |
| s->mig_version_id = vmstate_esp.version_id; |
| return 0; |
| } |
| |
| const VMStateDescription vmstate_esp = { |
| .name = "esp", |
| .version_id = 7, |
| .minimum_version_id = 3, |
| .post_load = esp_post_load, |
| .fields = (const VMStateField[]) { |
| VMSTATE_BUFFER(rregs, ESPState), |
| VMSTATE_BUFFER(wregs, ESPState), |
| VMSTATE_INT32(ti_size, ESPState), |
| VMSTATE_UINT32_TEST(mig_ti_rptr, ESPState, esp_is_before_version_5), |
| VMSTATE_UINT32_TEST(mig_ti_wptr, ESPState, esp_is_before_version_5), |
| VMSTATE_BUFFER_TEST(mig_ti_buf, ESPState, esp_is_before_version_5), |
| VMSTATE_UINT32(status, ESPState), |
| VMSTATE_UINT32_TEST(mig_deferred_status, ESPState, |
| esp_is_before_version_5), |
| VMSTATE_BOOL_TEST(mig_deferred_complete, ESPState, |
| esp_is_before_version_5), |
| VMSTATE_UINT32(dma, ESPState), |
| VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 0, |
| esp_is_before_version_5, 0, 16), |
| VMSTATE_STATIC_BUFFER(mig_cmdbuf, ESPState, 4, |
| esp_is_before_version_5, 16, |
| sizeof(typeof_field(ESPState, mig_cmdbuf))), |
| VMSTATE_UINT32_TEST(mig_cmdlen, ESPState, esp_is_before_version_5), |
| VMSTATE_UINT32(do_cmd, ESPState), |
| VMSTATE_UINT32_TEST(mig_dma_left, ESPState, esp_is_before_version_5), |
| VMSTATE_BOOL_TEST(data_ready, ESPState, esp_is_version_5), |
| VMSTATE_UINT8_TEST(cmdfifo_cdb_offset, ESPState, esp_is_version_5), |
| VMSTATE_FIFO8_TEST(fifo, ESPState, esp_is_version_5), |
| VMSTATE_FIFO8_TEST(cmdfifo, ESPState, esp_is_version_5), |
| VMSTATE_UINT8_TEST(mig_ti_cmd, ESPState, |
| esp_is_between_version_5_and_6), |
| VMSTATE_UINT8_TEST(lun, ESPState, esp_is_version_6), |
| VMSTATE_BOOL(drq_state, ESPState), |
| VMSTATE_END_OF_LIST() |
| }, |
| }; |
| |
| static void sysbus_esp_mem_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned int size) |
| { |
| SysBusESPState *sysbus = opaque; |
| ESPState *s = ESP(&sysbus->esp); |
| uint32_t saddr; |
| |
| saddr = addr >> sysbus->it_shift; |
| esp_reg_write(s, saddr, val); |
| } |
| |
| static uint64_t sysbus_esp_mem_read(void *opaque, hwaddr addr, |
| unsigned int size) |
| { |
| SysBusESPState *sysbus = opaque; |
| ESPState *s = ESP(&sysbus->esp); |
| uint32_t saddr; |
| |
| saddr = addr >> sysbus->it_shift; |
| return esp_reg_read(s, saddr); |
| } |
| |
| static const MemoryRegionOps sysbus_esp_mem_ops = { |
| .read = sysbus_esp_mem_read, |
| .write = sysbus_esp_mem_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .valid.accepts = esp_mem_accepts, |
| }; |
| |
| static void sysbus_esp_pdma_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned int size) |
| { |
| SysBusESPState *sysbus = opaque; |
| ESPState *s = ESP(&sysbus->esp); |
| |
| trace_esp_pdma_write(size); |
| |
| switch (size) { |
| case 1: |
| esp_pdma_write(s, val); |
| break; |
| case 2: |
| esp_pdma_write(s, val >> 8); |
| esp_pdma_write(s, val); |
| break; |
| } |
| esp_do_dma(s); |
| } |
| |
| static uint64_t sysbus_esp_pdma_read(void *opaque, hwaddr addr, |
| unsigned int size) |
| { |
| SysBusESPState *sysbus = opaque; |
| ESPState *s = ESP(&sysbus->esp); |
| uint64_t val = 0; |
| |
| trace_esp_pdma_read(size); |
| |
| switch (size) { |
| case 1: |
| val = esp_pdma_read(s); |
| break; |
| case 2: |
| val = esp_pdma_read(s); |
| val = (val << 8) | esp_pdma_read(s); |
| break; |
| } |
| esp_do_dma(s); |
| return val; |
| } |
| |
| static void *esp_load_request(QEMUFile *f, SCSIRequest *req) |
| { |
| ESPState *s = container_of(req->bus, ESPState, bus); |
| |
| scsi_req_ref(req); |
| s->current_req = req; |
| return s; |
| } |
| |
| static const MemoryRegionOps sysbus_esp_pdma_ops = { |
| .read = sysbus_esp_pdma_read, |
| .write = sysbus_esp_pdma_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .valid.min_access_size = 1, |
