| # -*- Mode: Python -*- |
| # vim: filetype=python |
| # |
| # Copyright (C) 2018 Red Hat, Inc. |
| # |
| # Authors: |
| # Daniel P. Berrange <berrange@redhat.com> |
| # Laszlo Ersek <lersek@redhat.com> |
| # |
| # This work is licensed under the terms of the GNU GPL, version 2 or |
| # later. See the COPYING file in the top-level directory. |
| |
| ## |
| # = Firmware |
| ## |
| |
| { 'include' : 'machine.json' } |
| { 'include' : 'block-core.json' } |
| |
| ## |
| # @FirmwareOSInterface: |
| # |
| # Lists the firmware-OS interface types provided by various firmware |
| # that is commonly used with QEMU virtual machines. |
| # |
| # @bios: Traditional x86 BIOS interface. For example, firmware built |
| # from the SeaBIOS project usually provides this interface. |
| # |
| # @openfirmware: The interface is defined by the (historical) IEEE |
| # 1275-1994 standard. Examples for firmware projects that |
| # provide this interface are: OpenBIOS and SLOF. |
| # |
| # @uboot: Firmware interface defined by the U-Boot project. |
| # |
| # @uefi: Firmware interface defined by the UEFI specification. For |
| # example, firmware built from the edk2 (EFI Development Kit II) |
| # project usually provides this interface. |
| # |
| # Since: 3.0 |
| ## |
| { 'enum' : 'FirmwareOSInterface', |
| 'data' : [ 'bios', 'openfirmware', 'uboot', 'uefi' ] } |
| |
| ## |
| # @FirmwareDevice: |
| # |
| # Defines the device types that firmware can be mapped into. |
| # |
| # @flash: The firmware executable and its accompanying NVRAM file are to |
| # be mapped into a pflash chip each. |
| # |
| # @kernel: The firmware is to be loaded like a Linux kernel. This is |
| # similar to @memory but may imply additional processing that |
| # is specific to the target architecture and machine type. |
| # |
| # @memory: The firmware is to be mapped into memory. |
| # |
| # Since: 3.0 |
| ## |
| { 'enum' : 'FirmwareDevice', |
| 'data' : [ 'flash', 'kernel', 'memory' ] } |
| |
| ## |
| # @FirmwareTarget: |
| # |
| # Defines the machine types that firmware may execute on. |
| # |
| # @architecture: Determines the emulation target (the QEMU system |
| # emulator) that can execute the firmware. |
| # |
| # @machines: Lists the machine types (known by the emulator that is |
| # specified through @architecture) that can execute the |
| # firmware. Elements of @machines are supposed to be concrete |
| # machine types, not aliases. Glob patterns are understood, |
| # which is especially useful for versioned machine types. |
| # (For example, the glob pattern "pc-i440fx-*" matches |
| # "pc-i440fx-2.12".) On the QEMU command line, "-machine |
| # type=..." specifies the requested machine type (but that |
| # option does not accept glob patterns). |
| # |
| # Since: 3.0 |
| ## |
| { 'struct' : 'FirmwareTarget', |
| 'data' : { 'architecture' : 'SysEmuTarget', |
| 'machines' : [ 'str' ] } } |
| |
| ## |
| # @FirmwareFeature: |
| # |
| # Defines the features that firmware may support, and the platform |
| # requirements that firmware may present. |
| # |
| # @acpi-s3: The firmware supports S3 sleep (suspend to RAM), as defined |
| # in the ACPI specification. On the "pc-i440fx-*" machine |
| # types of the @i386 and @x86_64 emulation targets, S3 can be |
| # enabled with "-global PIIX4_PM.disable_s3=0" and disabled |
| # with "-global PIIX4_PM.disable_s3=1". On the "pc-q35-*" |
| # machine types of the @i386 and @x86_64 emulation targets, S3 |
| # can be enabled with "-global ICH9-LPC.disable_s3=0" and |
| # disabled with "-global ICH9-LPC.disable_s3=1". |
| # |
| # @acpi-s4: The firmware supports S4 hibernation (suspend to disk), as |
| # defined in the ACPI specification. On the "pc-i440fx-*" |
| # machine types of the @i386 and @x86_64 emulation targets, S4 |
