| /* |
| * RISC-V PMU file. |
| * |
| * Copyright (c) 2021 Western Digital Corporation or its affiliates. |
| * |
| * This program is free software; you can redistribute it and/or modify it |
| * under the terms and conditions of the GNU General Public License, |
| * version 2 or later, as published by the Free Software Foundation. |
| * |
| * This program is distributed in the hope it will be useful, but WITHOUT |
| * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or |
| * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for |
| * more details. |
| * |
| * You should have received a copy of the GNU General Public License along with |
| * this program. If not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/log.h" |
| #include "qemu/error-report.h" |
| #include "qemu/timer.h" |
| #include "cpu.h" |
| #include "pmu.h" |
| #include "sysemu/cpu-timers.h" |
| #include "sysemu/device_tree.h" |
| |
| #define RISCV_TIMEBASE_FREQ 1000000000 /* 1Ghz */ |
| |
| /* |
| * To keep it simple, any event can be mapped to any programmable counters in |
| * QEMU. The generic cycle & instruction count events can also be monitored |
| * using programmable counters. In that case, mcycle & minstret must continue |
| * to provide the correct value as well. Heterogeneous PMU per hart is not |
| * supported yet. Thus, number of counters are same across all harts. |
| */ |
| void riscv_pmu_generate_fdt_node(void *fdt, uint32_t cmask, char *pmu_name) |
| { |
| uint32_t fdt_event_ctr_map[15] = {}; |
| |
| /* |
| * The event encoding is specified in the SBI specification |
| * Event idx is a 20bits wide number encoded as follows: |
| * event_idx[19:16] = type |
| * event_idx[15:0] = code |
| * The code field in cache events are encoded as follows: |
| * event_idx.code[15:3] = cache_id |
| * event_idx.code[2:1] = op_id |
| * event_idx.code[0:0] = result_id |
| */ |
| |
| /* SBI_PMU_HW_CPU_CYCLES: 0x01 : type(0x00) */ |
| fdt_event_ctr_map[0] = cpu_to_be32(0x00000001); |
| fdt_event_ctr_map[1] = cpu_to_be32(0x00000001); |
| fdt_event_ctr_map[2] = cpu_to_be32(cmask | 1 << 0); |
| |
| /* SBI_PMU_HW_INSTRUCTIONS: 0x02 : type(0x00) */ |
| fdt_event_ctr_map[3] = cpu_to_be32(0x00000002); |
| fdt_event_ctr_map[4] = cpu_to_be32(0x00000002); |
| fdt_event_ctr_map[5] = cpu_to_be32(cmask | 1 << 2); |
| |
| /* SBI_PMU_HW_CACHE_DTLB : 0x03 READ : 0x00 MISS : 0x00 type(0x01) */ |
| fdt_event_ctr_map[6] = cpu_to_be32(0x00010019); |
| fdt_event_ctr_map[7] = cpu_to_be32(0x00010019); |
| fdt_event_ctr_map[8] = cpu_to_be32(cmask); |
| |
| /* SBI_PMU_HW_CACHE_DTLB : 0x03 WRITE : 0x01 MISS : 0x00 type(0x01) */ |
| fdt_event_ctr_map[9] = cpu_to_be32(0x0001001B); |
| fdt_event_ctr_map[10] = cpu_to_be32(0x0001001B); |
| fdt_event_ctr_map[11] = cpu_to_be32(cmask); |
| |
| /* SBI_PMU_HW_CACHE_ITLB : 0x04 READ : 0x00 MISS : 0x00 type(0x01) */ |
| fdt_event_ctr_map[12] = cpu_to_be32(0x00010021); |
| fdt_event_ctr_map[13] = cpu_to_be32(0x00010021); |
| fdt_event_ctr_map[14] = cpu_to_be32(cmask); |
| |
| /* This a OpenSBI specific DT property documented in OpenSBI docs */ |
