| /* |
| * Copyright (C) 2018, Emilio G. Cota <cota@braap.org> |
| * |
| * License: GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| #include <inttypes.h> |
| #include <assert.h> |
| #include <stdlib.h> |
| #include <string.h> |
| #include <unistd.h> |
| #include <stdio.h> |
| #include <glib.h> |
| |
| /* |
| * plugins should not include anything from QEMU aside from the |
| * API header. However as this is a test plugin to exercise the |
| * internals of QEMU and we want to avoid needless code duplication we |
| * do so here. bswap.h is pretty self-contained although it needs a |
| * few things provided by compiler.h. |
| */ |
| #include <compiler.h> |
| #include <bswap.h> |
| #include <qemu-plugin.h> |
| |
| QEMU_PLUGIN_EXPORT int qemu_plugin_version = QEMU_PLUGIN_VERSION; |
| |
| typedef struct { |
| uint64_t mem_count; |
| uint64_t io_count; |
| } CPUCount; |
| |
| typedef struct { |
| uint64_t vaddr; |
| const char *sym; |
| } InsnInfo; |
| |
| /* |
| * For the "memory" system test we need to track accesses to |
| * individual regions. We mirror the data written to the region and |
| * then check when it is read that it matches up. |
| * |
| * We do this as regions rather than pages to save on complications |
| * with page crossing and the fact the test only cares about the |
| * test_data region. |
| */ |
| static uint64_t region_size = 4096 * 4; |
| static uint64_t region_mask; |
| |
| typedef struct { |
| uint64_t region_address; |
| uint64_t reads; |
| uint64_t writes; |
| uint8_t *data; |
| /* Did we see every write and read with correct values? */ |
| bool seen_all; |
| } RegionInfo; |
| |
| static struct qemu_plugin_scoreboard *counts; |
| static qemu_plugin_u64 mem_count; |
| static qemu_plugin_u64 io_count; |
| static bool do_inline, do_callback, do_print_accesses, do_region_summary; |
| static bool do_haddr; |
| static enum qemu_plugin_mem_rw rw = QEMU_PLUGIN_MEM_RW; |
| |
| |
| static GMutex lock; |
| static GHashTable *regions; |
| |
| static gint addr_order(gconstpointer a, gconstpointer b) |
| { |
| RegionInfo *na = (RegionInfo *) a; |
| RegionInfo *nb = (RegionInfo *) b; |
| |
| return na->region_address > nb->region_address ? 1 : -1; |
| } |
| |
| |
| static void plugin_exit(qemu_plugin_id_t id, void *p) |
| { |
| g_autoptr(GString) out = g_string_new(""); |
| |
| if (do_inline || do_callback) { |
| g_string_printf(out, "mem accesses: %" PRIu64 "\n", |
| qemu_plugin_u64_sum(mem_count)); |
| } |
| if (do_haddr) { |
| g_string_append_printf(out, "io accesses: %" PRIu64 "\n", |
| qemu_plugin_u64_sum(io_count)); |
| } |
| qemu_plugin_outs(out->str); |
| |
| |
| if (do_region_summary) { |
| GList *counts = g_hash_table_get_values(regions); |
| |
| counts = g_list_sort(counts, addr_order); |
| |
| g_string_printf(out, "Region Base, Reads, Writes, Seen all\n"); |
| |
| if (counts && g_list_next(counts)) { |
| for (/* counts */; counts; counts = counts->next) { |
| RegionInfo *ri = (RegionInfo *) counts->data; |
| |
