| /* |
| * Memory Device Interface |
| * |
| * Copyright ProfitBricks GmbH 2012 |
| * Copyright (C) 2014 Red Hat Inc |
| * Copyright (c) 2018 Red Hat Inc |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/error-report.h" |
| #include "hw/mem/memory-device.h" |
| #include "qapi/error.h" |
| #include "hw/boards.h" |
| #include "qemu/range.h" |
| #include "hw/virtio/vhost.h" |
| #include "sysemu/kvm.h" |
| #include "exec/address-spaces.h" |
| #include "trace.h" |
| |
| static bool memory_device_is_empty(const MemoryDeviceState *md) |
| { |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); |
| Error *local_err = NULL; |
| MemoryRegion *mr; |
| |
| /* dropping const here is fine as we don't touch the memory region */ |
| mr = mdc->get_memory_region((MemoryDeviceState *)md, &local_err); |
| if (local_err) { |
| /* Not empty, we'll report errors later when containing the MR again. */ |
| error_free(local_err); |
| return false; |
| } |
| return !mr; |
| } |
| |
| static gint memory_device_addr_sort(gconstpointer a, gconstpointer b) |
| { |
| const MemoryDeviceState *md_a = MEMORY_DEVICE(a); |
| const MemoryDeviceState *md_b = MEMORY_DEVICE(b); |
| const MemoryDeviceClass *mdc_a = MEMORY_DEVICE_GET_CLASS(a); |
| const MemoryDeviceClass *mdc_b = MEMORY_DEVICE_GET_CLASS(b); |
| const uint64_t addr_a = mdc_a->get_addr(md_a); |
| const uint64_t addr_b = mdc_b->get_addr(md_b); |
| |
| if (addr_a > addr_b) { |
| return 1; |
| } else if (addr_a < addr_b) { |
| return -1; |
| } |
| return 0; |
| } |
| |
| static int memory_device_build_list(Object *obj, void *opaque) |
| { |
| GSList **list = opaque; |
| |
| if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { |
| DeviceState *dev = DEVICE(obj); |
| if (dev->realized) { /* only realized memory devices matter */ |
| *list = g_slist_insert_sorted(*list, dev, memory_device_addr_sort); |
| } |
| } |
| |
| object_child_foreach(obj, memory_device_build_list, opaque); |
| return 0; |
| } |
| |
| static unsigned int memory_device_get_memslots(MemoryDeviceState *md) |
| { |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); |
| |
| if (mdc->get_memslots) { |
| return mdc->get_memslots(md); |
| } |
| return 1; |
| } |
| |
| /* |
| * Memslots that are reserved by memory devices (required but still reported |
| * as free from KVM / vhost). |
| */ |
| static unsigned int get_reserved_memslots(MachineState *ms) |
| { |
| if (ms->device_memory->used_memslots > |
| ms->device_memory->required_memslots) { |
| /* This is unexpected, and we warned already in the memory notifier. */ |
| return 0; |
| } |
| return ms->device_memory->required_memslots - |
| ms->device_memory->used_memslots; |
| } |
| |
| unsigned int memory_devices_get_reserved_memslots(void) |
| { |
| if (!current_machine->device_memory) { |
| return 0; |
| } |
| return get_reserved_memslots(current_machine); |
| } |
| |
| bool memory_devices_memslot_auto_decision_active(void) |
| { |
| if (!current_machine->device_memory) { |
| return false; |
| } |
| |
| return current_machine->device_memory->memslot_auto_decision_active; |
| } |
| |
| static unsigned int memory_device_memslot_decision_limit(MachineState *ms, |
| MemoryRegion *mr) |
| { |
| const unsigned int reserved = get_reserved_memslots(ms); |
| const uint64_t size = memory_region_size(mr); |
| unsigned int max = vhost_get_max_memslots(); |
| unsigned int free = vhost_get_free_memslots(); |
| uint64_t available_space; |
| unsigned int memslots; |
| |
| if (kvm_enabled()) { |
| max = MIN(max, kvm_get_max_memslots()); |
| free = MIN(free, kvm_get_free_memslots()); |
| } |
| |
| /* |
| * If we only have less overall memslots than what we consider reasonable, |
| * just keep it to a minimum. |
| */ |
| if (max < MEMORY_DEVICES_SAFE_MAX_MEMSLOTS) { |
| return 1; |
| } |
| |
| /* |
| * Consider our soft-limit across all memory devices. We don't really |
| * expect to exceed this limit in reasonable configurations. |
| */ |
| if (MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT <= |
| ms->device_memory->required_memslots) { |
| return 1; |
| } |
| memslots = MEMORY_DEVICES_SOFT_MEMSLOT_LIMIT - |
| ms->device_memory->required_memslots; |
| |
| /* |
| * Consider the actually still free memslots. This is only relevant if |
| * other memslot consumers would consume *significantly* more memslots than |
| * what we prepared for (> 253). Unlikely, but let's just handle it |
| * cleanly. |
| */ |
| memslots = MIN(memslots, free - reserved); |
| if (memslots < 1 || unlikely(free < reserved)) { |
| return 1; |
| } |
| |
| /* We cannot have any other memory devices? So give all to this device. */ |
| if (size == ms->maxram_size - ms->ram_size) { |
| return memslots; |
| } |
| |
| /* |
| * Simple heuristic: equally distribute the memslots over the space |
| * still available for memory devices. |
| */ |
| available_space = ms->maxram_size - ms->ram_size - |
| ms->device_memory->used_region_size; |
| memslots = (double)memslots * size / available_space; |
| return memslots < 1 ? 1 : memslots; |
| } |
| |