| qemu_fdt_setprop(fdt, pmu_name, "riscv,event-to-mhpmcounters", |
| fdt_event_ctr_map, sizeof(fdt_event_ctr_map)); |
| } |
| |
| static bool riscv_pmu_counter_valid(RISCVCPU *cpu, uint32_t ctr_idx) |
| { |
| if (ctr_idx < 3 || ctr_idx >= RV_MAX_MHPMCOUNTERS || |
| !(cpu->pmu_avail_ctrs & BIT(ctr_idx))) { |
| return false; |
| } else { |
| return true; |
| } |
| } |
| |
| static bool riscv_pmu_counter_enabled(RISCVCPU *cpu, uint32_t ctr_idx) |
| { |
| CPURISCVState *env = &cpu->env; |
| |
| if (riscv_pmu_counter_valid(cpu, ctr_idx) && |
| !get_field(env->mcountinhibit, BIT(ctr_idx))) { |
| return true; |
| } else { |
| return false; |
| } |
| } |
| |
| static int riscv_pmu_incr_ctr_rv32(RISCVCPU *cpu, uint32_t ctr_idx) |
| { |
| CPURISCVState *env = &cpu->env; |
| target_ulong max_val = UINT32_MAX; |
| PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; |
| bool virt_on = env->virt_enabled; |
| |
| /* Privilege mode filtering */ |
| if ((env->priv == PRV_M && |
| (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_MINH)) || |
| (env->priv == PRV_S && virt_on && |
| (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_VSINH)) || |
| (env->priv == PRV_U && virt_on && |
| (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_VUINH)) || |
| (env->priv == PRV_S && !virt_on && |
| (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_SINH)) || |
| (env->priv == PRV_U && !virt_on && |
| (env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_UINH))) { |
| return 0; |
| } |
| |
| /* Handle the overflow scenario */ |
| if (counter->mhpmcounter_val == max_val) { |
| if (counter->mhpmcounterh_val == max_val) { |
| counter->mhpmcounter_val = 0; |
| counter->mhpmcounterh_val = 0; |
| /* Generate interrupt only if OF bit is clear */ |
| if (!(env->mhpmeventh_val[ctr_idx] & MHPMEVENTH_BIT_OF)) { |
| env->mhpmeventh_val[ctr_idx] |= MHPMEVENTH_BIT_OF; |
| riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1)); |
| } |
| } else { |
| counter->mhpmcounterh_val++; |
| } |
| } else { |
| counter->mhpmcounter_val++; |
| } |
| |
| return 0; |
| } |
| |
| static int riscv_pmu_incr_ctr_rv64(RISCVCPU *cpu, uint32_t ctr_idx) |
| { |
| CPURISCVState *env = &cpu->env; |
| PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; |
| uint64_t max_val = UINT64_MAX; |
| bool virt_on = env->virt_enabled; |
| |
| /* Privilege mode filtering */ |
| if ((env->priv == PRV_M && |
| (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_MINH)) || |
| (env->priv == PRV_S && virt_on && |
| (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_VSINH)) || |
| (env->priv == PRV_U && virt_on && |
| (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_VUINH)) || |
| (env->priv == PRV_S && !virt_on && |
| (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_SINH)) || |
| (env->priv == PRV_U && !virt_on && |
| (env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_UINH))) { |
| return 0; |
| } |
| |
| /* Handle the overflow scenario */ |
| if (counter->mhpmcounter_val == max_val) { |
