| /* |
| * QEMU System Emulator |
| * |
| * Copyright (c) 2003-2008 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| #include <stdint.h> |
| #include <stdarg.h> |
| #include <stdlib.h> |
| #include <zlib.h> |
| #ifndef _WIN32 |
| #include <sys/types.h> |
| #include <sys/mman.h> |
| #endif |
| #include "config.h" |
| #include "monitor/monitor.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/bitops.h" |
| #include "qemu/bitmap.h" |
| #include "sysemu/arch_init.h" |
| #include "audio/audio.h" |
| #include "hw/i386/pc.h" |
| #include "hw/pci/pci.h" |
| #include "hw/audio/audio.h" |
| #include "sysemu/kvm.h" |
| #include "migration/migration.h" |
| #include "hw/i386/smbios.h" |
| #include "exec/address-spaces.h" |
| #include "hw/audio/pcspk.h" |
| #include "migration/page_cache.h" |
| #include "qemu/config-file.h" |
| #include "qemu/error-report.h" |
| #include "qmp-commands.h" |
| #include "trace.h" |
| #include "exec/cpu-all.h" |
| #include "exec/ram_addr.h" |
| #include "hw/acpi/acpi.h" |
| #include "qemu/host-utils.h" |
| #include "qemu/rcu_queue.h" |
| |
| #ifdef DEBUG_ARCH_INIT |
| #define DPRINTF(fmt, ...) \ |
| do { fprintf(stdout, "arch_init: " fmt, ## __VA_ARGS__); } while (0) |
| #else |
| #define DPRINTF(fmt, ...) \ |
| do { } while (0) |
| #endif |
| |
| #ifdef TARGET_SPARC |
| int graphic_width = 1024; |
| int graphic_height = 768; |
| int graphic_depth = 8; |
| #else |
| int graphic_width = 800; |
| int graphic_height = 600; |
| int graphic_depth = 32; |
| #endif |
| |
| |
| #if defined(TARGET_ALPHA) |
| #define QEMU_ARCH QEMU_ARCH_ALPHA |
| #elif defined(TARGET_ARM) |
| #define QEMU_ARCH QEMU_ARCH_ARM |
| #elif defined(TARGET_CRIS) |
| #define QEMU_ARCH QEMU_ARCH_CRIS |
| #elif defined(TARGET_I386) |
| #define QEMU_ARCH QEMU_ARCH_I386 |
| #elif defined(TARGET_M68K) |
| #define QEMU_ARCH QEMU_ARCH_M68K |
| #elif defined(TARGET_LM32) |
| #define QEMU_ARCH QEMU_ARCH_LM32 |
| #elif defined(TARGET_MICROBLAZE) |
| #define QEMU_ARCH QEMU_ARCH_MICROBLAZE |
| #elif defined(TARGET_MIPS) |
| #define QEMU_ARCH QEMU_ARCH_MIPS |
| #elif defined(TARGET_MOXIE) |
| #define QEMU_ARCH QEMU_ARCH_MOXIE |
| #elif defined(TARGET_OPENRISC) |
| #define QEMU_ARCH QEMU_ARCH_OPENRISC |
| #elif defined(TARGET_PPC) |
| #define QEMU_ARCH QEMU_ARCH_PPC |
| #elif defined(TARGET_S390X) |
| #define QEMU_ARCH QEMU_ARCH_S390X |
| #elif defined(TARGET_SH4) |
| #define QEMU_ARCH QEMU_ARCH_SH4 |
| #elif defined(TARGET_SPARC) |
| #define QEMU_ARCH QEMU_ARCH_SPARC |
| #elif defined(TARGET_XTENSA) |
| #define QEMU_ARCH QEMU_ARCH_XTENSA |
| #elif defined(TARGET_UNICORE32) |
| #define QEMU_ARCH QEMU_ARCH_UNICORE32 |
| #elif defined(TARGET_TRICORE) |
| #define QEMU_ARCH QEMU_ARCH_TRICORE |
| #endif |
| |
| const uint32_t arch_type = QEMU_ARCH; |
| static bool mig_throttle_on; |
| static int dirty_rate_high_cnt; |
| static void check_guest_throttling(void); |
| |
| static uint64_t bitmap_sync_count; |
| |
| /***********************************************************/ |
| /* ram save/restore */ |
| |
| #define RAM_SAVE_FLAG_FULL 0x01 /* Obsolete, not used anymore */ |
| #define RAM_SAVE_FLAG_COMPRESS 0x02 |
| #define RAM_SAVE_FLAG_MEM_SIZE 0x04 |
| #define RAM_SAVE_FLAG_PAGE 0x08 |
| #define RAM_SAVE_FLAG_EOS 0x10 |
| #define RAM_SAVE_FLAG_CONTINUE 0x20 |
| #define RAM_SAVE_FLAG_XBZRLE 0x40 |
| /* 0x80 is reserved in migration.h start with 0x100 next */ |
| #define RAM_SAVE_FLAG_COMPRESS_PAGE 0x100 |
| |
| static struct defconfig_file { |
| const char *filename; |
| /* Indicates it is an user config file (disabled by -no-user-config) */ |
| bool userconfig; |
| } default_config_files[] = { |
| { CONFIG_QEMU_CONFDIR "/qemu.conf", true }, |
| { NULL }, /* end of list */ |
| }; |
| |
| static const uint8_t ZERO_TARGET_PAGE[TARGET_PAGE_SIZE]; |
| |
| int qemu_read_default_config_files(bool userconfig) |
| { |
| int ret; |
| struct defconfig_file *f; |
| |
| for (f = default_config_files; f->filename; f++) { |
| if (!userconfig && f->userconfig) { |
| continue; |
| } |
| ret = qemu_read_config_file(f->filename); |
| if (ret < 0 && ret != -ENOENT) { |
| return ret; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static inline bool is_zero_range(uint8_t *p, uint64_t size) |
| { |
| return buffer_find_nonzero_offset(p, size) == size; |
| } |
| |
| /* struct contains XBZRLE cache and a static page |
| used by the compression */ |
| static struct { |
| /* buffer used for XBZRLE encoding */ |
| uint8_t *encoded_buf; |
| /* buffer for storing page content */ |
| uint8_t *current_buf; |
| /* Cache for XBZRLE, Protected by lock. */ |
| PageCache *cache; |
| QemuMutex lock; |
| } XBZRLE; |
| |
| /* buffer used for XBZRLE decoding */ |
| static uint8_t *xbzrle_decoded_buf; |
| |
| static void XBZRLE_cache_lock(void) |
| { |
| if (migrate_use_xbzrle()) |
| qemu_mutex_lock(&XBZRLE.lock); |
| } |
| |
| static void XBZRLE_cache_unlock(void) |
| { |
| if (migrate_use_xbzrle()) |
| qemu_mutex_unlock(&XBZRLE.lock); |
| } |
| |
| /* |
| * called from qmp_migrate_set_cache_size in main thread, possibly while |
| * a migration is in progress. |
| * A running migration maybe using the cache and might finish during this |
| * call, hence changes to the cache are protected by XBZRLE.lock(). |
| */ |
| int64_t xbzrle_cache_resize(int64_t new_size) |
| { |
| PageCache *new_cache; |
| int64_t ret; |
| |
| if (new_size < TARGET_PAGE_SIZE) { |
| return -1; |
| } |
| |
| XBZRLE_cache_lock(); |
| |
| if (XBZRLE.cache != NULL) { |
| if (pow2floor(new_size) == migrate_xbzrle_cache_size()) { |
| goto out_new_size; |
| } |
| new_cache = cache_init(new_size / TARGET_PAGE_SIZE, |
| TARGET_PAGE_SIZE); |
| if (!new_cache) { |
| error_report("Error creating cache"); |
| ret = -1; |
| goto out; |
| } |
| |
| cache_fini(XBZRLE.cache); |
| XBZRLE.cache = new_cache; |
| } |
| |
| out_new_size: |
| ret = pow2floor(new_size); |
| out: |
| XBZRLE_cache_unlock(); |
| return ret; |
| } |
| |
| /* accounting for migration statistics */ |
| typedef struct AccountingInfo { |
| uint64_t dup_pages; |
| uint64_t skipped_pages; |
| uint64_t norm_pages; |
| uint64_t iterations; |
| uint64_t xbzrle_bytes; |
| uint64_t xbzrle_pages; |
| uint64_t xbzrle_cache_miss; |
| double xbzrle_cache_miss_rate; |
| uint64_t xbzrle_overflows; |
| } AccountingInfo; |
| |
| static AccountingInfo acct_info; |
| |
| static void acct_clear(void) |
| { |
| memset(&acct_info, 0, sizeof(acct_info)); |
| } |
| |
| uint64_t dup_mig_bytes_transferred(void) |
| { |
| return acct_info.dup_pages * TARGET_PAGE_SIZE; |
| } |
| |