| g_string_append_printf(out, |
| "0x%016"PRIx64", " |
| "%"PRId64", %"PRId64", %s\n", |
| ri->region_address, |
| ri->reads, |
| ri->writes, |
| ri->seen_all ? "true" : "false"); |
| } |
| } |
| qemu_plugin_outs(out->str); |
| } |
| |
| qemu_plugin_scoreboard_free(counts); |
| } |
| |
| /* |
| * Update the region tracking info for the access. We split up accesses |
| * that span regions even though the plugin infrastructure will deliver |
| * it as a single access. |
| */ |
| static void update_region_info(uint64_t region, uint64_t offset, |
| qemu_plugin_meminfo_t meminfo, |
| qemu_plugin_mem_value value, |
| unsigned size) |
| { |
| bool be = qemu_plugin_mem_is_big_endian(meminfo); |
| bool is_store = qemu_plugin_mem_is_store(meminfo); |
| RegionInfo *ri; |
| bool unseen_data = false; |
| |
| g_assert(offset + size <= region_size); |
| |
| g_mutex_lock(&lock); |
| ri = (RegionInfo *) g_hash_table_lookup(regions, GUINT_TO_POINTER(region)); |
| |
| if (!ri) { |
| ri = g_new0(RegionInfo, 1); |
| ri->region_address = region; |
| ri->data = g_malloc0(region_size); |
| ri->seen_all = true; |
| g_hash_table_insert(regions, GUINT_TO_POINTER(region), (gpointer) ri); |
| } |
| |
| if (is_store) { |
| ri->writes++; |
| } else { |
| ri->reads++; |
| } |
| |
| switch (value.type) { |
| case QEMU_PLUGIN_MEM_VALUE_U8: |
| if (is_store) { |
| ri->data[offset] = value.data.u8; |
| } else if (ri->data[offset] != value.data.u8) { |
| unseen_data = true; |
| } |
| break; |
| case QEMU_PLUGIN_MEM_VALUE_U16: |
| { |
| uint16_t *p = (uint16_t *) &ri->data[offset]; |
| if (is_store) { |
| if (be) { |
| stw_be_p(p, value.data.u16); |
| } else { |
| stw_le_p(p, value.data.u16); |
| } |
| } else { |
| uint16_t val = be ? lduw_be_p(p) : lduw_le_p(p); |
| unseen_data = val != value.data.u16; |
| } |
| break; |
| } |
| case QEMU_PLUGIN_MEM_VALUE_U32: |
| { |
| uint32_t *p = (uint32_t *) &ri->data[offset]; |
| if (is_store) { |
| if (be) { |
| stl_be_p(p, value.data.u32); |
| } else { |
| stl_le_p(p, value.data.u32); |
| } |
| } else { |
| uint32_t val = be ? ldl_be_p(p) : ldl_le_p(p); |
| unseen_data = val != value.data.u32; |
| } |
| break; |
| } |
| case QEMU_PLUGIN_MEM_VALUE_U64: |
| { |
| uint64_t *p = (uint64_t *) &ri->data[offset]; |
| if (is_store) { |
| if (be) { |
| stq_be_p(p, value.data.u64); |
| } else { |
| stq_le_p(p, value.data.u64); |
| } |
| } else { |
| uint64_t val = be ? ldq_be_p(p) : ldq_le_p(p); |
| unseen_data = val != value.data.u64; |
| } |
| break; |
| } |
| case QEMU_PLUGIN_MEM_VALUE_U128: |
| /* non in test so skip */ |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| /* |
| * This is expected for regions initialised by QEMU (.text etc) but we |
| * expect to see all data read and written to the test_data region |
| * of the memory test. |
| */ |
| if (unseen_data && ri->seen_all) { |
| g_autoptr(GString) error = g_string_new("Warning: "); |
| g_string_append_printf(error, "0x%016"PRIx64":%"PRId64 |
| " read an un-instrumented value\n", |