| # can be enabled with "-global PIIX4_PM.disable_s4=0" and |
| # disabled with "-global PIIX4_PM.disable_s4=1". On the |
| # "pc-q35-*" machine types of the @i386 and @x86_64 emulation |
| # targets, S4 can be enabled with "-global |
| # ICH9-LPC.disable_s4=0" and disabled with "-global |
| # ICH9-LPC.disable_s4=1". |
| # |
| # @amd-sev: The firmware supports running under AMD Secure Encrypted |
| # Virtualization, as specified in the AMD64 Architecture |
| # Programmer's Manual. QEMU command line options related to |
| # this feature are documented in |
| # "docs/amd-memory-encryption.txt". |
| # |
| # @enrolled-keys: The variable store (NVRAM) template associated with |
| # the firmware binary has the UEFI Secure Boot |
| # operational mode turned on, with certificates |
| # enrolled. |
| # |
| # @requires-smm: The firmware requires the platform to emulate SMM |
| # (System Management Mode), as defined in the AMD64 |
| # Architecture Programmer's Manual, and in the Intel(R)64 |
| # and IA-32 Architectures Software Developer's Manual. On |
| # the "pc-q35-*" machine types of the @i386 and @x86_64 |
| # emulation targets, SMM emulation can be enabled with |
| # "-machine smm=on". (On the "pc-q35-*" machine types of |
| # the @i386 emulation target, @requires-smm presents |
| # further CPU requirements; one combination known to work |
| # is "-cpu coreduo,nx=off".) If the firmware is marked as |
| # both @secure-boot and @requires-smm, then write |
| # accesses to the pflash chip (NVRAM) that holds the UEFI |
| # variable store must be restricted to code that executes |
| # in SMM, using the additional option "-global |
| # driver=cfi.pflash01,property=secure,value=on". |
| # Furthermore, a large guest-physical address space |
| # (comprising guest RAM, memory hotplug range, and 64-bit |
| # PCI MMIO aperture), and/or a high VCPU count, may |
| # present high SMRAM requirements from the firmware. On |
| # the "pc-q35-*" machine types of the @i386 and @x86_64 |
| # emulation targets, the SMRAM size may be increased |
| # above the default 16MB with the "-global |
| # mch.extended-tseg-mbytes=uint16" option. As a rule of |
| # thumb, the default 16MB size suffices for 1TB of |
| # guest-phys address space and a few tens of VCPUs; for |
| # every further TB of guest-phys address space, add 8MB |
| # of SMRAM. 48MB should suffice for 4TB of guest-phys |
| # address space and 2-3 hundred VCPUs. |
| # |
| # @secure-boot: The firmware implements the software interfaces for UEFI |
| # Secure Boot, as defined in the UEFI specification. Note |
| # that without @requires-smm, guest code running with |
| # kernel privileges can undermine the security of Secure |
| # Boot. |
| # |
| # @verbose-dynamic: When firmware log capture is enabled, the firmware |
| # logs a large amount of debug messages, which may |
| # impact boot performance. With log capture disabled, |
| # there is no boot performance impact. On the |
| # "pc-i440fx-*" and "pc-q35-*" machine types of the |
| # @i386 and @x86_64 emulation targets, firmware log |
| # capture can be enabled with the QEMU command line |
| # options "-chardev file,id=fwdebug,path=LOGFILEPATH |
| # -device isa-debugcon,iobase=0x402,chardev=fwdebug". |
| # @verbose-dynamic is mutually exclusive with |
| # @verbose-static. |
| # |
| # @verbose-static: The firmware unconditionally produces a large amount |
| # of debug messages, which may impact boot performance. |
| # This feature may typically be carried by certain UEFI |
| # firmware for the "virt-*" machine types of the @arm |
| # and @aarch64 emulation targets, where the debug |
| # messages are written to the first (always present) |
| # PL011 UART. @verbose-static is mutually exclusive |
