|  | /* | 
|  | *  Emulation of BSD signals | 
|  | * | 
|  | *  Copyright (c) 2003 - 2008 Fabrice Bellard | 
|  | *  Copyright (c) 2013 Stacey Son | 
|  | * | 
|  | *  This program is free software; you can redistribute it and/or modify | 
|  | *  it under the terms of the GNU General Public License as published by | 
|  | *  the Free Software Foundation; either version 2 of the License, or | 
|  | *  (at your option) any later version. | 
|  | * | 
|  | *  This program is distributed in the hope that it will be useful, | 
|  | *  but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|  | *  GNU General Public License for more details. | 
|  | * | 
|  | *  You should have received a copy of the GNU General Public License | 
|  | *  along with this program; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/log.h" | 
|  | #include "qemu.h" | 
|  | #include "exec/page-protection.h" | 
|  | #include "user/tswap-target.h" | 
|  | #include "gdbstub/user.h" | 
|  | #include "signal-common.h" | 
|  | #include "trace.h" | 
|  | #include "hw/core/tcg-cpu-ops.h" | 
|  | #include "host-signal.h" | 
|  |  | 
|  | /* target_siginfo_t must fit in gdbstub's siginfo save area. */ | 
|  | QEMU_BUILD_BUG_ON(sizeof(target_siginfo_t) > MAX_SIGINFO_LENGTH); | 
|  |  | 
|  | static struct target_sigaction sigact_table[TARGET_NSIG]; | 
|  | static void host_signal_handler(int host_sig, siginfo_t *info, void *puc); | 
|  | static void target_to_host_sigset_internal(sigset_t *d, | 
|  | const target_sigset_t *s); | 
|  |  | 
|  | static inline int on_sig_stack(TaskState *ts, unsigned long sp) | 
|  | { | 
|  | return sp - ts->sigaltstack_used.ss_sp < ts->sigaltstack_used.ss_size; | 
|  | } | 
|  |  | 
|  | static inline int sas_ss_flags(TaskState *ts, unsigned long sp) | 
|  | { | 
|  | return ts->sigaltstack_used.ss_size == 0 ? SS_DISABLE : | 
|  | on_sig_stack(ts, sp) ? SS_ONSTACK : 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The BSD ABIs use the same signal numbers across all the CPU architectures, so | 
|  | * (unlike Linux) these functions are just the identity mapping. This might not | 
|  | * be true for XyzBSD running on AbcBSD, which doesn't currently work. | 
|  | */ | 
|  | int host_to_target_signal(int sig) | 
|  | { | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | int target_to_host_signal(int sig) | 
|  | { | 
|  | return sig; | 
|  | } | 
|  |  | 
|  | static inline void target_sigemptyset(target_sigset_t *set) | 
|  | { | 
|  | memset(set, 0, sizeof(*set)); | 
|  | } | 
|  |  | 
|  | static inline void target_sigaddset(target_sigset_t *set, int signum) | 
|  | { | 
|  | signum--; | 
|  | uint32_t mask = (uint32_t)1 << (signum % TARGET_NSIG_BPW); | 
|  | set->__bits[signum / TARGET_NSIG_BPW] |= mask; | 
|  | } | 
|  |  | 
|  | static inline int target_sigismember(const target_sigset_t *set, int signum) | 
|  | { | 
|  | signum--; | 
|  | abi_ulong mask = (abi_ulong)1 << (signum % TARGET_NSIG_BPW); | 
|  | return (set->__bits[signum / TARGET_NSIG_BPW] & mask) != 0; | 
|  | } | 
|  |  | 
|  | /* Adjust the signal context to rewind out of safe-syscall if we're in it */ | 
|  | static inline void rewind_if_in_safe_syscall(void *puc) | 
|  | { | 
|  | ucontext_t *uc = (ucontext_t *)puc; | 
|  | uintptr_t pcreg = host_signal_pc(uc); | 
|  |  | 
|  | if (pcreg > (uintptr_t)safe_syscall_start | 
|  | && pcreg < (uintptr_t)safe_syscall_end) { | 
|  | host_signal_set_pc(uc, (uintptr_t)safe_syscall_start); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Note: The following take advantage of the BSD signal property that all | 
|  | * signals are available on all architectures. | 
|  | */ | 
|  | static void host_to_target_sigset_internal(target_sigset_t *d, | 
|  | const sigset_t *s) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | target_sigemptyset(d); | 
|  | for (i = 1; i <= NSIG; i++) { | 
|  | if (sigismember(s, i)) { | 
|  | target_sigaddset(d, host_to_target_signal(i)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void host_to_target_sigset(target_sigset_t *d, const sigset_t *s) | 
|  | { | 
|  | target_sigset_t d1; | 
|  | int i; | 
|  |  | 
|  | host_to_target_sigset_internal(&d1, s); | 
|  | for (i = 0; i < _SIG_WORDS; i++) { | 
|  | d->__bits[i] = tswap32(d1.__bits[i]); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void target_to_host_sigset_internal(sigset_t *d, | 
|  | const target_sigset_t *s) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | sigemptyset(d); | 