| uint64_t dup_mig_pages_transferred(void) |
| { |
| return acct_info.dup_pages; |
| } |
| |
| uint64_t skipped_mig_bytes_transferred(void) |
| { |
| return acct_info.skipped_pages * TARGET_PAGE_SIZE; |
| } |
| |
| uint64_t skipped_mig_pages_transferred(void) |
| { |
| return acct_info.skipped_pages; |
| } |
| |
| uint64_t norm_mig_bytes_transferred(void) |
| { |
| return acct_info.norm_pages * TARGET_PAGE_SIZE; |
| } |
| |
| uint64_t norm_mig_pages_transferred(void) |
| { |
| return acct_info.norm_pages; |
| } |
| |
| uint64_t xbzrle_mig_bytes_transferred(void) |
| { |
| return acct_info.xbzrle_bytes; |
| } |
| |
| uint64_t xbzrle_mig_pages_transferred(void) |
| { |
| return acct_info.xbzrle_pages; |
| } |
| |
| uint64_t xbzrle_mig_pages_cache_miss(void) |
| { |
| return acct_info.xbzrle_cache_miss; |
| } |
| |
| double xbzrle_mig_cache_miss_rate(void) |
| { |
| return acct_info.xbzrle_cache_miss_rate; |
| } |
| |
| uint64_t xbzrle_mig_pages_overflow(void) |
| { |
| return acct_info.xbzrle_overflows; |
| } |
| |
| /* This is the last block that we have visited serching for dirty pages |
| */ |
| static RAMBlock *last_seen_block; |
| /* This is the last block from where we have sent data */ |
| static RAMBlock *last_sent_block; |
| static ram_addr_t last_offset; |
| static unsigned long *migration_bitmap; |
| static uint64_t migration_dirty_pages; |
| static uint32_t last_version; |
| static bool ram_bulk_stage; |
| |
| struct CompressParam { |
| bool start; |
| bool done; |
| QEMUFile *file; |
| QemuMutex mutex; |
| QemuCond cond; |
| RAMBlock *block; |
| ram_addr_t offset; |
| }; |
| typedef struct CompressParam CompressParam; |
| |
| struct DecompressParam { |
| bool start; |
| QemuMutex mutex; |
| QemuCond cond; |
| void *des; |
| uint8 *compbuf; |
| int len; |
| }; |
| typedef struct DecompressParam DecompressParam; |
| |
| static CompressParam *comp_param; |
| static QemuThread *compress_threads; |
| /* comp_done_cond is used to wake up the migration thread when |
| * one of the compression threads has finished the compression. |
| * comp_done_lock is used to co-work with comp_done_cond. |
| */ |
| static QemuMutex *comp_done_lock; |
| static QemuCond *comp_done_cond; |
| /* The empty QEMUFileOps will be used by file in CompressParam */ |
| static const QEMUFileOps empty_ops = { }; |
| |
| static bool compression_switch; |
| static bool quit_comp_thread; |
| static bool quit_decomp_thread; |
| static DecompressParam *decomp_param; |
| static QemuThread *decompress_threads; |
| static uint8_t *compressed_data_buf; |
| |
| static int do_compress_ram_page(CompressParam *param); |
| |
| static void *do_data_compress(void *opaque) |
| { |
| CompressParam *param = opaque; |
| |
| while (!quit_comp_thread) { |
| qemu_mutex_lock(¶m->mutex); |
| /* Re-check the quit_comp_thread in case of |
| * terminate_compression_threads is called just before |
| * qemu_mutex_lock(¶m->mutex) and after |
| * while(!quit_comp_thread), re-check it here can make |
| * sure the compression thread terminate as expected. |
| */ |
| while (!param->start && !quit_comp_thread) { |
| qemu_cond_wait(¶m->cond, ¶m->mutex); |
| } |
| if (!quit_comp_thread) { |
| do_compress_ram_page(param); |
| } |
| param->start = false; |
| qemu_mutex_unlock(¶m->mutex); |
| |
| qemu_mutex_lock(comp_done_lock); |
| param->done = true; |
| qemu_cond_signal(comp_done_cond); |
| qemu_mutex_unlock(comp_done_lock); |
| } |
| |
| return NULL; |
| } |
| |
| static inline void terminate_compression_threads(void) |
| { |
| int idx, thread_count; |
| |
| thread_count = migrate_compress_threads(); |
| quit_comp_thread = true; |
| for (idx = 0; idx < thread_count; idx++) { |
| qemu_mutex_lock(&comp_param[idx].mutex); |
| qemu_cond_signal(&comp_param[idx].cond); |
| qemu_mutex_unlock(&comp_param[idx].mutex); |
| } |
| } |
| |
| void migrate_compress_threads_join(void) |
| { |
| int i, thread_count; |
| |
| if (!migrate_use_compression()) { |
| return; |
| } |
| terminate_compression_threads(); |
| thread_count = migrate_compress_threads(); |
| for (i = 0; i < thread_count; i++) { |
| qemu_thread_join(compress_threads + i); |
| qemu_fclose(comp_param[i].file); |
| qemu_mutex_destroy(&comp_param[i].mutex); |
| qemu_cond_destroy(&comp_param[i].cond); |
| } |
| qemu_mutex_destroy(comp_done_lock); |
| qemu_cond_destroy(comp_done_cond); |
| g_free(compress_threads); |
| g_free(comp_param); |
| g_free(comp_done_cond); |
| g_free(comp_done_lock); |
| compress_threads = NULL; |
| comp_param = NULL; |
| comp_done_cond = NULL; |
| comp_done_lock = NULL; |
| } |
| |
| void migrate_compress_threads_create(void) |
| { |
| int i, thread_count; |
| |
| if (!migrate_use_compression()) { |
| return; |
| } |
| quit_comp_thread = false; |
| compression_switch = true; |
| thread_count = migrate_compress_threads(); |
| compress_threads = g_new0(QemuThread, thread_count); |
| comp_param = g_new0(CompressParam, thread_count); |
| comp_done_cond = g_new0(QemuCond, 1); |
| comp_done_lock = g_new0(QemuMutex, 1); |
| qemu_cond_init(comp_done_cond); |
| qemu_mutex_init(comp_done_lock); |
| for (i = 0; i < thread_count; i++) { |
| /* com_param[i].file is just used as a dummy buffer to save data, set |
| * it's ops to empty. |
| */ |
| comp_param[i].file = qemu_fopen_ops(NULL, &empty_ops); |
| comp_param[i].done = true; |
| qemu_mutex_init(&comp_param[i].mutex); |
| qemu_cond_init(&comp_param[i].cond); |
| qemu_thread_create(compress_threads + i, "compress", |
| do_data_compress, comp_param + i, |
| QEMU_THREAD_JOINABLE); |
| } |
| } |
| |
| /** |
| * save_page_header: Write page header to wire |
| * |
| * If this is the 1st block, it also writes the block identification |
| * |
| * Returns: Number of bytes written |
| * |
| * @f: QEMUFile where to send the data |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * in the lower bits, it contains flags |
| */ |
| static size_t save_page_header(QEMUFile *f, RAMBlock *block, ram_addr_t offset) |
| { |
| size_t size; |
| |
| qemu_put_be64(f, offset); |
| size = 8; |
| |
| if (!(offset & RAM_SAVE_FLAG_CONTINUE)) { |
| qemu_put_byte(f, strlen(block->idstr)); |
| qemu_put_buffer(f, (uint8_t *)block->idstr, |
| strlen(block->idstr)); |
| size += 1 + strlen(block->idstr); |
| } |
| return size; |
| } |
| |
| /* Update the xbzrle cache to reflect a page that's been sent as all 0. |
| * The important thing is that a stale (not-yet-0'd) page be replaced |
| * by the new data. |
| * As a bonus, if the page wasn't in the cache it gets added so that |
| * when a small write is made into the 0'd page it gets XBZRLE sent |