| # with @verbose-dynamic. |
| # |
| # Since: 3.0 |
| ## |
| { 'enum' : 'FirmwareFeature', |
| 'data' : [ 'acpi-s3', 'acpi-s4', 'amd-sev', 'enrolled-keys', |
| 'requires-smm', 'secure-boot', 'verbose-dynamic', |
| 'verbose-static' ] } |
| |
| ## |
| # @FirmwareFlashFile: |
| # |
| # Defines common properties that are necessary for loading a firmware |
| # file into a pflash chip. The corresponding QEMU command line option is |
| # "-drive file=@filename,format=@format". Note however that the |
| # option-argument shown here is incomplete; it is completed under |
| # @FirmwareMappingFlash. |
| # |
| # @filename: Specifies the filename on the host filesystem where the |
| # firmware file can be found. |
| # |
| # @format: Specifies the block format of the file pointed-to by |
| # @filename, such as @raw or @qcow2. |
| # |
| # Since: 3.0 |
| ## |
| { 'struct' : 'FirmwareFlashFile', |
| 'data' : { 'filename' : 'str', |
| 'format' : 'BlockdevDriver' } } |
| |
| ## |
| # @FirmwareMappingFlash: |
| # |
| # Describes loading and mapping properties for the firmware executable |
| # and its accompanying NVRAM file, when @FirmwareDevice is @flash. |
| # |
| # @executable: Identifies the firmware executable. The firmware |
| # executable may be shared by multiple virtual machine |
| # definitions. The preferred corresponding QEMU command |
| # line options are |
| # -drive if=none,id=pflash0,readonly=on,file=@executable.@filename,format=@executable.@format |
| # -machine pflash0=pflash0 |
| # or equivalent -blockdev instead of -drive. |
| # With QEMU versions older than 4.0, you have to use |
| # -drive if=pflash,unit=0,readonly=on,file=@executable.@filename,format=@executable.@format |
| # |
| # @nvram-template: Identifies the NVRAM template compatible with |
| # @executable. Management software instantiates an |
| # individual copy -- a specific NVRAM file -- from |
| # @nvram-template.@filename for each new virtual |
| # machine definition created. @nvram-template.@filename |
| # itself is never mapped into virtual machines, only |
| # individual copies of it are. An NVRAM file is |
| # typically used for persistently storing the |
| # non-volatile UEFI variables of a virtual machine |
| # definition. The preferred corresponding QEMU |
| # command line options are |
| # -drive if=none,id=pflash1,readonly=off,file=FILENAME_OF_PRIVATE_NVRAM_FILE,format=@nvram-template.@format |
| # -machine pflash1=pflash1 |
| # or equivalent -blockdev instead of -drive. |
| # With QEMU versions older than 4.0, you have to use |
| # -drive if=pflash,unit=1,readonly=off,file=FILENAME_OF_PRIVATE_NVRAM_FILE,format=@nvram-template.@format |
| # |
| # Since: 3.0 |
| ## |
| { 'struct' : 'FirmwareMappingFlash', |
| 'data' : { 'executable' : 'FirmwareFlashFile', |
| 'nvram-template' : 'FirmwareFlashFile' } } |
| |
| ## |
| # @FirmwareMappingKernel: |
| # |
| # Describes loading and mapping properties for the firmware executable, |
| # when @FirmwareDevice is @kernel. |
| # |
| # @filename: Identifies the firmware executable. The firmware executable |
| # may be shared by multiple virtual machine definitions. The |
| # corresponding QEMU command line option is "-kernel |
| # @filename". |
| # |
| # Since: 3.0 |
| ## |
| { 'struct' : 'FirmwareMappingKernel', |
| 'data' : { 'filename' : 'str' } } |
| |
| ## |
| # @FirmwareMappingMemory: |
| # |
| # Describes loading and mapping properties for the firmware executable, |
| # when @FirmwareDevice is @memory. |
| # |
| # @filename: Identifies the firmware executable. The firmware executable |
| # may be shared by multiple virtual machine definitions. The |
| # corresponding QEMU command line option is "-bios |
| # @filename". |
| # |
| # Since: 3.0 |