| .valid.max_access_size = 4, |
| .impl.min_access_size = 1, |
| .impl.max_access_size = 2, |
| }; |
| |
| static const struct SCSIBusInfo esp_scsi_info = { |
| .tcq = false, |
| .max_target = ESP_MAX_DEVS, |
| .max_lun = 7, |
| |
| .load_request = esp_load_request, |
| .transfer_data = esp_transfer_data, |
| .complete = esp_command_complete, |
| .cancel = esp_request_cancelled |
| }; |
| |
| static void sysbus_esp_gpio_demux(void *opaque, int irq, int level) |
| { |
| SysBusESPState *sysbus = SYSBUS_ESP(opaque); |
| ESPState *s = ESP(&sysbus->esp); |
| |
| switch (irq) { |
| case 0: |
| parent_esp_reset(s, irq, level); |
| break; |
| case 1: |
| esp_dma_enable(s, irq, level); |
| break; |
| } |
| } |
| |
| static void sysbus_esp_realize(DeviceState *dev, Error **errp) |
| { |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| SysBusESPState *sysbus = SYSBUS_ESP(dev); |
| ESPState *s = ESP(&sysbus->esp); |
| |
| if (!qdev_realize(DEVICE(s), NULL, errp)) { |
| return; |
| } |
| |
| sysbus_init_irq(sbd, &s->irq); |
| sysbus_init_irq(sbd, &s->drq_irq); |
| assert(sysbus->it_shift != -1); |
| |
| s->chip_id = TCHI_FAS100A; |
| memory_region_init_io(&sysbus->iomem, OBJECT(sysbus), &sysbus_esp_mem_ops, |
| sysbus, "esp-regs", ESP_REGS << sysbus->it_shift); |
| sysbus_init_mmio(sbd, &sysbus->iomem); |
| memory_region_init_io(&sysbus->pdma, OBJECT(sysbus), &sysbus_esp_pdma_ops, |
| sysbus, "esp-pdma", 4); |
| sysbus_init_mmio(sbd, &sysbus->pdma); |
| |
| qdev_init_gpio_in(dev, sysbus_esp_gpio_demux, 2); |
| |
| scsi_bus_init(&s->bus, sizeof(s->bus), dev, &esp_scsi_info); |
| } |
| |
| static void sysbus_esp_hard_reset(DeviceState *dev) |
| { |
| SysBusESPState *sysbus = SYSBUS_ESP(dev); |
| ESPState *s = ESP(&sysbus->esp); |
| |
| esp_hard_reset(s); |
| } |
| |
| static void sysbus_esp_init(Object *obj) |
| { |
| SysBusESPState *sysbus = SYSBUS_ESP(obj); |
| |
| object_initialize_child(obj, "esp", &sysbus->esp, TYPE_ESP); |
| } |
| |
| static const VMStateDescription vmstate_sysbus_esp_scsi = { |
| .name = "sysbusespscsi", |
| .version_id = 2, |
| .minimum_version_id = 1, |
| .pre_save = esp_pre_save, |
| .fields = (const VMStateField[]) { |
| VMSTATE_UINT8_V(esp.mig_version_id, SysBusESPState, 2), |
| VMSTATE_STRUCT(esp, SysBusESPState, 0, vmstate_esp, ESPState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void sysbus_esp_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = sysbus_esp_realize; |
| dc->reset = sysbus_esp_hard_reset; |
| dc->vmsd = &vmstate_sysbus_esp_scsi; |
| set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); |
| } |
| |
| static void esp_finalize(Object *obj) |
| { |
| ESPState *s = ESP(obj); |
| |
| fifo8_destroy(&s->fifo); |
| fifo8_destroy(&s->cmdfifo); |
| } |
| |
| static void esp_init(Object *obj) |
| { |
| ESPState *s = ESP(obj); |
| |
| fifo8_create(&s->fifo, ESP_FIFO_SZ); |
| fifo8_create(&s->cmdfifo, ESP_CMDFIFO_SZ); |
| } |
| |
| static void esp_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| /* internal device for sysbusesp/pciespscsi, not user-creatable */ |
| dc->user_creatable = false; |
| set_bit(DEVICE_CATEGORY_STORAGE, dc->categories); |
| } |
| |
| static const TypeInfo esp_info_types[] = { |
| { |
| .name = TYPE_SYSBUS_ESP, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_init = sysbus_esp_init, |
| .instance_size = sizeof(SysBusESPState), |
| .class_init = sysbus_esp_class_init, |
| }, |
| { |
| .name = TYPE_ESP, |
| .parent = TYPE_DEVICE, |
| .instance_init = esp_init, |
| .instance_finalize = esp_finalize, |
| .instance_size = sizeof(ESPState), |
| .class_init = esp_class_init, |
| }, |
| }; |
| |
| DEFINE_TYPES(esp_info_types) |