| */ |
| static void xbzrle_cache_zero_page(ram_addr_t current_addr) |
| { |
| if (ram_bulk_stage || !migrate_use_xbzrle()) { |
| return; |
| } |
| |
| /* We don't care if this fails to allocate a new cache page |
| * as long as it updated an old one */ |
| cache_insert(XBZRLE.cache, current_addr, ZERO_TARGET_PAGE, |
| bitmap_sync_count); |
| } |
| |
| #define ENCODING_FLAG_XBZRLE 0x1 |
| |
| /** |
| * save_xbzrle_page: compress and send current page |
| * |
| * Returns: 1 means that we wrote the page |
| * 0 means that page is identical to the one already sent |
| * -1 means that xbzrle would be longer than normal |
| * |
| * @f: QEMUFile where to send the data |
| * @current_data: |
| * @current_addr: |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * @last_stage: if we are at the completion stage |
| * @bytes_transferred: increase it with the number of transferred bytes |
| */ |
| static int save_xbzrle_page(QEMUFile *f, uint8_t **current_data, |
| ram_addr_t current_addr, RAMBlock *block, |
| ram_addr_t offset, bool last_stage, |
| uint64_t *bytes_transferred) |
| { |
| int encoded_len = 0, bytes_xbzrle; |
| uint8_t *prev_cached_page; |
| |
| if (!cache_is_cached(XBZRLE.cache, current_addr, bitmap_sync_count)) { |
| acct_info.xbzrle_cache_miss++; |
| if (!last_stage) { |
| if (cache_insert(XBZRLE.cache, current_addr, *current_data, |
| bitmap_sync_count) == -1) { |
| return -1; |
| } else { |
| /* update *current_data when the page has been |
| inserted into cache */ |
| *current_data = get_cached_data(XBZRLE.cache, current_addr); |
| } |
| } |
| return -1; |
| } |
| |
| prev_cached_page = get_cached_data(XBZRLE.cache, current_addr); |
| |
| /* save current buffer into memory */ |
| memcpy(XBZRLE.current_buf, *current_data, TARGET_PAGE_SIZE); |
| |
| /* XBZRLE encoding (if there is no overflow) */ |
| encoded_len = xbzrle_encode_buffer(prev_cached_page, XBZRLE.current_buf, |
| TARGET_PAGE_SIZE, XBZRLE.encoded_buf, |
| TARGET_PAGE_SIZE); |
| if (encoded_len == 0) { |
| DPRINTF("Skipping unmodified page\n"); |
| return 0; |
| } else if (encoded_len == -1) { |
| DPRINTF("Overflow\n"); |
| acct_info.xbzrle_overflows++; |
| /* update data in the cache */ |
| if (!last_stage) { |
| memcpy(prev_cached_page, *current_data, TARGET_PAGE_SIZE); |
| *current_data = prev_cached_page; |
| } |
| return -1; |
| } |
| |
| /* we need to update the data in the cache, in order to get the same data */ |
| if (!last_stage) { |
| memcpy(prev_cached_page, XBZRLE.current_buf, TARGET_PAGE_SIZE); |
| } |
| |
| /* Send XBZRLE based compressed page */ |
| bytes_xbzrle = save_page_header(f, block, offset | RAM_SAVE_FLAG_XBZRLE); |
| qemu_put_byte(f, ENCODING_FLAG_XBZRLE); |
| qemu_put_be16(f, encoded_len); |
| qemu_put_buffer(f, XBZRLE.encoded_buf, encoded_len); |
| bytes_xbzrle += encoded_len + 1 + 2; |
| acct_info.xbzrle_pages++; |
| acct_info.xbzrle_bytes += bytes_xbzrle; |
| *bytes_transferred += bytes_xbzrle; |
| |
| return 1; |
| } |
| |
| static inline |
| ram_addr_t migration_bitmap_find_and_reset_dirty(MemoryRegion *mr, |
| ram_addr_t start) |
| { |
| unsigned long base = mr->ram_addr >> TARGET_PAGE_BITS; |
| unsigned long nr = base + (start >> TARGET_PAGE_BITS); |
| uint64_t mr_size = TARGET_PAGE_ALIGN(memory_region_size(mr)); |
| unsigned long size = base + (mr_size >> TARGET_PAGE_BITS); |
| |
| unsigned long next; |
| |
| if (ram_bulk_stage && nr > base) { |
| next = nr + 1; |
| } else { |
| next = find_next_bit(migration_bitmap, size, nr); |
| } |
| |
| if (next < size) { |
| clear_bit(next, migration_bitmap); |
| migration_dirty_pages--; |
| } |
| return (next - base) << TARGET_PAGE_BITS; |
| } |
| |
| static inline bool migration_bitmap_set_dirty(ram_addr_t addr) |
| { |
| bool ret; |
| int nr = addr >> TARGET_PAGE_BITS; |
| |
| ret = test_and_set_bit(nr, migration_bitmap); |
| |
| if (!ret) { |
| migration_dirty_pages++; |
| } |
| return ret; |
| } |
| |
| static void migration_bitmap_sync_range(ram_addr_t start, ram_addr_t length) |
| { |
| ram_addr_t addr; |
| unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); |
| |
| /* start address is aligned at the start of a word? */ |
| if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) { |
| int k; |
| int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS); |
| unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]; |
| |
| for (k = page; k < page + nr; k++) { |
| if (src[k]) { |
| unsigned long new_dirty; |
| new_dirty = ~migration_bitmap[k]; |
| migration_bitmap[k] |= src[k]; |
| new_dirty &= src[k]; |
| migration_dirty_pages += ctpopl(new_dirty); |
| src[k] = 0; |
| } |
| } |
| } else { |
| for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) { |
| if (cpu_physical_memory_get_dirty(start + addr, |
| TARGET_PAGE_SIZE, |
| DIRTY_MEMORY_MIGRATION)) { |
| cpu_physical_memory_reset_dirty(start + addr, |
| TARGET_PAGE_SIZE, |
| DIRTY_MEMORY_MIGRATION); |
| migration_bitmap_set_dirty(start + addr); |
| } |
| } |
| } |
| } |
| |
| |
| /* Fix me: there are too many global variables used in migration process. */ |
| static int64_t start_time; |
| static int64_t bytes_xfer_prev; |
| static int64_t num_dirty_pages_period; |
| static uint64_t xbzrle_cache_miss_prev; |
| static uint64_t iterations_prev; |
| |
| static void migration_bitmap_sync_init(void) |
| { |
| start_time = 0; |
| bytes_xfer_prev = 0; |
| num_dirty_pages_period = 0; |
| xbzrle_cache_miss_prev = 0; |
| iterations_prev = 0; |
| } |
| |
| /* Called with iothread lock held, to protect ram_list.dirty_memory[] */ |
| static void migration_bitmap_sync(void) |
| { |
| RAMBlock *block; |
| uint64_t num_dirty_pages_init = migration_dirty_pages; |
| MigrationState *s = migrate_get_current(); |
| int64_t end_time; |
| int64_t bytes_xfer_now; |
| |
| bitmap_sync_count++; |
| |
| if (!bytes_xfer_prev) { |
| bytes_xfer_prev = ram_bytes_transferred(); |
| } |
| |
| if (!start_time) { |
| start_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
| } |
| |
| trace_migration_bitmap_sync_start(); |
| address_space_sync_dirty_bitmap(&address_space_memory); |
| |
| rcu_read_lock(); |
| QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
| migration_bitmap_sync_range(block->mr->ram_addr, block->used_length); |
| } |
| rcu_read_unlock(); |
| |
| trace_migration_bitmap_sync_end(migration_dirty_pages |
| - num_dirty_pages_init); |
| num_dirty_pages_period += migration_dirty_pages - num_dirty_pages_init; |
| end_time = qemu_clock_get_ms(QEMU_CLOCK_REALTIME); |
| |
| /* more than 1 second = 1000 millisecons */ |