|  | for (i = 1; i <= TARGET_NSIG; i++) { | 
|  | if (target_sigismember(s, i)) { | 
|  | sigaddset(d, target_to_host_signal(i)); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void target_to_host_sigset(sigset_t *d, const target_sigset_t *s) | 
|  | { | 
|  | target_sigset_t s1; | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < TARGET_NSIG_WORDS; i++) { | 
|  | s1.__bits[i] = tswap32(s->__bits[i]); | 
|  | } | 
|  | target_to_host_sigset_internal(d, &s1); | 
|  | } | 
|  |  | 
|  | static bool has_trapno(int tsig) | 
|  | { | 
|  | return tsig == TARGET_SIGILL || | 
|  | tsig == TARGET_SIGFPE || | 
|  | tsig == TARGET_SIGSEGV || | 
|  | tsig == TARGET_SIGBUS || | 
|  | tsig == TARGET_SIGTRAP; | 
|  | } | 
|  |  | 
|  | /* Siginfo conversion. */ | 
|  |  | 
|  | /* | 
|  | * Populate tinfo w/o swapping based on guessing which fields are valid. | 
|  | */ | 
|  | static inline void host_to_target_siginfo_noswap(target_siginfo_t *tinfo, | 
|  | const siginfo_t *info) | 
|  | { | 
|  | int sig = host_to_target_signal(info->si_signo); | 
|  | int si_code = info->si_code; | 
|  | int si_type; | 
|  |  | 
|  | /* | 
|  | * Make sure we that the variable portion of the target siginfo is zeroed | 
|  | * out so we don't leak anything into that. | 
|  | */ | 
|  | memset(&tinfo->_reason, 0, sizeof(tinfo->_reason)); | 
|  |  | 
|  | /* | 
|  | * This is awkward, because we have to use a combination of the si_code and | 
|  | * si_signo to figure out which of the union's members are valid.o We | 
|  | * therefore make our best guess. | 
|  | * | 
|  | * Once we have made our guess, we record it in the top 16 bits of | 
|  | * the si_code, so that tswap_siginfo() later can use it. | 
|  | * tswap_siginfo() will strip these top bits out before writing | 
|  | * si_code to the guest (sign-extending the lower bits). | 
|  | */ | 
|  | tinfo->si_signo = sig; | 
|  | tinfo->si_errno = info->si_errno; | 
|  | tinfo->si_code = info->si_code; | 
|  | tinfo->si_pid = info->si_pid; | 
|  | tinfo->si_uid = info->si_uid; | 
|  | tinfo->si_status = info->si_status; | 
|  | tinfo->si_addr = (abi_ulong)(unsigned long)info->si_addr; | 
|  | /* | 
|  | * si_value is opaque to kernel. On all FreeBSD platforms, | 
|  | * sizeof(sival_ptr) >= sizeof(sival_int) so the following | 
|  | * always will copy the larger element. | 
|  | */ | 
|  | tinfo->si_value.sival_ptr = | 
|  | (abi_ulong)(unsigned long)info->si_value.sival_ptr; | 
|  |  | 
|  | switch (si_code) { | 
|  | /* | 
|  | * All the SI_xxx codes that are defined here are global to | 
|  | * all the signals (they have values that none of the other, | 
|  | * more specific signal info will set). | 
|  | */ | 
|  | case SI_USER: | 
|  | case SI_LWP: | 
|  | case SI_KERNEL: | 
|  | case SI_QUEUE: | 
|  | case SI_ASYNCIO: | 
|  | /* | 
|  | * Only the fixed parts are valid (though FreeBSD doesn't always | 
|  | * set all the fields to non-zero values. | 
|  | */ | 
|  | si_type = QEMU_SI_NOINFO; | 
|  | break; | 
|  | case SI_TIMER: | 
|  | tinfo->_reason._timer._timerid = info->_reason._timer._timerid; | 
|  | tinfo->_reason._timer._overrun = info->_reason._timer._overrun; | 
|  | si_type = QEMU_SI_TIMER; | 
|  | break; | 
|  | case SI_MESGQ: | 
|  | tinfo->_reason._mesgq._mqd = info->_reason._mesgq._mqd; | 
|  | si_type = QEMU_SI_MESGQ; | 
|  | break; | 
|  | default: | 
|  | /* | 
|  | * We have to go based on the signal number now to figure out | 
|  | * what's valid. | 
|  | */ | 
|  | si_type = QEMU_SI_NOINFO; | 
|  | if (has_trapno(sig)) { | 
|  | tinfo->_reason._fault._trapno = info->_reason._fault._trapno; | 
|  | si_type = QEMU_SI_FAULT; | 
|  | } | 
|  | #ifdef TARGET_SIGPOLL | 
|  | /* | 
|  | * FreeBSD never had SIGPOLL, but emulates it for Linux so there's | 
|  | * a chance it may popup in the future. | 
|  | */ | 
|  | if (sig == TARGET_SIGPOLL) { | 
|  | tinfo->_reason._poll._band = info->_reason._poll._band; | 
|  | si_type = QEMU_SI_POLL; | 
|  | } | 
|  | #endif | 
|  | /* | 
|  | * Unsure that this can actually be generated, and our support for | 
|  | * capsicum is somewhere between weak and non-existent, but if we get | 
|  | * one, then we know what to save. | 
|  | */ | 
|  | #ifdef QEMU_SI_CAPSICUM | 
|  | if (sig == TARGET_SIGTRAP) { | 
|  | tinfo->_reason._capsicum._syscall = | 
|  | info->_reason._capsicum._syscall; | 
|  | si_type = QEMU_SI_CAPSICUM; | 
|  | } | 
|  | #endif | 