| counter->mhpmcounter_val = 0; |
| /* Generate interrupt only if OF bit is clear */ |
| if (!(env->mhpmevent_val[ctr_idx] & MHPMEVENT_BIT_OF)) { |
| env->mhpmevent_val[ctr_idx] |= MHPMEVENT_BIT_OF; |
| riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1)); |
| } |
| } else { |
| counter->mhpmcounter_val++; |
| } |
| return 0; |
| } |
| |
| /* |
| * Information needed to update counters: |
| * new_priv, new_virt: To correctly save starting snapshot for the newly |
| * started mode. Look at array being indexed with newprv. |
| * old_priv, old_virt: To correctly select previous snapshot for old priv |
| * and compute delta. Also to select correct counter |
| * to inc. Look at arrays being indexed with env->priv. |
| * |
| * To avoid the complexity of calling this function, we assume that |
| * env->priv and env->virt_enabled contain old priv and old virt and |
| * new priv and new virt values are passed in as arguments. |
| */ |
| static void riscv_pmu_icount_update_priv(CPURISCVState *env, |
| target_ulong newpriv, bool new_virt) |
| { |
| uint64_t *snapshot_prev, *snapshot_new; |
| uint64_t current_icount; |
| uint64_t *counter_arr; |
| uint64_t delta; |
| |
| if (icount_enabled()) { |
| current_icount = icount_get_raw(); |
| } else { |
| current_icount = cpu_get_host_ticks(); |
| } |
| |
| if (env->virt_enabled) { |
| counter_arr = env->pmu_fixed_ctrs[1].counter_virt; |
| snapshot_prev = env->pmu_fixed_ctrs[1].counter_virt_prev; |
| } else { |
| counter_arr = env->pmu_fixed_ctrs[1].counter; |
| snapshot_prev = env->pmu_fixed_ctrs[1].counter_prev; |
| } |
| |
| if (new_virt) { |
| snapshot_new = env->pmu_fixed_ctrs[1].counter_virt_prev; |
| } else { |
| snapshot_new = env->pmu_fixed_ctrs[1].counter_prev; |
| } |
| |
| /* |
| * new_priv can be same as env->priv. So we need to calculate |
| * delta first before updating snapshot_new[new_priv]. |
| */ |
| delta = current_icount - snapshot_prev[env->priv]; |
| snapshot_new[newpriv] = current_icount; |
| |
| counter_arr[env->priv] += delta; |
| } |
| |
| static void riscv_pmu_cycle_update_priv(CPURISCVState *env, |
| target_ulong newpriv, bool new_virt) |
| { |
| uint64_t *snapshot_prev, *snapshot_new; |
| uint64_t current_ticks; |
| uint64_t *counter_arr; |
| uint64_t delta; |
| |
| if (icount_enabled()) { |
| current_ticks = icount_get(); |
| } else { |
| current_ticks = cpu_get_host_ticks(); |
| } |
| |
| if (env->virt_enabled) { |
| counter_arr = env->pmu_fixed_ctrs[0].counter_virt; |
| snapshot_prev = env->pmu_fixed_ctrs[0].counter_virt_prev; |
| } else { |
| counter_arr = env->pmu_fixed_ctrs[0].counter; |
| snapshot_prev = env->pmu_fixed_ctrs[0].counter_prev; |
| } |
| |
| if (new_virt) { |
| snapshot_new = env->pmu_fixed_ctrs[0].counter_virt_prev; |
| } else { |
| snapshot_new = env->pmu_fixed_ctrs[0].counter_prev; |
| } |
| |
| delta = current_ticks - snapshot_prev[env->priv]; |
| snapshot_new[newpriv] = current_ticks; |
| |
| counter_arr[env->priv] += delta; |
| } |
| |
| void riscv_pmu_update_fixed_ctrs(CPURISCVState *env, target_ulong newpriv, |