| if (end_time > start_time + 1000) { |
| if (migrate_auto_converge()) { |
| /* The following detection logic can be refined later. For now: |
| Check to see if the dirtied bytes is 50% more than the approx. |
| amount of bytes that just got transferred since the last time we |
| were in this routine. If that happens >N times (for now N==4) |
| we turn on the throttle down logic */ |
| bytes_xfer_now = ram_bytes_transferred(); |
| if (s->dirty_pages_rate && |
| (num_dirty_pages_period * TARGET_PAGE_SIZE > |
| (bytes_xfer_now - bytes_xfer_prev)/2) && |
| (dirty_rate_high_cnt++ > 4)) { |
| trace_migration_throttle(); |
| mig_throttle_on = true; |
| dirty_rate_high_cnt = 0; |
| } |
| bytes_xfer_prev = bytes_xfer_now; |
| } else { |
| mig_throttle_on = false; |
| } |
| if (migrate_use_xbzrle()) { |
| if (iterations_prev != acct_info.iterations) { |
| acct_info.xbzrle_cache_miss_rate = |
| (double)(acct_info.xbzrle_cache_miss - |
| xbzrle_cache_miss_prev) / |
| (acct_info.iterations - iterations_prev); |
| } |
| iterations_prev = acct_info.iterations; |
| xbzrle_cache_miss_prev = acct_info.xbzrle_cache_miss; |
| } |
| s->dirty_pages_rate = num_dirty_pages_period * 1000 |
| / (end_time - start_time); |
| s->dirty_bytes_rate = s->dirty_pages_rate * TARGET_PAGE_SIZE; |
| start_time = end_time; |
| num_dirty_pages_period = 0; |
| } |
| s->dirty_sync_count = bitmap_sync_count; |
| } |
| |
| /** |
| * save_zero_page: Send the zero page to the stream |
| * |
| * Returns: Number of pages written. |
| * |
| * @f: QEMUFile where to send the data |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * @p: pointer to the page |
| * @bytes_transferred: increase it with the number of transferred bytes |
| */ |
| static int save_zero_page(QEMUFile *f, RAMBlock *block, ram_addr_t offset, |
| uint8_t *p, uint64_t *bytes_transferred) |
| { |
| int pages = -1; |
| |
| if (is_zero_range(p, TARGET_PAGE_SIZE)) { |
| acct_info.dup_pages++; |
| *bytes_transferred += save_page_header(f, block, |
| offset | RAM_SAVE_FLAG_COMPRESS); |
| qemu_put_byte(f, 0); |
| *bytes_transferred += 1; |
| pages = 1; |
| } |
| |
| return pages; |
| } |
| |
| /** |
| * ram_save_page: Send the given page to the stream |
| * |
| * Returns: Number of pages written. |
| * |
| * @f: QEMUFile where to send the data |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * @last_stage: if we are at the completion stage |
| * @bytes_transferred: increase it with the number of transferred bytes |
| */ |
| static int ram_save_page(QEMUFile *f, RAMBlock* block, ram_addr_t offset, |
| bool last_stage, uint64_t *bytes_transferred) |
| { |
| int pages = -1; |
| uint64_t bytes_xmit; |
| ram_addr_t current_addr; |
| MemoryRegion *mr = block->mr; |
| uint8_t *p; |
| int ret; |
| bool send_async = true; |
| |
| p = memory_region_get_ram_ptr(mr) + offset; |
| |
| /* In doubt sent page as normal */ |
| bytes_xmit = 0; |
| ret = ram_control_save_page(f, block->offset, |
| offset, TARGET_PAGE_SIZE, &bytes_xmit); |
| if (bytes_xmit) { |
| *bytes_transferred += bytes_xmit; |
| pages = 1; |
| } |
| |
| XBZRLE_cache_lock(); |
| |
| current_addr = block->offset + offset; |
| |
| if (block == last_sent_block) { |
| offset |= RAM_SAVE_FLAG_CONTINUE; |
| } |
| if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { |
| if (ret != RAM_SAVE_CONTROL_DELAYED) { |
| if (bytes_xmit > 0) { |
| acct_info.norm_pages++; |
| } else if (bytes_xmit == 0) { |
| acct_info.dup_pages++; |
| } |
| } |
| } else { |
| pages = save_zero_page(f, block, offset, p, bytes_transferred); |
| if (pages > 0) { |
| /* Must let xbzrle know, otherwise a previous (now 0'd) cached |
| * page would be stale |
| */ |
| xbzrle_cache_zero_page(current_addr); |
| } else if (!ram_bulk_stage && migrate_use_xbzrle()) { |
| pages = save_xbzrle_page(f, &p, current_addr, block, |
| offset, last_stage, bytes_transferred); |
| if (!last_stage) { |
| /* Can't send this cached data async, since the cache page |
| * might get updated before it gets to the wire |
| */ |
| send_async = false; |
| } |
| } |
| } |
| |
| /* XBZRLE overflow or normal page */ |
| if (pages == -1) { |
| *bytes_transferred += save_page_header(f, block, |
| offset | RAM_SAVE_FLAG_PAGE); |
| if (send_async) { |
| qemu_put_buffer_async(f, p, TARGET_PAGE_SIZE); |
| } else { |
| qemu_put_buffer(f, p, TARGET_PAGE_SIZE); |
| } |
| *bytes_transferred += TARGET_PAGE_SIZE; |
| pages = 1; |
| acct_info.norm_pages++; |
| } |
| |
| XBZRLE_cache_unlock(); |
| |
| return pages; |
| } |
| |
| static int do_compress_ram_page(CompressParam *param) |
| { |
| int bytes_sent, blen; |
| uint8_t *p; |
| RAMBlock *block = param->block; |
| ram_addr_t offset = param->offset; |
| |
| p = memory_region_get_ram_ptr(block->mr) + (offset & TARGET_PAGE_MASK); |
| |
| bytes_sent = save_page_header(param->file, block, offset | |
| RAM_SAVE_FLAG_COMPRESS_PAGE); |
| blen = qemu_put_compression_data(param->file, p, TARGET_PAGE_SIZE, |
| migrate_compress_level()); |
| bytes_sent += blen; |
| |
| return bytes_sent; |
| } |
| |
| static inline void start_compression(CompressParam *param) |
| { |
| param->done = false; |
| qemu_mutex_lock(¶m->mutex); |
| param->start = true; |
| qemu_cond_signal(¶m->cond); |
| qemu_mutex_unlock(¶m->mutex); |
| } |
| |
| static inline void start_decompression(DecompressParam *param) |
| { |
| qemu_mutex_lock(¶m->mutex); |
| param->start = true; |
| qemu_cond_signal(¶m->cond); |
| qemu_mutex_unlock(¶m->mutex); |
| } |
| |
| static uint64_t bytes_transferred; |
| |
| static void flush_compressed_data(QEMUFile *f) |
| { |
| int idx, len, thread_count; |
| |
| if (!migrate_use_compression()) { |
| return; |
| } |
| thread_count = migrate_compress_threads(); |
| for (idx = 0; idx < thread_count; idx++) { |
| if (!comp_param[idx].done) { |
| qemu_mutex_lock(comp_done_lock); |
| while (!comp_param[idx].done && !quit_comp_thread) { |
| qemu_cond_wait(comp_done_cond, comp_done_lock); |
| } |
| qemu_mutex_unlock(comp_done_lock); |
| } |
| if (!quit_comp_thread) { |
| len = qemu_put_qemu_file(f, comp_param[idx].file); |
| bytes_transferred += len; |
| } |
| } |
| } |
| |
| static inline void set_compress_params(CompressParam *param, RAMBlock *block, |
| ram_addr_t offset) |
| { |
| param->block = block; |
| param->offset = offset; |
| } |
| |
| static int compress_page_with_multi_thread(QEMUFile *f, RAMBlock *block, |
| ram_addr_t offset, |
| uint64_t *bytes_transferred) |
| { |
| int idx, thread_count, bytes_xmit = -1, pages = -1; |
| |
| thread_count = migrate_compress_threads(); |