|  | break; | 
|  | } | 
|  | tinfo->si_code = deposit32(si_code, 24, 8, si_type); | 
|  | } | 
|  |  | 
|  | static void tswap_siginfo(target_siginfo_t *tinfo, const target_siginfo_t *info) | 
|  | { | 
|  | int si_type = extract32(info->si_code, 24, 8); | 
|  | int si_code = sextract32(info->si_code, 0, 24); | 
|  |  | 
|  | __put_user(info->si_signo, &tinfo->si_signo); | 
|  | __put_user(info->si_errno, &tinfo->si_errno); | 
|  | __put_user(si_code, &tinfo->si_code); /* Zero out si_type, it's internal */ | 
|  | __put_user(info->si_pid, &tinfo->si_pid); | 
|  | __put_user(info->si_uid, &tinfo->si_uid); | 
|  | __put_user(info->si_status, &tinfo->si_status); | 
|  | __put_user(info->si_addr, &tinfo->si_addr); | 
|  | /* | 
|  | * Unswapped, because we passed it through mostly untouched.  si_value is | 
|  | * opaque to the kernel, so we didn't bother with potentially wasting cycles | 
|  | * to swap it into host byte order. | 
|  | */ | 
|  | tinfo->si_value.sival_ptr = info->si_value.sival_ptr; | 
|  |  | 
|  | /* | 
|  | * We can use our internal marker of which fields in the structure | 
|  | * are valid, rather than duplicating the guesswork of | 
|  | * host_to_target_siginfo_noswap() here. | 
|  | */ | 
|  | switch (si_type) { | 
|  | case QEMU_SI_NOINFO:        /* No additional info */ | 
|  | break; | 
|  | case QEMU_SI_FAULT: | 
|  | __put_user(info->_reason._fault._trapno, | 
|  | &tinfo->_reason._fault._trapno); | 
|  | break; | 
|  | case QEMU_SI_TIMER: | 
|  | __put_user(info->_reason._timer._timerid, | 
|  | &tinfo->_reason._timer._timerid); | 
|  | __put_user(info->_reason._timer._overrun, | 
|  | &tinfo->_reason._timer._overrun); | 
|  | break; | 
|  | case QEMU_SI_MESGQ: | 
|  | __put_user(info->_reason._mesgq._mqd, &tinfo->_reason._mesgq._mqd); | 
|  | break; | 
|  | case QEMU_SI_POLL: | 
|  | /* Note: Not generated on FreeBSD */ | 
|  | __put_user(info->_reason._poll._band, &tinfo->_reason._poll._band); | 
|  | break; | 
|  | #ifdef QEMU_SI_CAPSICUM | 
|  | case QEMU_SI_CAPSICUM: | 
|  | __put_user(info->_reason._capsicum._syscall, | 
|  | &tinfo->_reason._capsicum._syscall); | 
|  | break; | 
|  | #endif | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  |  | 
|  | void host_to_target_siginfo(target_siginfo_t *tinfo, const siginfo_t *info) | 
|  | { | 
|  | host_to_target_siginfo_noswap(tinfo, info); | 
|  | tswap_siginfo(tinfo, tinfo); | 
|  | } | 
|  |  | 
|  | int block_signals(void) | 
|  | { | 
|  | TaskState *ts = get_task_state(thread_cpu); | 
|  | sigset_t set; | 
|  |  | 
|  | /* | 
|  | * It's OK to block everything including SIGSEGV, because we won't run any | 
|  | * further guest code before unblocking signals in | 
|  | * process_pending_signals(). We depend on the FreeBSD behavior here where | 
|  | * this will only affect this thread's signal mask. We don't use | 
|  | * pthread_sigmask which might seem more correct because that routine also | 
|  | * does odd things with SIGCANCEL to implement pthread_cancel(). | 
|  | */ | 
|  | sigfillset(&set); | 
|  | sigprocmask(SIG_SETMASK, &set, 0); | 
|  |  | 
|  | return qatomic_xchg(&ts->signal_pending, 1); | 
|  | } | 
|  |  | 
|  | /* Returns 1 if given signal should dump core if not handled. */ | 
|  | static int core_dump_signal(int sig) | 
|  | { | 
|  | switch (sig) { | 
|  | case TARGET_SIGABRT: | 
|  | case TARGET_SIGFPE: | 
|  | case TARGET_SIGILL: | 
|  | case TARGET_SIGQUIT: | 
|  | case TARGET_SIGSEGV: | 
|  | case TARGET_SIGTRAP: | 
|  | case TARGET_SIGBUS: | 
|  | return 1; | 
|  | default: | 
|  | return 0; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Abort execution with signal. */ | 
|  | static G_NORETURN | 
|  | void dump_core_and_abort(int target_sig) | 
|  | { | 
|  | CPUState *cpu = thread_cpu; | 
|  | CPUArchState *env = cpu_env(cpu); | 
|  | TaskState *ts = get_task_state(cpu); | 
|  | int core_dumped = 0; | 
|  | int host_sig; | 
|  | struct sigaction act; | 
|  |  | 
|  | host_sig = target_to_host_signal(target_sig); | 
|  | gdb_signalled(env, target_sig); | 
|  |  | 
|  | /* Dump core if supported by target binary format */ | 
|  | if (core_dump_signal(target_sig) && (ts->bprm->core_dump != NULL)) { | 
|  | stop_all_tasks(); | 
|  | core_dumped = | 
|  | ((*ts->bprm->core_dump)(target_sig, env) == 0); | 
|  | } | 
|  | if (core_dumped) { | 
|  | struct rlimit nodump; | 
|  |  | 
|  | /* | 
|  | * We already dumped the core of target process, we don't want | 