| ## |
| { 'struct' : 'FirmwareMappingMemory', |
| 'data' : { 'filename' : 'str' } } |
| |
| ## |
| # @FirmwareMapping: |
| # |
| # Provides a discriminated structure for firmware to describe its |
| # loading / mapping properties. |
| # |
| # @device: Selects the device type that the firmware must be mapped |
| # into. |
| # |
| # Since: 3.0 |
| ## |
| { 'union' : 'FirmwareMapping', |
| 'base' : { 'device' : 'FirmwareDevice' }, |
| 'discriminator' : 'device', |
| 'data' : { 'flash' : 'FirmwareMappingFlash', |
| 'kernel' : 'FirmwareMappingKernel', |
| 'memory' : 'FirmwareMappingMemory' } } |
| |
| ## |
| # @Firmware: |
| # |
| # Describes a firmware (or a firmware use case) to management software. |
| # |
| # It is possible for multiple @Firmware elements to match the search |
| # criteria of management software. Applications thus need rules to pick |
| # one of the many matches, and users need the ability to override distro |
| # defaults. |
| # |
| # It is recommended to create firmware JSON files (each containing a |
| # single @Firmware root element) with a double-digit prefix, for example |
| # "50-ovmf.json", "50-seabios-256k.json", etc, so they can be sorted in |
| # predictable order. The firmware JSON files should be searched for in |
| # three directories: |
| # |
| # - /usr/share/qemu/firmware -- populated by distro-provided firmware |
| # packages (XDG_DATA_DIRS covers |
| # /usr/share by default), |
| # |
| # - /etc/qemu/firmware -- exclusively for sysadmins' local additions, |
| # |
| # - $XDG_CONFIG_HOME/qemu/firmware -- exclusively for per-user local |
| # additions (XDG_CONFIG_HOME |
| # defaults to $HOME/.config). |
| # |
| # Top-down, the list of directories goes from general to specific. |
| # |
| # Management software should build a list of files from all three |
| # locations, then sort the list by filename (i.e., last pathname |
| # component). Management software should choose the first JSON file on |
| # the sorted list that matches the search criteria. If a more specific |
| # directory has a file with same name as a less specific directory, then |
| # the file in the more specific directory takes effect. If the more |
| # specific file is zero length, it hides the less specific one. |
| # |
| # For example, if a distro ships |
| # |
| # - /usr/share/qemu/firmware/50-ovmf.json |
| # |
| # - /usr/share/qemu/firmware/50-seabios-256k.json |
| # |
| # then the sysadmin can prevent the default OVMF being used at all with |
| # |
| # $ touch /etc/qemu/firmware/50-ovmf.json |
| # |
| # The sysadmin can replace/alter the distro default OVMF with |
| # |
| # $ vim /etc/qemu/firmware/50-ovmf.json |
| # |
| # or they can provide a parallel OVMF with higher priority |
| # |
| # $ vim /etc/qemu/firmware/10-ovmf.json |
| # |
| # or they can provide a parallel OVMF with lower priority |
| # |
| # $ vim /etc/qemu/firmware/99-ovmf.json |
| # |
| # @description: Provides a human-readable description of the firmware. |
| # Management software may or may not display @description. |
| # |
| # @interface-types: Lists the types of interfaces that the firmware can |
| # expose to the guest OS. This is a non-empty, ordered |
| # list; entries near the beginning of @interface-types |
| # are considered more native to the firmware, and/or |
| # to have a higher quality implementation in the |
| # firmware, than entries near the end of |
| # @interface-types. |
| # |
| # @mapping: Describes the loading / mapping properties of the firmware. |
| # |
| # @targets: Collects the target architectures (QEMU system emulators) |
| # and their machine types that may execute the firmware. |
| # |
| # @features: Lists the features that the firmware supports, and the |
| # platform requirements it presents. |