| qemu_mutex_lock(comp_done_lock); |
| while (true) { |
| for (idx = 0; idx < thread_count; idx++) { |
| if (comp_param[idx].done) { |
| bytes_xmit = qemu_put_qemu_file(f, comp_param[idx].file); |
| set_compress_params(&comp_param[idx], block, offset); |
| start_compression(&comp_param[idx]); |
| pages = 1; |
| acct_info.norm_pages++; |
| *bytes_transferred += bytes_xmit; |
| break; |
| } |
| } |
| if (pages > 0) { |
| break; |
| } else { |
| qemu_cond_wait(comp_done_cond, comp_done_lock); |
| } |
| } |
| qemu_mutex_unlock(comp_done_lock); |
| |
| return pages; |
| } |
| |
| /** |
| * ram_save_compressed_page: compress the given page and send it to the stream |
| * |
| * Returns: Number of pages written. |
| * |
| * @f: QEMUFile where to send the data |
| * @block: block that contains the page we want to send |
| * @offset: offset inside the block for the page |
| * @last_stage: if we are at the completion stage |
| * @bytes_transferred: increase it with the number of transferred bytes |
| */ |
| static int ram_save_compressed_page(QEMUFile *f, RAMBlock *block, |
| ram_addr_t offset, bool last_stage, |
| uint64_t *bytes_transferred) |
| { |
| int pages = -1; |
| uint64_t bytes_xmit; |
| MemoryRegion *mr = block->mr; |
| uint8_t *p; |
| int ret; |
| |
| p = memory_region_get_ram_ptr(mr) + offset; |
| |
| bytes_xmit = 0; |
| ret = ram_control_save_page(f, block->offset, |
| offset, TARGET_PAGE_SIZE, &bytes_xmit); |
| if (bytes_xmit) { |
| *bytes_transferred += bytes_xmit; |
| pages = 1; |
| } |
| if (block == last_sent_block) { |
| offset |= RAM_SAVE_FLAG_CONTINUE; |
| } |
| if (ret != RAM_SAVE_CONTROL_NOT_SUPP) { |
| if (ret != RAM_SAVE_CONTROL_DELAYED) { |
| if (bytes_xmit > 0) { |
| acct_info.norm_pages++; |
| } else if (bytes_xmit == 0) { |
| acct_info.dup_pages++; |
| } |
| } |
| } else { |
| /* When starting the process of a new block, the first page of |
| * the block should be sent out before other pages in the same |
| * block, and all the pages in last block should have been sent |
| * out, keeping this order is important, because the 'cont' flag |
| * is used to avoid resending the block name. |
| */ |
| if (block != last_sent_block) { |
| flush_compressed_data(f); |
| pages = save_zero_page(f, block, offset, p, bytes_transferred); |
| if (pages == -1) { |
| set_compress_params(&comp_param[0], block, offset); |
| /* Use the qemu thread to compress the data to make sure the |
| * first page is sent out before other pages |
| */ |
| bytes_xmit = do_compress_ram_page(&comp_param[0]); |
| acct_info.norm_pages++; |
| qemu_put_qemu_file(f, comp_param[0].file); |
| *bytes_transferred += bytes_xmit; |
| pages = 1; |
| } |
| } else { |
| pages = save_zero_page(f, block, offset, p, bytes_transferred); |
| if (pages == -1) { |
| pages = compress_page_with_multi_thread(f, block, offset, |
| bytes_transferred); |
| } |
| } |
| } |
| |
| return pages; |
| } |
| |
| /** |
| * ram_find_and_save_block: Finds a dirty page and sends it to f |
| * |
| * Called within an RCU critical section. |
| * |
| * Returns: The number of pages written |
| * 0 means no dirty pages |
| * |
| * @f: QEMUFile where to send the data |
| * @last_stage: if we are at the completion stage |
| * @bytes_transferred: increase it with the number of transferred bytes |
| */ |
| |
| static int ram_find_and_save_block(QEMUFile *f, bool last_stage, |
| uint64_t *bytes_transferred) |
| { |
| RAMBlock *block = last_seen_block; |
| ram_addr_t offset = last_offset; |
| bool complete_round = false; |
| int pages = 0; |
| MemoryRegion *mr; |
| |
| if (!block) |
| block = QLIST_FIRST_RCU(&ram_list.blocks); |
| |
| while (true) { |
| mr = block->mr; |
| offset = migration_bitmap_find_and_reset_dirty(mr, offset); |
| if (complete_round && block == last_seen_block && |
| offset >= last_offset) { |
| break; |
| } |
| if (offset >= block->used_length) { |
| offset = 0; |
| block = QLIST_NEXT_RCU(block, next); |
| if (!block) { |
| block = QLIST_FIRST_RCU(&ram_list.blocks); |
| complete_round = true; |
| ram_bulk_stage = false; |
| if (migrate_use_xbzrle()) { |
| /* If xbzrle is on, stop using the data compression at this |
| * point. In theory, xbzrle can do better than compression. |
| */ |
| flush_compressed_data(f); |
| compression_switch = false; |
| } |
| } |
| } else { |
| if (compression_switch && migrate_use_compression()) { |
| pages = ram_save_compressed_page(f, block, offset, last_stage, |
| bytes_transferred); |
| } else { |
| pages = ram_save_page(f, block, offset, last_stage, |
| bytes_transferred); |
| } |
| |
| /* if page is unmodified, continue to the next */ |
| if (pages > 0) { |
| last_sent_block = block; |
| break; |
| } |
| } |
| } |
| |
| last_seen_block = block; |
| last_offset = offset; |
| |
| return pages; |
| } |
| |
| void acct_update_position(QEMUFile *f, size_t size, bool zero) |
| { |
| uint64_t pages = size / TARGET_PAGE_SIZE; |
| if (zero) { |
| acct_info.dup_pages += pages; |
| } else { |
| acct_info.norm_pages += pages; |
| bytes_transferred += size; |
| qemu_update_position(f, size); |
| } |
| } |
| |
| static ram_addr_t ram_save_remaining(void) |
| { |
| return migration_dirty_pages; |
| } |
| |
| uint64_t ram_bytes_remaining(void) |
| { |
| return ram_save_remaining() * TARGET_PAGE_SIZE; |
| } |
| |
| uint64_t ram_bytes_transferred(void) |
| { |
| return bytes_transferred; |
| } |
| |
| uint64_t ram_bytes_total(void) |
| { |
| RAMBlock *block; |
| uint64_t total = 0; |
| |
| rcu_read_lock(); |
| QLIST_FOREACH_RCU(block, &ram_list.blocks, next) |
| total += block->used_length; |
| rcu_read_unlock(); |
| return total; |
| } |
| |
| void free_xbzrle_decoded_buf(void) |
| { |
| g_free(xbzrle_decoded_buf); |
| xbzrle_decoded_buf = NULL; |
| } |
| |
| static void migration_end(void) |
| { |
| if (migration_bitmap) { |
| memory_global_dirty_log_stop(); |
| g_free(migration_bitmap); |
| migration_bitmap = NULL; |
| } |
| |
| XBZRLE_cache_lock(); |
| if (XBZRLE.cache) { |
| cache_fini(XBZRLE.cache); |
| g_free(XBZRLE.encoded_buf); |
| g_free(XBZRLE.current_buf); |
| XBZRLE.cache = NULL; |
| XBZRLE.encoded_buf = NULL; |
| XBZRLE.current_buf = NULL; |
| } |
| XBZRLE_cache_unlock(); |
| } |
| |
| static void ram_migration_cancel(void *opaque) |
| { |
| migration_end(); |
| } |
| |
| static void reset_ram_globals(void) |
| { |
| last_seen_block = NULL; |
| last_sent_block = NULL; |
| last_offset = 0; |
| last_version = ram_list.version; |
| ram_bulk_stage = true; |
| } |
| |
| #define MAX_WAIT 50 /* ms, half buffered_file limit */ |
| |
| |