|  | * a coredump of qemu itself. | 
|  | */ | 
|  | getrlimit(RLIMIT_CORE, &nodump); | 
|  | nodump.rlim_cur = 0; | 
|  | setrlimit(RLIMIT_CORE, &nodump); | 
|  | (void) fprintf(stderr, "qemu: uncaught target signal %d (%s) " | 
|  | "- %s\n", target_sig, strsignal(host_sig), "core dumped"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * The proper exit code for dying from an uncaught signal is | 
|  | * -<signal>.  The kernel doesn't allow exit() or _exit() to pass | 
|  | * a negative value.  To get the proper exit code we need to | 
|  | * actually die from an uncaught signal.  Here the default signal | 
|  | * handler is installed, we send ourself a signal and we wait for | 
|  | * it to arrive. | 
|  | */ | 
|  | memset(&act, 0, sizeof(act)); | 
|  | sigfillset(&act.sa_mask); | 
|  | act.sa_handler = SIG_DFL; | 
|  | sigaction(host_sig, &act, NULL); | 
|  |  | 
|  | kill(getpid(), host_sig); | 
|  |  | 
|  | /* | 
|  | * Make sure the signal isn't masked (just reuse the mask inside | 
|  | * of act). | 
|  | */ | 
|  | sigdelset(&act.sa_mask, host_sig); | 
|  | sigsuspend(&act.sa_mask); | 
|  |  | 
|  | /* unreachable */ | 
|  | abort(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Queue a signal so that it will be send to the virtual CPU as soon as | 
|  | * possible. | 
|  | */ | 
|  | void queue_signal(CPUArchState *env, int sig, int si_type, | 
|  | target_siginfo_t *info) | 
|  | { | 
|  | CPUState *cpu = env_cpu(env); | 
|  | TaskState *ts = get_task_state(cpu); | 
|  |  | 
|  | trace_user_queue_signal(env, sig); | 
|  |  | 
|  | info->si_code = deposit32(info->si_code, 24, 8, si_type); | 
|  |  | 
|  | ts->sync_signal.info = *info; | 
|  | ts->sync_signal.pending = sig; | 
|  | /* Signal that a new signal is pending. */ | 
|  | qatomic_set(&ts->signal_pending, 1); | 
|  | return; | 
|  | } | 
|  |  | 
|  | static int fatal_signal(int sig) | 
|  | { | 
|  |  | 
|  | switch (sig) { | 
|  | case TARGET_SIGCHLD: | 
|  | case TARGET_SIGURG: | 
|  | case TARGET_SIGWINCH: | 
|  | case TARGET_SIGINFO: | 
|  | /* Ignored by default. */ | 
|  | return 0; | 
|  | case TARGET_SIGCONT: | 
|  | case TARGET_SIGSTOP: | 
|  | case TARGET_SIGTSTP: | 
|  | case TARGET_SIGTTIN: | 
|  | case TARGET_SIGTTOU: | 
|  | /* Job control signals.  */ | 
|  | return 0; | 
|  | default: | 
|  | return 1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Force a synchronously taken QEMU_SI_FAULT signal. For QEMU the | 
|  | * 'force' part is handled in process_pending_signals(). | 
|  | */ | 
|  | void force_sig_fault(int sig, int code, abi_ulong addr) | 
|  | { | 
|  | CPUState *cpu = thread_cpu; | 
|  | target_siginfo_t info = {}; | 
|  |  | 
|  | info.si_signo = sig; | 
|  | info.si_errno = 0; | 
|  | info.si_code = code; | 
|  | info.si_addr = addr; | 
|  | queue_signal(cpu_env(cpu), sig, QEMU_SI_FAULT, &info); | 
|  | } | 
|  |  | 
|  | static void host_signal_handler(int host_sig, siginfo_t *info, void *puc) | 
|  | { | 
|  | CPUState *cpu = thread_cpu; | 
|  | TaskState *ts = get_task_state(cpu); | 
|  | target_siginfo_t tinfo; | 
|  | ucontext_t *uc = puc; | 
|  | struct emulated_sigtable *k; | 
|  | int guest_sig; | 
|  | uintptr_t pc = 0; | 
|  | bool sync_sig = false; | 
|  |  | 
|  | /* | 
|  | * Non-spoofed SIGSEGV and SIGBUS are synchronous, and need special | 
|  | * handling wrt signal blocking and unwinding. | 
|  | */ | 
|  | if ((host_sig == SIGSEGV || host_sig == SIGBUS) && info->si_code > 0) { | 
|  | MMUAccessType access_type; | 
|  | uintptr_t host_addr; | 
|  | abi_ptr guest_addr; | 
|  | bool is_write; | 
|  |  | 
|  | host_addr = (uintptr_t)info->si_addr; | 
|  |  | 
|  | /* | 
|  | * Convert forcefully to guest address space: addresses outside | 
|  | * reserved_va are still valid to report via SEGV_MAPERR. | 
|  | */ | 
|  | guest_addr = h2g_nocheck(host_addr); | 
|  |  | 
|  | pc = host_signal_pc(uc); | 
|  | is_write = host_signal_write(info, uc); | 
|  | access_type = adjust_signal_pc(&pc, is_write); | 
|  |  | 
|  | if (host_sig == SIGSEGV) { | 
|  | bool maperr = true; | 
|  |  | 
|  | if (info->si_code == SEGV_ACCERR && h2g_valid(host_addr)) { | 
|  | /* If this was a write to a TB protected page, restart. */ | 
|  | if (is_write && | 
|  | handle_sigsegv_accerr_write(cpu, &uc->uc_sigmask, | 
|  | pc, guest_addr)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * With reserved_va, the whole address space is PROT_NONE, | 