| bool new_virt) |
| { |
| riscv_pmu_cycle_update_priv(env, newpriv, new_virt); |
| riscv_pmu_icount_update_priv(env, newpriv, new_virt); |
| } |
| |
| int riscv_pmu_incr_ctr(RISCVCPU *cpu, enum riscv_pmu_event_idx event_idx) |
| { |
| uint32_t ctr_idx; |
| int ret; |
| CPURISCVState *env = &cpu->env; |
| gpointer value; |
| |
| if (!cpu->cfg.pmu_mask) { |
| return 0; |
| } |
| value = g_hash_table_lookup(cpu->pmu_event_ctr_map, |
| GUINT_TO_POINTER(event_idx)); |
| if (!value) { |
| return -1; |
| } |
| |
| ctr_idx = GPOINTER_TO_UINT(value); |
| if (!riscv_pmu_counter_enabled(cpu, ctr_idx)) { |
| return -1; |
| } |
| |
| if (riscv_cpu_mxl(env) == MXL_RV32) { |
| ret = riscv_pmu_incr_ctr_rv32(cpu, ctr_idx); |
| } else { |
| ret = riscv_pmu_incr_ctr_rv64(cpu, ctr_idx); |
| } |
| |
| return ret; |
| } |
| |
| bool riscv_pmu_ctr_monitor_instructions(CPURISCVState *env, |
| uint32_t target_ctr) |
| { |
| RISCVCPU *cpu; |
| uint32_t event_idx; |
| uint32_t ctr_idx; |
| |
| /* Fixed instret counter */ |
| if (target_ctr == 2) { |
| return true; |
| } |
| |
| cpu = env_archcpu(env); |
| if (!cpu->pmu_event_ctr_map) { |
| return false; |
| } |
| |
| event_idx = RISCV_PMU_EVENT_HW_INSTRUCTIONS; |
| ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map, |
| GUINT_TO_POINTER(event_idx))); |
| if (!ctr_idx) { |
| return false; |
| } |
| |
| return target_ctr == ctr_idx ? true : false; |
| } |
| |
| bool riscv_pmu_ctr_monitor_cycles(CPURISCVState *env, uint32_t target_ctr) |
| { |
| RISCVCPU *cpu; |
| uint32_t event_idx; |
| uint32_t ctr_idx; |
| |
| /* Fixed mcycle counter */ |
| if (target_ctr == 0) { |
| return true; |
| } |
| |
| cpu = env_archcpu(env); |
| if (!cpu->pmu_event_ctr_map) { |
| return false; |
| } |
| |
| event_idx = RISCV_PMU_EVENT_HW_CPU_CYCLES; |
| ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map, |
| GUINT_TO_POINTER(event_idx))); |
| |
| /* Counter zero is not used for event_ctr_map */ |
| if (!ctr_idx) { |
| return false; |
| } |
| |
| return (target_ctr == ctr_idx) ? true : false; |
| } |
| |
| static gboolean pmu_remove_event_map(gpointer key, gpointer value, |
| gpointer udata) |
| { |
| return (GPOINTER_TO_UINT(value) == GPOINTER_TO_UINT(udata)) ? true : false; |
| } |
| |
| static int64_t pmu_icount_ticks_to_ns(int64_t value) |
| { |
| int64_t ret = 0; |
| |
| if (icount_enabled()) { |
| ret = icount_to_ns(value); |
| } else { |
| ret = (NANOSECONDS_PER_SECOND / RISCV_TIMEBASE_FREQ) * value; |
| } |
| |
| return ret; |
| } |
| |
| int riscv_pmu_update_event_map(CPURISCVState *env, uint64_t value, |
| uint32_t ctr_idx) |
| { |
| uint32_t event_idx; |
| RISCVCPU *cpu = env_archcpu(env); |
| |
| if (!riscv_pmu_counter_valid(cpu, ctr_idx) || !cpu->pmu_event_ctr_map) { |
| return -1; |
| } |
| |
| /* |
| * Expected mhpmevent value is zero for reset case. Remove the current |
| * mapping. |
| */ |
| if (!value) { |
| g_hash_table_foreach_remove(cpu->pmu_event_ctr_map, |
| pmu_remove_event_map, |
| GUINT_TO_POINTER(ctr_idx)); |
| return 0; |
| } |
| |
| event_idx = value & MHPMEVENT_IDX_MASK; |