| /* Each of ram_save_setup, ram_save_iterate and ram_save_complete has |
| * long-running RCU critical section. When rcu-reclaims in the code |
| * start to become numerous it will be necessary to reduce the |
| * granularity of these critical sections. |
| */ |
| |
| static int ram_save_setup(QEMUFile *f, void *opaque) |
| { |
| RAMBlock *block; |
| int64_t ram_bitmap_pages; /* Size of bitmap in pages, including gaps */ |
| |
| mig_throttle_on = false; |
| dirty_rate_high_cnt = 0; |
| bitmap_sync_count = 0; |
| migration_bitmap_sync_init(); |
| |
| if (migrate_use_xbzrle()) { |
| XBZRLE_cache_lock(); |
| XBZRLE.cache = cache_init(migrate_xbzrle_cache_size() / |
| TARGET_PAGE_SIZE, |
| TARGET_PAGE_SIZE); |
| if (!XBZRLE.cache) { |
| XBZRLE_cache_unlock(); |
| error_report("Error creating cache"); |
| return -1; |
| } |
| XBZRLE_cache_unlock(); |
| |
| /* We prefer not to abort if there is no memory */ |
| XBZRLE.encoded_buf = g_try_malloc0(TARGET_PAGE_SIZE); |
| if (!XBZRLE.encoded_buf) { |
| error_report("Error allocating encoded_buf"); |
| return -1; |
| } |
| |
| XBZRLE.current_buf = g_try_malloc(TARGET_PAGE_SIZE); |
| if (!XBZRLE.current_buf) { |
| error_report("Error allocating current_buf"); |
| g_free(XBZRLE.encoded_buf); |
| XBZRLE.encoded_buf = NULL; |
| return -1; |
| } |
| |
| acct_clear(); |
| } |
| |
| /* iothread lock needed for ram_list.dirty_memory[] */ |
| qemu_mutex_lock_iothread(); |
| qemu_mutex_lock_ramlist(); |
| rcu_read_lock(); |
| bytes_transferred = 0; |
| reset_ram_globals(); |
| |
| ram_bitmap_pages = last_ram_offset() >> TARGET_PAGE_BITS; |
| migration_bitmap = bitmap_new(ram_bitmap_pages); |
| bitmap_set(migration_bitmap, 0, ram_bitmap_pages); |
| |
| /* |
| * Count the total number of pages used by ram blocks not including any |
| * gaps due to alignment or unplugs. |
| */ |
| migration_dirty_pages = ram_bytes_total() >> TARGET_PAGE_BITS; |
| |
| memory_global_dirty_log_start(); |
| migration_bitmap_sync(); |
| qemu_mutex_unlock_ramlist(); |
| qemu_mutex_unlock_iothread(); |
| |
| qemu_put_be64(f, ram_bytes_total() | RAM_SAVE_FLAG_MEM_SIZE); |
| |
| QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
| qemu_put_byte(f, strlen(block->idstr)); |
| qemu_put_buffer(f, (uint8_t *)block->idstr, strlen(block->idstr)); |
| qemu_put_be64(f, block->used_length); |
| } |
| |
| rcu_read_unlock(); |
| |
| ram_control_before_iterate(f, RAM_CONTROL_SETUP); |
| ram_control_after_iterate(f, RAM_CONTROL_SETUP); |
| |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| |
| return 0; |
| } |
| |
| static int ram_save_iterate(QEMUFile *f, void *opaque) |
| { |
| int ret; |
| int i; |
| int64_t t0; |
| int pages_sent = 0; |
| |
| rcu_read_lock(); |
| if (ram_list.version != last_version) { |
| reset_ram_globals(); |
| } |
| |
| /* Read version before ram_list.blocks */ |
| smp_rmb(); |
| |
| ram_control_before_iterate(f, RAM_CONTROL_ROUND); |
| |
| t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| i = 0; |
| while ((ret = qemu_file_rate_limit(f)) == 0) { |
| int pages; |
| |
| pages = ram_find_and_save_block(f, false, &bytes_transferred); |
| /* no more pages to sent */ |
| if (pages == 0) { |
| break; |
| } |
| pages_sent += pages; |
| acct_info.iterations++; |
| check_guest_throttling(); |
| /* we want to check in the 1st loop, just in case it was the 1st time |
| and we had to sync the dirty bitmap. |
| qemu_get_clock_ns() is a bit expensive, so we only check each some |
| iterations |
| */ |
| if ((i & 63) == 0) { |
| uint64_t t1 = (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - t0) / 1000000; |
| if (t1 > MAX_WAIT) { |
| DPRINTF("big wait: %" PRIu64 " milliseconds, %d iterations\n", |
| t1, i); |
| break; |
| } |
| } |
| i++; |
| } |
| flush_compressed_data(f); |
| rcu_read_unlock(); |
| |
| /* |
| * Must occur before EOS (or any QEMUFile operation) |
| * because of RDMA protocol. |
| */ |
| ram_control_after_iterate(f, RAM_CONTROL_ROUND); |
| |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| bytes_transferred += 8; |
| |
| ret = qemu_file_get_error(f); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| return pages_sent; |
| } |
| |
| /* Called with iothread lock */ |
| static int ram_save_complete(QEMUFile *f, void *opaque) |
| { |
| rcu_read_lock(); |
| |
| migration_bitmap_sync(); |
| |
| ram_control_before_iterate(f, RAM_CONTROL_FINISH); |
| |
| /* try transferring iterative blocks of memory */ |
| |
| /* flush all remaining blocks regardless of rate limiting */ |
| while (true) { |
| int pages; |
| |
| pages = ram_find_and_save_block(f, true, &bytes_transferred); |
| /* no more blocks to sent */ |
| if (pages == 0) { |
| break; |
| } |
| } |
| |
| flush_compressed_data(f); |
| ram_control_after_iterate(f, RAM_CONTROL_FINISH); |
| migration_end(); |
| |
| rcu_read_unlock(); |
| qemu_put_be64(f, RAM_SAVE_FLAG_EOS); |
| |
| return 0; |
| } |
| |
| static uint64_t ram_save_pending(QEMUFile *f, void *opaque, uint64_t max_size) |
| { |
| uint64_t remaining_size; |
| |
| remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; |
| |
| if (remaining_size < max_size) { |
| qemu_mutex_lock_iothread(); |
| rcu_read_lock(); |
| migration_bitmap_sync(); |
| rcu_read_unlock(); |
| qemu_mutex_unlock_iothread(); |
| remaining_size = ram_save_remaining() * TARGET_PAGE_SIZE; |
| } |
| return remaining_size; |
| } |
| |
| static int load_xbzrle(QEMUFile *f, ram_addr_t addr, void *host) |
| { |
| unsigned int xh_len; |
| int xh_flags; |
| |
| if (!xbzrle_decoded_buf) { |
| xbzrle_decoded_buf = g_malloc(TARGET_PAGE_SIZE); |
| } |
| |
| /* extract RLE header */ |
| xh_flags = qemu_get_byte(f); |
| xh_len = qemu_get_be16(f); |
| |
| if (xh_flags != ENCODING_FLAG_XBZRLE) { |
| error_report("Failed to load XBZRLE page - wrong compression!"); |
| return -1; |
| } |
| |
| if (xh_len > TARGET_PAGE_SIZE) { |
| error_report("Failed to load XBZRLE page - len overflow!"); |
| return -1; |
| } |
| /* load data and decode */ |
| qemu_get_buffer(f, xbzrle_decoded_buf, xh_len); |
| |
| /* decode RLE */ |
| if (xbzrle_decode_buffer(xbzrle_decoded_buf, xh_len, host, |
| TARGET_PAGE_SIZE) == -1) { |
| error_report("Failed to load XBZRLE page - decode error!"); |
| return -1; |
| } |
| |
| return 0; |
| } |
| |
| /* Must be called from within a rcu critical section. |
| * Returns a pointer from within the RCU-protected ram_list. |
| */ |
| static inline void *host_from_stream_offset(QEMUFile *f, |
| ram_addr_t offset, |
| int flags) |
| { |
| static RAMBlock *block = NULL; |
| char id[256]; |
| uint8_t len; |
| |