|  | * which means that we may get ACCERR when we want MAPERR. | 
|  | */ | 
|  | if (page_get_flags(guest_addr) & PAGE_VALID) { | 
|  | maperr = false; | 
|  | } else { | 
|  | info->si_code = SEGV_MAPERR; | 
|  | } | 
|  | } | 
|  |  | 
|  | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); | 
|  | cpu_loop_exit_sigsegv(cpu, guest_addr, access_type, maperr, pc); | 
|  | } else { | 
|  | sigprocmask(SIG_SETMASK, &uc->uc_sigmask, NULL); | 
|  | if (info->si_code == BUS_ADRALN) { | 
|  | cpu_loop_exit_sigbus(cpu, guest_addr, access_type, pc); | 
|  | } | 
|  | } | 
|  |  | 
|  | sync_sig = true; | 
|  | } | 
|  |  | 
|  | /* Get the target signal number. */ | 
|  | guest_sig = host_to_target_signal(host_sig); | 
|  | if (guest_sig < 1 || guest_sig > TARGET_NSIG) { | 
|  | return; | 
|  | } | 
|  | trace_user_host_signal(cpu, host_sig, guest_sig); | 
|  |  | 
|  | host_to_target_siginfo_noswap(&tinfo, info); | 
|  |  | 
|  | k = &ts->sigtab[guest_sig - 1]; | 
|  | k->info = tinfo; | 
|  | k->pending = guest_sig; | 
|  | ts->signal_pending = 1; | 
|  |  | 
|  | /* | 
|  | * For synchronous signals, unwind the cpu state to the faulting | 
|  | * insn and then exit back to the main loop so that the signal | 
|  | * is delivered immediately. | 
|  | */ | 
|  | if (sync_sig) { | 
|  | cpu->exception_index = EXCP_INTERRUPT; | 
|  | cpu_loop_exit_restore(cpu, pc); | 
|  | } | 
|  |  | 
|  | rewind_if_in_safe_syscall(puc); | 
|  |  | 
|  | /* | 
|  | * Block host signals until target signal handler entered. We | 
|  | * can't block SIGSEGV or SIGBUS while we're executing guest | 
|  | * code in case the guest code provokes one in the window between | 
|  | * now and it getting out to the main loop. Signals will be | 
|  | * unblocked again in process_pending_signals(). | 
|  | */ | 
|  | sigfillset(&uc->uc_sigmask); | 
|  | sigdelset(&uc->uc_sigmask, SIGSEGV); | 
|  | sigdelset(&uc->uc_sigmask, SIGBUS); | 
|  |  | 
|  | /* Interrupt the virtual CPU as soon as possible. */ | 
|  | cpu_exit(thread_cpu); | 
|  | } | 
|  |  | 
|  | /* do_sigaltstack() returns target values and errnos. */ | 
|  | /* compare to kern/kern_sig.c sys_sigaltstack() and kern_sigaltstack() */ | 
|  | abi_long do_sigaltstack(abi_ulong uss_addr, abi_ulong uoss_addr, abi_ulong sp) | 
|  | { | 
|  | TaskState *ts = get_task_state(thread_cpu); | 
|  | int ret; | 
|  | target_stack_t oss; | 
|  |  | 
|  | if (uoss_addr) { | 
|  | /* Save current signal stack params */ | 
|  | oss.ss_sp = tswapl(ts->sigaltstack_used.ss_sp); | 
|  | oss.ss_size = tswapl(ts->sigaltstack_used.ss_size); | 
|  | oss.ss_flags = tswapl(sas_ss_flags(ts, sp)); | 
|  | } | 
|  |  | 
|  | if (uss_addr) { | 
|  | target_stack_t *uss; | 
|  | target_stack_t ss; | 
|  | size_t minstacksize = TARGET_MINSIGSTKSZ; | 
|  |  | 
|  | ret = -TARGET_EFAULT; | 
|  | if (!lock_user_struct(VERIFY_READ, uss, uss_addr, 1)) { | 
|  | goto out; | 
|  | } | 
|  | __get_user(ss.ss_sp, &uss->ss_sp); | 
|  | __get_user(ss.ss_size, &uss->ss_size); | 
|  | __get_user(ss.ss_flags, &uss->ss_flags); | 
|  | unlock_user_struct(uss, uss_addr, 0); | 
|  |  | 
|  | ret = -TARGET_EPERM; | 
|  | if (on_sig_stack(ts, sp)) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | ret = -TARGET_EINVAL; | 
|  | if (ss.ss_flags != TARGET_SS_DISABLE | 
|  | && ss.ss_flags != TARGET_SS_ONSTACK | 
|  | && ss.ss_flags != 0) { | 
|  | goto out; | 
|  | } | 
|  |  | 
|  | if (ss.ss_flags == TARGET_SS_DISABLE) { | 
|  | ss.ss_size = 0; | 
|  | ss.ss_sp = 0; | 
|  | } else { | 
|  | ret = -TARGET_ENOMEM; | 
|  | if (ss.ss_size < minstacksize) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ts->sigaltstack_used.ss_sp = ss.ss_sp; | 
|  | ts->sigaltstack_used.ss_size = ss.ss_size; | 
|  | } | 
|  |  | 
|  | if (uoss_addr) { | 
|  | ret = -TARGET_EFAULT; | 
|  | if (copy_to_user(uoss_addr, &oss, sizeof(oss))) { | 
|  | goto out; | 
|  | } | 
|  | } | 
|  |  | 
|  | ret = 0; | 
|  | out: | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* do_sigaction() return host values and errnos */ | 
|  | int do_sigaction(int sig, const struct target_sigaction *act, | 
|  | struct target_sigaction *oact) | 
|  | { | 
|  | struct target_sigaction *k; | 
|  | struct sigaction act1; | 
|  | int host_sig; | 
|  | int ret = 0; | 
|  |  | 
|  | if (sig < 1 || sig > TARGET_NSIG) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  |  | 
|  | if ((sig == TARGET_SIGKILL || sig == TARGET_SIGSTOP) && | 