| region, offset); |
| qemu_plugin_outs(error->str); |
| ri->seen_all = false; |
| } |
| |
| g_mutex_unlock(&lock); |
| } |
| |
| static void vcpu_mem(unsigned int cpu_index, qemu_plugin_meminfo_t meminfo, |
| uint64_t vaddr, void *udata) |
| { |
| if (do_haddr) { |
| struct qemu_plugin_hwaddr *hwaddr; |
| hwaddr = qemu_plugin_get_hwaddr(meminfo, vaddr); |
| if (qemu_plugin_hwaddr_is_io(hwaddr)) { |
| qemu_plugin_u64_add(io_count, cpu_index, 1); |
| } else { |
| qemu_plugin_u64_add(mem_count, cpu_index, 1); |
| } |
| } else { |
| qemu_plugin_u64_add(mem_count, cpu_index, 1); |
| } |
| |
| if (do_region_summary) { |
| uint64_t region = vaddr & ~region_mask; |
| uint64_t offset = vaddr & region_mask; |
| qemu_plugin_mem_value value = qemu_plugin_mem_get_value(meminfo); |
| unsigned size = 1 << qemu_plugin_mem_size_shift(meminfo); |
| |
| update_region_info(region, offset, meminfo, value, size); |
| } |
| } |
| |
| static void print_access(unsigned int cpu_index, qemu_plugin_meminfo_t meminfo, |
| uint64_t vaddr, void *udata) |
| { |
| InsnInfo *insn_info = udata; |
| unsigned size = 8 << qemu_plugin_mem_size_shift(meminfo); |
| const char *type = qemu_plugin_mem_is_store(meminfo) ? "store" : "load"; |
| qemu_plugin_mem_value value = qemu_plugin_mem_get_value(meminfo); |
| uint64_t hwaddr = |
| qemu_plugin_hwaddr_phys_addr(qemu_plugin_get_hwaddr(meminfo, vaddr)); |
| g_autoptr(GString) out = g_string_new(""); |
| g_string_printf(out, |
| "0x%"PRIx64",%s,0x%"PRIx64",0x%"PRIx64",%d,%s,", |
| insn_info->vaddr, insn_info->sym, |
| vaddr, hwaddr, size, type); |
| switch (value.type) { |
| case QEMU_PLUGIN_MEM_VALUE_U8: |
| g_string_append_printf(out, "0x%02"PRIx8, value.data.u8); |
| break; |
| case QEMU_PLUGIN_MEM_VALUE_U16: |
| g_string_append_printf(out, "0x%04"PRIx16, value.data.u16); |
| break; |
| case QEMU_PLUGIN_MEM_VALUE_U32: |
| g_string_append_printf(out, "0x%08"PRIx32, value.data.u32); |
| break; |
| case QEMU_PLUGIN_MEM_VALUE_U64: |
| g_string_append_printf(out, "0x%016"PRIx64, value.data.u64); |
| break; |
| case QEMU_PLUGIN_MEM_VALUE_U128: |
| g_string_append_printf(out, "0x%016"PRIx64"%016"PRIx64, |
| value.data.u128.high, value.data.u128.low); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| g_string_append_printf(out, "\n"); |
| qemu_plugin_outs(out->str); |
| } |
| |
| static void vcpu_tb_trans(qemu_plugin_id_t id, struct qemu_plugin_tb *tb) |
| { |
| size_t n = qemu_plugin_tb_n_insns(tb); |
| size_t i; |
| |
| for (i = 0; i < n; i++) { |
| struct qemu_plugin_insn *insn = qemu_plugin_tb_get_insn(tb, i); |
| |
| if (do_inline) { |
| qemu_plugin_register_vcpu_mem_inline_per_vcpu( |
| insn, rw, |
| QEMU_PLUGIN_INLINE_ADD_U64, |
| mem_count, 1); |
| } |
| if (do_callback || do_region_summary) { |
| qemu_plugin_register_vcpu_mem_cb(insn, vcpu_mem, |
| QEMU_PLUGIN_CB_NO_REGS, |
| rw, NULL); |
| } |
| if (do_print_accesses) { |
| /* we leak this pointer, to avoid locking to keep track of it */ |
| InsnInfo *insn_info = g_malloc(sizeof(InsnInfo)); |