| if (flags & RAM_SAVE_FLAG_CONTINUE) { |
| if (!block || block->max_length <= offset) { |
| error_report("Ack, bad migration stream!"); |
| return NULL; |
| } |
| |
| return memory_region_get_ram_ptr(block->mr) + offset; |
| } |
| |
| len = qemu_get_byte(f); |
| qemu_get_buffer(f, (uint8_t *)id, len); |
| id[len] = 0; |
| |
| QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
| if (!strncmp(id, block->idstr, sizeof(id)) && |
| block->max_length > offset) { |
| return memory_region_get_ram_ptr(block->mr) + offset; |
| } |
| } |
| |
| error_report("Can't find block %s!", id); |
| return NULL; |
| } |
| |
| /* |
| * If a page (or a whole RDMA chunk) has been |
| * determined to be zero, then zap it. |
| */ |
| void ram_handle_compressed(void *host, uint8_t ch, uint64_t size) |
| { |
| if (ch != 0 || !is_zero_range(host, size)) { |
| memset(host, ch, size); |
| } |
| } |
| |
| static void *do_data_decompress(void *opaque) |
| { |
| DecompressParam *param = opaque; |
| unsigned long pagesize; |
| |
| while (!quit_decomp_thread) { |
| qemu_mutex_lock(¶m->mutex); |
| while (!param->start && !quit_decomp_thread) { |
| qemu_cond_wait(¶m->cond, ¶m->mutex); |
| pagesize = TARGET_PAGE_SIZE; |
| if (!quit_decomp_thread) { |
| /* uncompress() will return failed in some case, especially |
| * when the page is dirted when doing the compression, it's |
| * not a problem because the dirty page will be retransferred |
| * and uncompress() won't break the data in other pages. |
| */ |
| uncompress((Bytef *)param->des, &pagesize, |
| (const Bytef *)param->compbuf, param->len); |
| } |
| param->start = false; |
| } |
| qemu_mutex_unlock(¶m->mutex); |
| } |
| |
| return NULL; |
| } |
| |
| void migrate_decompress_threads_create(void) |
| { |
| int i, thread_count; |
| |
| thread_count = migrate_decompress_threads(); |
| decompress_threads = g_new0(QemuThread, thread_count); |
| decomp_param = g_new0(DecompressParam, thread_count); |
| compressed_data_buf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); |
| quit_decomp_thread = false; |
| for (i = 0; i < thread_count; i++) { |
| qemu_mutex_init(&decomp_param[i].mutex); |
| qemu_cond_init(&decomp_param[i].cond); |
| decomp_param[i].compbuf = g_malloc0(compressBound(TARGET_PAGE_SIZE)); |
| qemu_thread_create(decompress_threads + i, "decompress", |
| do_data_decompress, decomp_param + i, |
| QEMU_THREAD_JOINABLE); |
| } |
| } |
| |
| void migrate_decompress_threads_join(void) |
| { |
| int i, thread_count; |
| |
| quit_decomp_thread = true; |
| thread_count = migrate_decompress_threads(); |
| for (i = 0; i < thread_count; i++) { |
| qemu_mutex_lock(&decomp_param[i].mutex); |
| qemu_cond_signal(&decomp_param[i].cond); |
| qemu_mutex_unlock(&decomp_param[i].mutex); |
| } |
| for (i = 0; i < thread_count; i++) { |
| qemu_thread_join(decompress_threads + i); |
| qemu_mutex_destroy(&decomp_param[i].mutex); |
| qemu_cond_destroy(&decomp_param[i].cond); |
| g_free(decomp_param[i].compbuf); |
| } |
| g_free(decompress_threads); |
| g_free(decomp_param); |
| g_free(compressed_data_buf); |
| decompress_threads = NULL; |
| decomp_param = NULL; |
| compressed_data_buf = NULL; |
| } |
| |
| static void decompress_data_with_multi_threads(uint8_t *compbuf, |
| void *host, int len) |
| { |
| int idx, thread_count; |
| |
| thread_count = migrate_decompress_threads(); |
| while (true) { |
| for (idx = 0; idx < thread_count; idx++) { |
| if (!decomp_param[idx].start) { |
| memcpy(decomp_param[idx].compbuf, compbuf, len); |
| decomp_param[idx].des = host; |
| decomp_param[idx].len = len; |
| start_decompression(&decomp_param[idx]); |
| break; |
| } |
| } |
| if (idx < thread_count) { |
| break; |
| } |
| } |
| } |
| |
| static int ram_load(QEMUFile *f, void *opaque, int version_id) |
| { |
| int flags = 0, ret = 0; |
| static uint64_t seq_iter; |
| int len = 0; |
| |
| seq_iter++; |
| |
| if (version_id != 4) { |
| ret = -EINVAL; |
| } |
| |
| /* This RCU critical section can be very long running. |
| * When RCU reclaims in the code start to become numerous, |
| * it will be necessary to reduce the granularity of this |
| * critical section. |
| */ |
| rcu_read_lock(); |
| while (!ret && !(flags & RAM_SAVE_FLAG_EOS)) { |
| ram_addr_t addr, total_ram_bytes; |
| void *host; |
| uint8_t ch; |
| |
| addr = qemu_get_be64(f); |
| flags = addr & ~TARGET_PAGE_MASK; |
| addr &= TARGET_PAGE_MASK; |
| |
| switch (flags & ~RAM_SAVE_FLAG_CONTINUE) { |
| case RAM_SAVE_FLAG_MEM_SIZE: |
| /* Synchronize RAM block list */ |
| total_ram_bytes = addr; |
| while (!ret && total_ram_bytes) { |
| RAMBlock *block; |
| uint8_t len; |
| char id[256]; |
| ram_addr_t length; |
| |
| len = qemu_get_byte(f); |
| qemu_get_buffer(f, (uint8_t *)id, len); |
| id[len] = 0; |
| length = qemu_get_be64(f); |
| |
| QLIST_FOREACH_RCU(block, &ram_list.blocks, next) { |
| if (!strncmp(id, block->idstr, sizeof(id))) { |
| if (length != block->used_length) { |
| Error *local_err = NULL; |
| |
| ret = qemu_ram_resize(block->offset, length, &local_err); |
| if (local_err) { |
| error_report_err(local_err); |
| } |
| } |
| break; |
| } |
| } |
| |
| if (!block) { |
| error_report("Unknown ramblock \"%s\", cannot " |
| "accept migration", id); |
| ret = -EINVAL; |
| } |
| |
| total_ram_bytes -= length; |
| } |
| break; |
| case RAM_SAVE_FLAG_COMPRESS: |
| host = host_from_stream_offset(f, addr, flags); |
| if (!host) { |
| error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| ch = qemu_get_byte(f); |
| ram_handle_compressed(host, ch, TARGET_PAGE_SIZE); |
| break; |
| case RAM_SAVE_FLAG_PAGE: |
| host = host_from_stream_offset(f, addr, flags); |
| if (!host) { |
| error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| qemu_get_buffer(f, host, TARGET_PAGE_SIZE); |
| break; |
| case RAM_SAVE_FLAG_COMPRESS_PAGE: |
| host = host_from_stream_offset(f, addr, flags); |
| if (!host) { |
| error_report("Invalid RAM offset " RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| |
| len = qemu_get_be32(f); |
| if (len < 0 || len > compressBound(TARGET_PAGE_SIZE)) { |
| error_report("Invalid compressed data length: %d", len); |
| ret = -EINVAL; |
| break; |
| } |
| qemu_get_buffer(f, compressed_data_buf, len); |
| decompress_data_with_multi_threads(compressed_data_buf, host, len); |
| break; |
| case RAM_SAVE_FLAG_XBZRLE: |
| host = host_from_stream_offset(f, addr, flags); |
| if (!host) { |
| error_report("Illegal RAM offset " RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| if (load_xbzrle(f, addr, host) < 0) { |
| error_report("Failed to decompress XBZRLE page at " |