|  | act != NULL && act->_sa_handler != TARGET_SIG_DFL) { | 
|  | return -TARGET_EINVAL; | 
|  | } | 
|  |  | 
|  | if (block_signals()) { | 
|  | return -TARGET_ERESTART; | 
|  | } | 
|  |  | 
|  | k = &sigact_table[sig - 1]; | 
|  | if (oact) { | 
|  | oact->_sa_handler = tswapal(k->_sa_handler); | 
|  | oact->sa_flags = tswap32(k->sa_flags); | 
|  | oact->sa_mask = k->sa_mask; | 
|  | } | 
|  | if (act) { | 
|  | k->_sa_handler = tswapal(act->_sa_handler); | 
|  | k->sa_flags = tswap32(act->sa_flags); | 
|  | k->sa_mask = act->sa_mask; | 
|  |  | 
|  | /* Update the host signal state. */ | 
|  | host_sig = target_to_host_signal(sig); | 
|  | if (host_sig != SIGSEGV && host_sig != SIGBUS) { | 
|  | memset(&act1, 0, sizeof(struct sigaction)); | 
|  | sigfillset(&act1.sa_mask); | 
|  | act1.sa_flags = SA_SIGINFO; | 
|  | if (k->sa_flags & TARGET_SA_RESTART) { | 
|  | act1.sa_flags |= SA_RESTART; | 
|  | } | 
|  | /* | 
|  | *  Note: It is important to update the host kernel signal mask to | 
|  | *  avoid getting unexpected interrupted system calls. | 
|  | */ | 
|  | if (k->_sa_handler == TARGET_SIG_IGN) { | 
|  | act1.sa_sigaction = (void *)SIG_IGN; | 
|  | } else if (k->_sa_handler == TARGET_SIG_DFL) { | 
|  | if (fatal_signal(sig)) { | 
|  | act1.sa_sigaction = host_signal_handler; | 
|  | } else { | 
|  | act1.sa_sigaction = (void *)SIG_DFL; | 
|  | } | 
|  | } else { | 
|  | act1.sa_sigaction = host_signal_handler; | 
|  | } | 
|  | ret = sigaction(host_sig, &act1, NULL); | 
|  | } | 
|  | } | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static inline abi_ulong get_sigframe(struct target_sigaction *ka, | 
|  | CPUArchState *env, size_t frame_size) | 
|  | { | 
|  | TaskState *ts = get_task_state(thread_cpu); | 
|  | abi_ulong sp; | 
|  |  | 
|  | /* Use default user stack */ | 
|  | sp = get_sp_from_cpustate(env); | 
|  |  | 
|  | if ((ka->sa_flags & TARGET_SA_ONSTACK) && sas_ss_flags(ts, sp) == 0) { | 
|  | sp = ts->sigaltstack_used.ss_sp + ts->sigaltstack_used.ss_size; | 
|  | } | 
|  |  | 
|  | /* TODO: make this a target_arch function / define */ | 
|  | #if defined(TARGET_ARM) | 
|  | return (sp - frame_size) & ~7; | 
|  | #elif defined(TARGET_AARCH64) | 
|  | return (sp - frame_size) & ~15; | 
|  | #else | 
|  | return sp - frame_size; | 
|  | #endif | 
|  | } | 
|  |  | 
|  | /* compare to $M/$M/exec_machdep.c sendsig and sys/kern/kern_sig.c sigexit */ | 
|  |  | 
|  | static void setup_frame(int sig, int code, struct target_sigaction *ka, | 
|  | target_sigset_t *set, target_siginfo_t *tinfo, CPUArchState *env) | 
|  | { | 
|  | struct target_sigframe *frame; | 
|  | abi_ulong frame_addr; | 
|  | int i; | 
|  |  | 
|  | frame_addr = get_sigframe(ka, env, sizeof(*frame)); | 
|  | trace_user_setup_frame(env, frame_addr); | 
|  | if (!lock_user_struct(VERIFY_WRITE, frame, frame_addr, 0)) { | 
|  | unlock_user_struct(frame, frame_addr, 1); | 
|  | dump_core_and_abort(TARGET_SIGILL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memset(frame, 0, sizeof(*frame)); | 
|  | setup_sigframe_arch(env, frame_addr, frame, 0); | 
|  |  | 
|  | for (i = 0; i < TARGET_NSIG_WORDS; i++) { | 
|  | __put_user(set->__bits[i], &frame->sf_uc.uc_sigmask.__bits[i]); | 
|  | } | 
|  |  | 
|  | if (tinfo) { | 
|  | frame->sf_si.si_signo = tinfo->si_signo; | 
|  | frame->sf_si.si_errno = tinfo->si_errno; | 
|  | frame->sf_si.si_code = tinfo->si_code; | 
|  | frame->sf_si.si_pid = tinfo->si_pid; | 
|  | frame->sf_si.si_uid = tinfo->si_uid; | 
|  | frame->sf_si.si_status = tinfo->si_status; | 
|  | frame->sf_si.si_addr = tinfo->si_addr; | 
|  | /* see host_to_target_siginfo_noswap() for more details */ | 
|  | frame->sf_si.si_value.sival_ptr = tinfo->si_value.sival_ptr; | 
|  | /* | 
|  | * At this point, whatever is in the _reason union is complete | 
|  | * and in target order, so just copy the whole thing over, even | 
|  | * if it's too large for this specific signal. | 
|  | * host_to_target_siginfo_noswap() and tswap_siginfo() have ensured | 
|  | * that's so. | 
|  | */ | 
|  | memcpy(&frame->sf_si._reason, &tinfo->_reason, | 
|  | sizeof(tinfo->_reason)); | 
|  | } | 
|  |  | 
|  | set_sigtramp_args(env, sig, frame, frame_addr, ka); | 
|  |  | 
|  | unlock_user_struct(frame, frame_addr, 1); | 
|  | } | 
|  |  | 
|  | static int reset_signal_mask(target_ucontext_t *ucontext) | 
|  | { | 
|  | int i; | 
|  | sigset_t blocked; | 
|  | target_sigset_t target_set; | 