| # |
| # @tags: A list of auxiliary strings associated with the firmware for |
| # which @description is not appropriate, due to the latter's |
| # possible exposure to the end-user. @tags serves development and |
| # debugging purposes only, and management software shall |
| # explicitly ignore it. |
| # |
| # Since: 3.0 |
| # |
| # Examples: |
| # |
| # { |
| # "description": "SeaBIOS", |
| # "interface-types": [ |
| # "bios" |
| # ], |
| # "mapping": { |
| # "device": "memory", |
| # "filename": "/usr/share/seabios/bios-256k.bin" |
| # }, |
| # "targets": [ |
| # { |
| # "architecture": "i386", |
| # "machines": [ |
| # "pc-i440fx-*", |
| # "pc-q35-*" |
| # ] |
| # }, |
| # { |
| # "architecture": "x86_64", |
| # "machines": [ |
| # "pc-i440fx-*", |
| # "pc-q35-*" |
| # ] |
| # } |
| # ], |
| # "features": [ |
| # "acpi-s3", |
| # "acpi-s4" |
| # ], |
| # "tags": [ |
| # "CONFIG_BOOTSPLASH=n", |
| # "CONFIG_ROM_SIZE=256", |
| # "CONFIG_USE_SMM=n" |
| # ] |
| # } |
| # |
| # { |
| # "description": "OVMF with SB+SMM, empty varstore", |
| # "interface-types": [ |
| # "uefi" |
| # ], |
| # "mapping": { |
| # "device": "flash", |
| # "executable": { |
| # "filename": "/usr/share/OVMF/OVMF_CODE.secboot.fd", |
| # "format": "raw" |
| # }, |
| # "nvram-template": { |
| # "filename": "/usr/share/OVMF/OVMF_VARS.fd", |
| # "format": "raw" |
| # } |
| # }, |
| # "targets": [ |
| # { |
| # "architecture": "x86_64", |
| # "machines": [ |
| # "pc-q35-*" |
| # ] |
| # } |
| # ], |
| # "features": [ |
| # "acpi-s3", |
| # "amd-sev", |
| # "requires-smm", |
| # "secure-boot", |
| # "verbose-dynamic" |
| # ], |
| # "tags": [ |
| # "-a IA32", |
| # "-a X64", |
| # "-p OvmfPkg/OvmfPkgIa32X64.dsc", |
| # "-t GCC48", |
| # "-b DEBUG", |
| # "-D SMM_REQUIRE", |
| # "-D SECURE_BOOT_ENABLE", |
| # "-D FD_SIZE_4MB" |
| # ] |
| # } |
| # |
| # { |
| # "description": "OVMF with SB+SMM, SB enabled, MS certs enrolled", |
| # "interface-types": [ |
| # "uefi" |
| # ], |
| # "mapping": { |
| # "device": "flash", |
| # "executable": { |
| # "filename": "/usr/share/OVMF/OVMF_CODE.secboot.fd", |
| # "format": "raw" |
| # }, |
| # "nvram-template": { |
| # "filename": "/usr/share/OVMF/OVMF_VARS.secboot.fd", |
| # "format": "raw" |
| # } |
| # }, |
| # "targets": [ |
| # { |
| # "architecture": "x86_64", |
| # "machines": [ |
| # "pc-q35-*" |
| # ] |
| # } |
| # ], |
| # "features": [ |
| # "acpi-s3", |
| # "amd-sev", |
| # "enrolled-keys", |
| # "requires-smm", |
| # "secure-boot", |
| # "verbose-dynamic" |
| # ], |
| # "tags": [ |
| # "-a IA32", |
| # "-a X64", |
| # "-p OvmfPkg/OvmfPkgIa32X64.dsc", |
| # "-t GCC48", |
| # "-b DEBUG", |
| # "-D SMM_REQUIRE", |
| # "-D SECURE_BOOT_ENABLE", |
| # "-D FD_SIZE_4MB" |
| # ] |
| # } |
| # |
| # { |
| # "description": "UEFI firmware for ARM64 virtual machines", |
| # "interface-types": [ |
| # "uefi" |
| # ], |
| # "mapping": { |
| # "device": "flash", |
| # "executable": { |
| # "filename": "/usr/share/AAVMF/AAVMF_CODE.fd", |
| # "format": "raw" |
| # }, |
| # "nvram-template": { |
| # "filename": "/usr/share/AAVMF/AAVMF_VARS.fd", |
| # "format": "raw" |
| # } |
| # }, |
| # "targets": [ |
| # { |
| # "architecture": "aarch64", |
| # "machines": [ |
| # "virt-*" |
| # ] |
| # } |
| # ], |
| # "features": [ |
| # |
| # ], |
| # "tags": [ |
| # "-a AARCH64", |
| # "-p ArmVirtPkg/ArmVirtQemu.dsc", |
| # "-t GCC48", |
| # "-b DEBUG", |
| # "-D DEBUG_PRINT_ERROR_LEVEL=0x80000000" |
| # ] |
| # } |
| ## |
| { 'struct' : 'Firmware', |
| 'data' : { 'description' : 'str', |
| 'interface-types' : [ 'FirmwareOSInterface' ], |
| 'mapping' : 'FirmwareMapping', |
| 'targets' : [ 'FirmwareTarget' ], |
| 'features' : [ 'FirmwareFeature' ], |
| 'tags' : [ 'str' ] } } |