| RAM_ADDR_FMT, addr); |
| ret = -EINVAL; |
| break; |
| } |
| break; |
| case RAM_SAVE_FLAG_EOS: |
| /* normal exit */ |
| break; |
| default: |
| if (flags & RAM_SAVE_FLAG_HOOK) { |
| ram_control_load_hook(f, flags); |
| } else { |
| error_report("Unknown combination of migration flags: %#x", |
| flags); |
| ret = -EINVAL; |
| } |
| } |
| if (!ret) { |
| ret = qemu_file_get_error(f); |
| } |
| } |
| |
| rcu_read_unlock(); |
| DPRINTF("Completed load of VM with exit code %d seq iteration " |
| "%" PRIu64 "\n", ret, seq_iter); |
| return ret; |
| } |
| |
| static SaveVMHandlers savevm_ram_handlers = { |
| .save_live_setup = ram_save_setup, |
| .save_live_iterate = ram_save_iterate, |
| .save_live_complete = ram_save_complete, |
| .save_live_pending = ram_save_pending, |
| .load_state = ram_load, |
| .cancel = ram_migration_cancel, |
| }; |
| |
| void ram_mig_init(void) |
| { |
| qemu_mutex_init(&XBZRLE.lock); |
| register_savevm_live(NULL, "ram", 0, 4, &savevm_ram_handlers, NULL); |
| } |
| |
| struct soundhw { |
| const char *name; |
| const char *descr; |
| int enabled; |
| int isa; |
| union { |
| int (*init_isa) (ISABus *bus); |
| int (*init_pci) (PCIBus *bus); |
| } init; |
| }; |
| |
| static struct soundhw soundhw[9]; |
| static int soundhw_count; |
| |
| void isa_register_soundhw(const char *name, const char *descr, |
| int (*init_isa)(ISABus *bus)) |
| { |
| assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); |
| soundhw[soundhw_count].name = name; |
| soundhw[soundhw_count].descr = descr; |
| soundhw[soundhw_count].isa = 1; |
| soundhw[soundhw_count].init.init_isa = init_isa; |
| soundhw_count++; |
| } |
| |
| void pci_register_soundhw(const char *name, const char *descr, |
| int (*init_pci)(PCIBus *bus)) |
| { |
| assert(soundhw_count < ARRAY_SIZE(soundhw) - 1); |
| soundhw[soundhw_count].name = name; |
| soundhw[soundhw_count].descr = descr; |
| soundhw[soundhw_count].isa = 0; |
| soundhw[soundhw_count].init.init_pci = init_pci; |
| soundhw_count++; |
| } |
| |
| void select_soundhw(const char *optarg) |
| { |
| struct soundhw *c; |
| |
| if (is_help_option(optarg)) { |
| show_valid_cards: |
| |
| if (soundhw_count) { |
| printf("Valid sound card names (comma separated):\n"); |
| for (c = soundhw; c->name; ++c) { |
| printf ("%-11s %s\n", c->name, c->descr); |
| } |
| printf("\n-soundhw all will enable all of the above\n"); |
| } else { |
| printf("Machine has no user-selectable audio hardware " |
| "(it may or may not have always-present audio hardware).\n"); |
| } |
| exit(!is_help_option(optarg)); |
| } |
| else { |
| size_t l; |
| const char *p; |
| char *e; |
| int bad_card = 0; |
| |
| if (!strcmp(optarg, "all")) { |
| for (c = soundhw; c->name; ++c) { |
| c->enabled = 1; |
| } |
| return; |
| } |
| |
| p = optarg; |
| while (*p) { |
| e = strchr(p, ','); |
| l = !e ? strlen(p) : (size_t) (e - p); |
| |
| for (c = soundhw; c->name; ++c) { |
| if (!strncmp(c->name, p, l) && !c->name[l]) { |
| c->enabled = 1; |
| break; |
| } |
| } |
| |
| if (!c->name) { |
| if (l > 80) { |
| error_report("Unknown sound card name (too big to show)"); |
| } |
| else { |
| error_report("Unknown sound card name `%.*s'", |
| (int) l, p); |
| } |
| bad_card = 1; |
| } |
| p += l + (e != NULL); |
| } |
| |
| if (bad_card) { |
| goto show_valid_cards; |
| } |
| } |
| } |
| |
| void audio_init(void) |
| { |
| struct soundhw *c; |
| ISABus *isa_bus = (ISABus *) object_resolve_path_type("", TYPE_ISA_BUS, NULL); |
| PCIBus *pci_bus = (PCIBus *) object_resolve_path_type("", TYPE_PCI_BUS, NULL); |
| |
| for (c = soundhw; c->name; ++c) { |
| if (c->enabled) { |
| if (c->isa) { |
| if (!isa_bus) { |
| error_report("ISA bus not available for %s", c->name); |
| exit(1); |
| } |
| c->init.init_isa(isa_bus); |
| } else { |
| if (!pci_bus) { |
| error_report("PCI bus not available for %s", c->name); |
| exit(1); |
| } |
| c->init.init_pci(pci_bus); |
| } |
| } |
| } |
| } |
| |
| int qemu_uuid_parse(const char *str, uint8_t *uuid) |
| { |
| int ret; |
| |
| if (strlen(str) != 36) { |
| return -1; |
| } |
| |
| ret = sscanf(str, UUID_FMT, &uuid[0], &uuid[1], &uuid[2], &uuid[3], |
| &uuid[4], &uuid[5], &uuid[6], &uuid[7], &uuid[8], &uuid[9], |
| &uuid[10], &uuid[11], &uuid[12], &uuid[13], &uuid[14], |
| &uuid[15]); |
| |
| if (ret != 16) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| void do_acpitable_option(const QemuOpts *opts) |
| { |
| #ifdef TARGET_I386 |
| Error *err = NULL; |
| |
| acpi_table_add(opts, &err); |
| if (err) { |
| error_report("Wrong acpi table provided: %s", |
| error_get_pretty(err)); |
| error_free(err); |
| exit(1); |
| } |
| #endif |
| } |
| |
| void do_smbios_option(QemuOpts *opts) |
| { |
| #ifdef TARGET_I386 |
| smbios_entry_add(opts); |
| #endif |
| } |
| |
| void cpudef_init(void) |
| { |
| #if defined(cpudef_setup) |
| cpudef_setup(); /* parse cpu definitions in target config file */ |
| #endif |
| } |
| |
| int kvm_available(void) |
| { |
| #ifdef CONFIG_KVM |
| return 1; |
| #else |
| return 0; |
| #endif |
| } |
| |
| int xen_available(void) |
| { |
| #ifdef CONFIG_XEN |
| return 1; |
| #else |
| return 0; |
| #endif |
| } |
| |
| |
| TargetInfo *qmp_query_target(Error **errp) |
| { |
| TargetInfo *info = g_malloc0(sizeof(*info)); |
| |
| info->arch = g_strdup(TARGET_NAME); |
| |
| return info; |
| } |
| |
| /* Stub function that's gets run on the vcpu when its brought out of the |
| VM to run inside qemu via async_run_on_cpu()*/ |
| static void mig_sleep_cpu(void *opq) |
| { |
| qemu_mutex_unlock_iothread(); |
| g_usleep(30*1000); |
| qemu_mutex_lock_iothread(); |
| } |
| |
| /* To reduce the dirty rate explicitly disallow the VCPUs from spending |
| much time in the VM. The migration thread will try to catchup. |
| Workload will experience a performance drop. |
| */ |
| static void mig_throttle_guest_down(void) |
| { |
| CPUState *cpu; |
| |
| qemu_mutex_lock_iothread(); |
| CPU_FOREACH(cpu) { |
| async_run_on_cpu(cpu, mig_sleep_cpu, NULL); |
| } |
| qemu_mutex_unlock_iothread(); |
| } |
| |
| static void check_guest_throttling(void) |
| { |
| static int64_t t0; |
| int64_t t1; |
| |
| if (!mig_throttle_on) { |
| return; |
| } |
| |
| if (!t0) { |
| t0 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| return; |
| } |
| |
| t1 = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); |
| |
| /* If it has been more than 40 ms since the last time the guest |
| * was throttled then do it again. |
| */ |
| if (40 < (t1-t0)/1000000) { |
| mig_throttle_guest_down(); |
| t0 = t1; |
| } |
| } |