| if (g_hash_table_lookup(cpu->pmu_event_ctr_map, |
| GUINT_TO_POINTER(event_idx))) { |
| return 0; |
| } |
| |
| switch (event_idx) { |
| case RISCV_PMU_EVENT_HW_CPU_CYCLES: |
| case RISCV_PMU_EVENT_HW_INSTRUCTIONS: |
| case RISCV_PMU_EVENT_CACHE_DTLB_READ_MISS: |
| case RISCV_PMU_EVENT_CACHE_DTLB_WRITE_MISS: |
| case RISCV_PMU_EVENT_CACHE_ITLB_PREFETCH_MISS: |
| break; |
| default: |
| /* We don't support any raw events right now */ |
| return -1; |
| } |
| g_hash_table_insert(cpu->pmu_event_ctr_map, GUINT_TO_POINTER(event_idx), |
| GUINT_TO_POINTER(ctr_idx)); |
| |
| return 0; |
| } |
| |
| static bool pmu_hpmevent_is_of_set(CPURISCVState *env, uint32_t ctr_idx) |
| { |
| target_ulong mhpmevent_val; |
| uint64_t of_bit_mask; |
| |
| if (riscv_cpu_mxl(env) == MXL_RV32) { |
| mhpmevent_val = env->mhpmeventh_val[ctr_idx]; |
| of_bit_mask = MHPMEVENTH_BIT_OF; |
| } else { |
| mhpmevent_val = env->mhpmevent_val[ctr_idx]; |
| of_bit_mask = MHPMEVENT_BIT_OF; |
| } |
| |
| return get_field(mhpmevent_val, of_bit_mask); |
| } |
| |
| static bool pmu_hpmevent_set_of_if_clear(CPURISCVState *env, uint32_t ctr_idx) |
| { |
| target_ulong *mhpmevent_val; |
| uint64_t of_bit_mask; |
| |
| if (riscv_cpu_mxl(env) == MXL_RV32) { |
| mhpmevent_val = &env->mhpmeventh_val[ctr_idx]; |
| of_bit_mask = MHPMEVENTH_BIT_OF; |
| } else { |
| mhpmevent_val = &env->mhpmevent_val[ctr_idx]; |
| of_bit_mask = MHPMEVENT_BIT_OF; |
| } |
| |
| if (!get_field(*mhpmevent_val, of_bit_mask)) { |
| *mhpmevent_val |= of_bit_mask; |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static void pmu_timer_trigger_irq(RISCVCPU *cpu, |
| enum riscv_pmu_event_idx evt_idx) |
| { |
| uint32_t ctr_idx; |
| CPURISCVState *env = &cpu->env; |
| PMUCTRState *counter; |
| int64_t irq_trigger_at; |
| uint64_t curr_ctr_val, curr_ctrh_val; |
| uint64_t ctr_val; |
| |
| if (evt_idx != RISCV_PMU_EVENT_HW_CPU_CYCLES && |
| evt_idx != RISCV_PMU_EVENT_HW_INSTRUCTIONS) { |
| return; |
| } |
| |
| ctr_idx = GPOINTER_TO_UINT(g_hash_table_lookup(cpu->pmu_event_ctr_map, |
| GUINT_TO_POINTER(evt_idx))); |
| if (!riscv_pmu_counter_enabled(cpu, ctr_idx)) { |
| return; |
| } |
| |
| /* Generate interrupt only if OF bit is clear */ |
| if (pmu_hpmevent_is_of_set(env, ctr_idx)) { |
| return; |
| } |
| |
| counter = &env->pmu_ctrs[ctr_idx]; |
| if (counter->irq_overflow_left > 0) { |
| irq_trigger_at = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + |
| counter->irq_overflow_left; |
| timer_mod_anticipate_ns(cpu->pmu_timer, irq_trigger_at); |
| counter->irq_overflow_left = 0; |
| return; |
| } |
| |
| riscv_pmu_read_ctr(env, (target_ulong *)&curr_ctr_val, false, ctr_idx); |
| ctr_val = counter->mhpmcounter_val; |
| if (riscv_cpu_mxl(env) == MXL_RV32) { |
| riscv_pmu_read_ctr(env, (target_ulong *)&curr_ctrh_val, true, ctr_idx); |
| curr_ctr_val = curr_ctr_val | (curr_ctrh_val << 32); |
| ctr_val = ctr_val | |
| ((uint64_t)counter->mhpmcounterh_val << 32); |
| } |
| |
| /* |
| * We can not accommodate for inhibited modes when setting up timer. Check |