|  | TaskState *ts = get_task_state(thread_cpu); | 
|  |  | 
|  | for (i = 0; i < TARGET_NSIG_WORDS; i++) { | 
|  | __get_user(target_set.__bits[i], &ucontext->uc_sigmask.__bits[i]); | 
|  | } | 
|  | target_to_host_sigset_internal(&blocked, &target_set); | 
|  | ts->signal_mask = blocked; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* See sys/$M/$M/exec_machdep.c sigreturn() */ | 
|  | long do_sigreturn(CPUArchState *env, abi_ulong addr) | 
|  | { | 
|  | long ret; | 
|  | abi_ulong target_ucontext; | 
|  | target_ucontext_t *ucontext = NULL; | 
|  |  | 
|  | /* Get the target ucontext address from the stack frame */ | 
|  | ret = get_ucontext_sigreturn(env, addr, &target_ucontext); | 
|  | if (is_error(ret)) { | 
|  | return ret; | 
|  | } | 
|  | trace_user_do_sigreturn(env, addr); | 
|  | if (!lock_user_struct(VERIFY_READ, ucontext, target_ucontext, 0)) { | 
|  | goto badframe; | 
|  | } | 
|  |  | 
|  | /* Set the register state back to before the signal. */ | 
|  | if (set_mcontext(env, &ucontext->uc_mcontext, 1)) { | 
|  | goto badframe; | 
|  | } | 
|  |  | 
|  | /* And reset the signal mask. */ | 
|  | if (reset_signal_mask(ucontext)) { | 
|  | goto badframe; | 
|  | } | 
|  |  | 
|  | unlock_user_struct(ucontext, target_ucontext, 0); | 
|  | return -TARGET_EJUSTRETURN; | 
|  |  | 
|  | badframe: | 
|  | if (ucontext != NULL) { | 
|  | unlock_user_struct(ucontext, target_ucontext, 0); | 
|  | } | 
|  | return -TARGET_EFAULT; | 
|  | } | 
|  |  | 
|  | void signal_init(void) | 
|  | { | 
|  | TaskState *ts = get_task_state(thread_cpu); | 
|  | struct sigaction act; | 
|  | struct sigaction oact; | 
|  | int i; | 
|  | int host_sig; | 
|  |  | 
|  | /* Set the signal mask from the host mask. */ | 
|  | sigprocmask(0, 0, &ts->signal_mask); | 
|  |  | 
|  | sigfillset(&act.sa_mask); | 
|  | act.sa_sigaction = host_signal_handler; | 
|  | act.sa_flags = SA_SIGINFO; | 
|  |  | 
|  | for (i = 1; i <= TARGET_NSIG; i++) { | 
|  | host_sig = target_to_host_signal(i); | 
|  | sigaction(host_sig, NULL, &oact); | 
|  | if (oact.sa_sigaction == (void *)SIG_IGN) { | 
|  | sigact_table[i - 1]._sa_handler = TARGET_SIG_IGN; | 
|  | } else if (oact.sa_sigaction == (void *)SIG_DFL) { | 
|  | sigact_table[i - 1]._sa_handler = TARGET_SIG_DFL; | 
|  | } | 
|  | /* | 
|  | * If there's already a handler installed then something has | 
|  | * gone horribly wrong, so don't even try to handle that case. | 
|  | * Install some handlers for our own use.  We need at least | 
|  | * SIGSEGV and SIGBUS, to detect exceptions.  We can not just | 
|  | * trap all signals because it affects syscall interrupt | 
|  | * behavior.  But do trap all default-fatal signals. | 
|  | */ | 
|  | if (fatal_signal(i)) { | 
|  | sigaction(host_sig, &act, NULL); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void handle_pending_signal(CPUArchState *env, int sig, | 
|  | struct emulated_sigtable *k) | 
|  | { | 
|  | CPUState *cpu = env_cpu(env); | 
|  | TaskState *ts = get_task_state(cpu); | 
|  | struct target_sigaction *sa; | 
|  | int code; | 
|  | sigset_t set; | 
|  | abi_ulong handler; | 
|  | target_siginfo_t tinfo; | 
|  | target_sigset_t target_old_set; | 
|  |  | 
|  | trace_user_handle_signal(env, sig); | 
|  |  | 
|  | k->pending = 0; | 
|  |  | 
|  | sig = gdb_handlesig(cpu, sig, NULL, &k->info, sizeof(k->info)); | 
|  | if (!sig) { | 
|  | sa = NULL; | 
|  | handler = TARGET_SIG_IGN; | 
|  | } else { | 
|  | sa = &sigact_table[sig - 1]; | 
|  | handler = sa->_sa_handler; | 
|  | } | 
|  |  | 
|  | if (do_strace) { | 
|  | print_taken_signal(sig, &k->info); | 
|  | } | 
|  |  | 
|  | if (handler == TARGET_SIG_DFL) { | 
|  | /* | 
|  | * default handler : ignore some signal. The other are job | 
|  | * control or fatal. | 
|  | */ | 
|  | if (sig == TARGET_SIGTSTP || sig == TARGET_SIGTTIN || | 
|  | sig == TARGET_SIGTTOU) { | 
|  | kill(getpid(), SIGSTOP); | 
|  | } else if (sig != TARGET_SIGCHLD && sig != TARGET_SIGURG && | 
|  | sig != TARGET_SIGINFO && sig != TARGET_SIGWINCH && | 
|  | sig != TARGET_SIGCONT) { | 
|  | dump_core_and_abort(sig); | 
|  | } | 
|  | } else if (handler == TARGET_SIG_IGN) { | 
|  | /* ignore sig */ | 
|  | } else if (handler == TARGET_SIG_ERR) { | 
|  | dump_core_and_abort(sig); | 
|  | } else { | 
|  | /* compute the blocked signals during the handler execution */ | 
|  | sigset_t *blocked_set; | 
|  |  | 
|  | target_to_host_sigset(&set, &sa->sa_mask); | 