| const char *sym = qemu_plugin_insn_symbol(insn); |
| insn_info->sym = sym ? sym : ""; |
| insn_info->vaddr = qemu_plugin_insn_vaddr(insn); |
| qemu_plugin_register_vcpu_mem_cb(insn, print_access, |
| QEMU_PLUGIN_CB_NO_REGS, |
| rw, (void *) insn_info); |
| } |
| } |
| } |
| |
| QEMU_PLUGIN_EXPORT int qemu_plugin_install(qemu_plugin_id_t id, |
| const qemu_info_t *info, |
| int argc, char **argv) |
| { |
| |
| for (int i = 0; i < argc; i++) { |
| char *opt = argv[i]; |
| g_auto(GStrv) tokens = g_strsplit(opt, "=", 2); |
| |
| if (g_strcmp0(tokens[0], "haddr") == 0) { |
| if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_haddr)) { |
| fprintf(stderr, "boolean argument parsing failed: %s\n", opt); |
| return -1; |
| } |
| } else if (g_strcmp0(tokens[0], "track") == 0) { |
| if (g_strcmp0(tokens[1], "r") == 0) { |
| rw = QEMU_PLUGIN_MEM_R; |
| } else if (g_strcmp0(tokens[1], "w") == 0) { |
| rw = QEMU_PLUGIN_MEM_W; |
| } else if (g_strcmp0(tokens[1], "rw") == 0) { |
| rw = QEMU_PLUGIN_MEM_RW; |
| } else { |
| fprintf(stderr, "invalid value for argument track: %s\n", opt); |
| return -1; |
| } |
| } else if (g_strcmp0(tokens[0], "inline") == 0) { |
| if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_inline)) { |
| fprintf(stderr, "boolean argument parsing failed: %s\n", opt); |
| return -1; |
| } |
| } else if (g_strcmp0(tokens[0], "callback") == 0) { |
| if (!qemu_plugin_bool_parse(tokens[0], tokens[1], &do_callback)) { |
| fprintf(stderr, "boolean argument parsing failed: %s\n", opt); |
| return -1; |
| } |
| } else if (g_strcmp0(tokens[0], "print-accesses") == 0) { |
| if (!qemu_plugin_bool_parse(tokens[0], tokens[1], |
| &do_print_accesses)) { |
| fprintf(stderr, "boolean argument parsing failed: %s\n", opt); |
| return -1; |
| } |
| } else if (g_strcmp0(tokens[0], "region-summary") == 0) { |
| if (!qemu_plugin_bool_parse(tokens[0], tokens[1], |
| &do_region_summary)) { |
| fprintf(stderr, "boolean argument parsing failed: %s\n", opt); |
| return -1; |
| } |
| } else { |
| fprintf(stderr, "option parsing failed: %s\n", opt); |
| return -1; |
| } |
| } |
| |
| if (do_inline && do_callback) { |
| fprintf(stderr, |
| "can't enable inline and callback counting at the same time\n"); |
| return -1; |
| } |
| |
| if (do_print_accesses) { |
| g_autoptr(GString) out = g_string_new(""); |
| g_string_printf(out, |
| "insn_vaddr,insn_symbol,mem_vaddr,mem_hwaddr," |
| "access_size,access_type,mem_value\n"); |
| qemu_plugin_outs(out->str); |
| } |
| |
| if (do_region_summary) { |
| region_mask = (region_size - 1); |
| regions = g_hash_table_new(NULL, g_direct_equal); |
| } |
| |
| counts = qemu_plugin_scoreboard_new(sizeof(CPUCount)); |
| mem_count = qemu_plugin_scoreboard_u64_in_struct( |
| counts, CPUCount, mem_count); |
| io_count = qemu_plugin_scoreboard_u64_in_struct(counts, CPUCount, io_count); |
| qemu_plugin_register_vcpu_tb_trans_cb(id, vcpu_tb_trans); |
| qemu_plugin_register_atexit_cb(id, plugin_exit, NULL); |
| return 0; |
| } |