| * if the counter has actually overflowed or not by comparing current |
| * counter value (accommodated for inhibited modes) with software written |
| * counter value. |
| */ |
| if (curr_ctr_val >= ctr_val) { |
| riscv_pmu_setup_timer(env, curr_ctr_val, ctr_idx); |
| return; |
| } |
| |
| if (cpu->pmu_avail_ctrs & BIT(ctr_idx)) { |
| if (pmu_hpmevent_set_of_if_clear(env, ctr_idx)) { |
| riscv_cpu_update_mip(env, MIP_LCOFIP, BOOL_TO_MASK(1)); |
| } |
| } |
| } |
| |
| /* Timer callback for instret and cycle counter overflow */ |
| void riscv_pmu_timer_cb(void *priv) |
| { |
| RISCVCPU *cpu = priv; |
| |
| /* Timer event was triggered only for these events */ |
| pmu_timer_trigger_irq(cpu, RISCV_PMU_EVENT_HW_CPU_CYCLES); |
| pmu_timer_trigger_irq(cpu, RISCV_PMU_EVENT_HW_INSTRUCTIONS); |
| } |
| |
| int riscv_pmu_setup_timer(CPURISCVState *env, uint64_t value, uint32_t ctr_idx) |
| { |
| uint64_t overflow_delta, overflow_at, curr_ns; |
| int64_t overflow_ns, overflow_left = 0; |
| RISCVCPU *cpu = env_archcpu(env); |
| PMUCTRState *counter = &env->pmu_ctrs[ctr_idx]; |
| |
| /* No need to setup a timer if LCOFI is disabled when OF is set */ |
| if (!riscv_pmu_counter_valid(cpu, ctr_idx) || !cpu->cfg.ext_sscofpmf || |
| pmu_hpmevent_is_of_set(env, ctr_idx)) { |
| return -1; |
| } |
| |
| if (value) { |
| overflow_delta = UINT64_MAX - value + 1; |
| } else { |
| overflow_delta = UINT64_MAX; |
| } |
| |
| /* |
| * QEMU supports only int64_t timers while RISC-V counters are uint64_t. |
| * Compute the leftover and save it so that it can be reprogrammed again |
| * when timer expires. |
| */ |
| if (overflow_delta > INT64_MAX) { |
| overflow_left = overflow_delta - INT64_MAX; |
| } |
| |
| if (riscv_pmu_ctr_monitor_cycles(env, ctr_idx) || |
| riscv_pmu_ctr_monitor_instructions(env, ctr_idx)) { |
| overflow_ns = pmu_icount_ticks_to_ns((int64_t)overflow_delta); |
| overflow_left = pmu_icount_ticks_to_ns(overflow_left) ; |
| } else { |
| return -1; |
| } |
| curr_ns = (uint64_t)qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| overflow_at = curr_ns + overflow_ns; |
| if (overflow_at <= curr_ns) |
| overflow_at = UINT64_MAX; |
| |
| if (overflow_at > INT64_MAX) { |
| overflow_left += overflow_at - INT64_MAX; |
| counter->irq_overflow_left = overflow_left; |
| overflow_at = INT64_MAX; |
| } |
| timer_mod_anticipate_ns(cpu->pmu_timer, overflow_at); |
| |
| return 0; |
| } |
| |
| |
| void riscv_pmu_init(RISCVCPU *cpu, Error **errp) |
| { |
| if (cpu->cfg.pmu_mask & (COUNTEREN_CY | COUNTEREN_TM | COUNTEREN_IR)) { |
| error_setg(errp, "\"pmu-mask\" contains invalid bits (0-2) set"); |
| return; |
| } |
| |
| if (ctpop32(cpu->cfg.pmu_mask) > (RV_MAX_MHPMCOUNTERS - 3)) { |
| error_setg(errp, "Number of counters exceeds maximum available"); |
| return; |
| } |
| |
| cpu->pmu_event_ctr_map = g_hash_table_new(g_direct_hash, g_direct_equal); |
| if (!cpu->pmu_event_ctr_map) { |
| error_setg(errp, "Unable to allocate PMU event hash table"); |
| return; |
| } |
| |
| cpu->pmu_avail_ctrs = cpu->cfg.pmu_mask; |
| } |