|  | /* | 
|  | * SA_NODEFER indicates that the current signal should not be | 
|  | * blocked during the handler. | 
|  | */ | 
|  | if (!(sa->sa_flags & TARGET_SA_NODEFER)) { | 
|  | sigaddset(&set, target_to_host_signal(sig)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Save the previous blocked signal state to restore it at the | 
|  | * end of the signal execution (see do_sigreturn). | 
|  | */ | 
|  | host_to_target_sigset_internal(&target_old_set, &ts->signal_mask); | 
|  |  | 
|  | blocked_set = ts->in_sigsuspend ? | 
|  | &ts->sigsuspend_mask : &ts->signal_mask; | 
|  | sigorset(&ts->signal_mask, blocked_set, &set); | 
|  | ts->in_sigsuspend = false; | 
|  | sigprocmask(SIG_SETMASK, &ts->signal_mask, NULL); | 
|  |  | 
|  | /* XXX VM86 on x86 ??? */ | 
|  |  | 
|  | code = k->info.si_code; /* From host, so no si_type */ | 
|  | /* prepare the stack frame of the virtual CPU */ | 
|  | if (sa->sa_flags & TARGET_SA_SIGINFO) { | 
|  | tswap_siginfo(&tinfo, &k->info); | 
|  | setup_frame(sig, code, sa, &target_old_set, &tinfo, env); | 
|  | } else { | 
|  | setup_frame(sig, code, sa, &target_old_set, NULL, env); | 
|  | } | 
|  | if (sa->sa_flags & TARGET_SA_RESETHAND) { | 
|  | sa->_sa_handler = TARGET_SIG_DFL; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void process_pending_signals(CPUArchState *env) | 
|  | { | 
|  | CPUState *cpu = env_cpu(env); | 
|  | int sig; | 
|  | sigset_t *blocked_set, set; | 
|  | struct emulated_sigtable *k; | 
|  | TaskState *ts = get_task_state(cpu); | 
|  |  | 
|  | while (qatomic_read(&ts->signal_pending)) { | 
|  | sigfillset(&set); | 
|  | sigprocmask(SIG_SETMASK, &set, 0); | 
|  |  | 
|  | restart_scan: | 
|  | sig = ts->sync_signal.pending; | 
|  | if (sig) { | 
|  | /* | 
|  | * Synchronous signals are forced by the emulated CPU in some way. | 
|  | * If they are set to ignore, restore the default handler (see | 
|  | * sys/kern_sig.c trapsignal() and execsigs() for this behavior) | 
|  | * though maybe this is done only when forcing exit for non SIGCHLD. | 
|  | */ | 
|  | if (sigismember(&ts->signal_mask, target_to_host_signal(sig)) || | 
|  | sigact_table[sig - 1]._sa_handler == TARGET_SIG_IGN) { | 
|  | sigdelset(&ts->signal_mask, target_to_host_signal(sig)); | 
|  | sigact_table[sig - 1]._sa_handler = TARGET_SIG_DFL; | 
|  | } | 
|  | handle_pending_signal(env, sig, &ts->sync_signal); | 
|  | } | 
|  |  | 
|  | k = ts->sigtab; | 
|  | for (sig = 1; sig <= TARGET_NSIG; sig++, k++) { | 
|  | blocked_set = ts->in_sigsuspend ? | 
|  | &ts->sigsuspend_mask : &ts->signal_mask; | 
|  | if (k->pending && | 
|  | !sigismember(blocked_set, target_to_host_signal(sig))) { | 
|  | handle_pending_signal(env, sig, k); | 
|  | /* | 
|  | * Restart scan from the beginning, as handle_pending_signal | 
|  | * might have resulted in a new synchronous signal (eg SIGSEGV). | 
|  | */ | 
|  | goto restart_scan; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Unblock signals and check one more time. Unblocking signals may cause | 
|  | * us to take another host signal, which will set signal_pending again. | 
|  | */ | 
|  | qatomic_set(&ts->signal_pending, 0); | 
|  | ts->in_sigsuspend = false; | 
|  | set = ts->signal_mask; | 
|  | sigdelset(&set, SIGSEGV); | 
|  | sigdelset(&set, SIGBUS); | 
|  | sigprocmask(SIG_SETMASK, &set, 0); | 
|  | } | 
|  | ts->in_sigsuspend = false; | 
|  | } | 
|  |  | 
|  | void cpu_loop_exit_sigsegv(CPUState *cpu, target_ulong addr, | 
|  | MMUAccessType access_type, bool maperr, uintptr_t ra) | 
|  | { | 
|  | const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; | 
|  |  | 
|  | if (tcg_ops->record_sigsegv) { | 
|  | tcg_ops->record_sigsegv(cpu, addr, access_type, maperr, ra); | 
|  | } | 
|  |  | 
|  | force_sig_fault(TARGET_SIGSEGV, | 
|  | maperr ? TARGET_SEGV_MAPERR : TARGET_SEGV_ACCERR, | 
|  | addr); | 
|  | cpu->exception_index = EXCP_INTERRUPT; | 
|  | cpu_loop_exit_restore(cpu, ra); | 
|  | } | 
|  |  | 
|  | void cpu_loop_exit_sigbus(CPUState *cpu, target_ulong addr, | 
|  | MMUAccessType access_type, uintptr_t ra) | 
|  | { | 
|  | const TCGCPUOps *tcg_ops = CPU_GET_CLASS(cpu)->tcg_ops; | 
|  |  | 
|  | if (tcg_ops->record_sigbus) { | 
|  | tcg_ops->record_sigbus(cpu, addr, access_type, ra); | 
|  | } | 
|  |  | 
|  | force_sig_fault(TARGET_SIGBUS, TARGET_BUS_ADRALN, addr); | 
|  | cpu->exception_index = EXCP_INTERRUPT; | 
|  | cpu_loop_exit_restore(cpu, ra); | 
|  | } |