| static void memory_device_check_addable(MachineState *ms, MemoryDeviceState *md, |
| MemoryRegion *mr, Error **errp) |
| { |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); |
| const uint64_t used_region_size = ms->device_memory->used_region_size; |
| const uint64_t size = memory_region_size(mr); |
| const unsigned int reserved_memslots = get_reserved_memslots(ms); |
| unsigned int required_memslots, memslot_limit; |
| |
| /* |
| * Instruct the device to decide how many memslots to use, if applicable, |
| * before we query the number of required memslots the first time. |
| */ |
| if (mdc->decide_memslots) { |
| memslot_limit = memory_device_memslot_decision_limit(ms, mr); |
| mdc->decide_memslots(md, memslot_limit); |
| } |
| required_memslots = memory_device_get_memslots(md); |
| |
| /* we will need memory slots for kvm and vhost */ |
| if (kvm_enabled() && |
| kvm_get_free_memslots() < required_memslots + reserved_memslots) { |
| error_setg(errp, "hypervisor has not enough free memory slots left"); |
| return; |
| } |
| if (vhost_get_free_memslots() < required_memslots + reserved_memslots) { |
| error_setg(errp, "a used vhost backend has not enough free memory slots left"); |
| return; |
| } |
| |
| /* will we exceed the total amount of memory specified */ |
| if (used_region_size + size < used_region_size || |
| used_region_size + size > ms->maxram_size - ms->ram_size) { |
| error_setg(errp, "not enough space, currently 0x%" PRIx64 |
| " in use of total space for memory devices 0x" RAM_ADDR_FMT, |
| used_region_size, ms->maxram_size - ms->ram_size); |
| return; |
| } |
| |
| } |
| |
| static uint64_t memory_device_get_free_addr(MachineState *ms, |
| const uint64_t *hint, |
| uint64_t align, uint64_t size, |
| Error **errp) |
| { |
| GSList *list = NULL, *item; |
| Range as, new = range_empty; |
| |
| range_init_nofail(&as, ms->device_memory->base, |
| memory_region_size(&ms->device_memory->mr)); |
| |
| /* start of address space indicates the maximum alignment we expect */ |
| if (!QEMU_IS_ALIGNED(range_lob(&as), align)) { |
| warn_report("the alignment (0x%" PRIx64 ") exceeds the expected" |
| " maximum alignment, memory will get fragmented and not" |
| " all 'maxmem' might be usable for memory devices.", |
| align); |
| } |
| |
| if (hint && !QEMU_IS_ALIGNED(*hint, align)) { |
| error_setg(errp, "address must be aligned to 0x%" PRIx64 " bytes", |
| align); |
| return 0; |
| } |
| |
| if (hint) { |
| if (range_init(&new, *hint, size) || !range_contains_range(&as, &new)) { |
| error_setg(errp, "can't add memory device [0x%" PRIx64 ":0x%" PRIx64 |
| "], usable range for memory devices [0x%" PRIx64 ":0x%" |
| PRIx64 "]", *hint, size, range_lob(&as), |
| range_size(&as)); |
| return 0; |
| } |
| } else { |
| if (range_init(&new, QEMU_ALIGN_UP(range_lob(&as), align), size)) { |
| error_setg(errp, "can't add memory device, device too big"); |
| return 0; |
| } |
| } |
| |
| /* find address range that will fit new memory device */ |
| object_child_foreach(OBJECT(ms), memory_device_build_list, &list); |
| for (item = list; item; item = g_slist_next(item)) { |
| const MemoryDeviceState *md = item->data; |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(OBJECT(md)); |
| uint64_t next_addr; |
| Range tmp; |
| |
| if (memory_device_is_empty(md)) { |
| continue; |
| } |
| |
| range_init_nofail(&tmp, mdc->get_addr(md), |
| memory_device_get_region_size(md, &error_abort)); |
| |
| if (range_overlaps_range(&tmp, &new)) { |
| if (hint) { |
| const DeviceState *d = DEVICE(md); |
| error_setg(errp, "address range conflicts with memory device" |
| " id='%s'", d->id ? d->id : "(unnamed)"); |
| goto out; |
| } |
| |
| next_addr = QEMU_ALIGN_UP(range_upb(&tmp) + 1, align); |
| if (!next_addr || range_init(&new, next_addr, range_size(&new))) { |
| range_make_empty(&new); |
| break; |
| } |
| } else if (range_lob(&tmp) > range_upb(&new)) { |
| break; |
| } |
| } |
| |
| if (!range_contains_range(&as, &new)) { |
| error_setg(errp, "could not find position in guest address space for " |
| "memory device - memory fragmented due to alignments"); |
| } |
| out: |
| g_slist_free(list); |
| return range_lob(&new); |
| } |
| |
| MemoryDeviceInfoList *qmp_memory_device_list(void) |
| { |
| GSList *devices = NULL, *item; |
| MemoryDeviceInfoList *list = NULL, **tail = &list; |
| |
| object_child_foreach(qdev_get_machine(), memory_device_build_list, |
| &devices); |
| |
| for (item = devices; item; item = g_slist_next(item)) { |
| const MemoryDeviceState *md = MEMORY_DEVICE(item->data); |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(item->data); |
| MemoryDeviceInfo *info = g_new0(MemoryDeviceInfo, 1); |
| |
| /* Let's query infotmation even for empty memory devices. */ |
| mdc->fill_device_info(md, info); |
| |
| QAPI_LIST_APPEND(tail, info); |
| } |
| |
| g_slist_free(devices); |
| |
| return list; |
| } |
| |
| static int memory_device_plugged_size(Object *obj, void *opaque) |
| { |
| uint64_t *size = opaque; |
| |
| if (object_dynamic_cast(obj, TYPE_MEMORY_DEVICE)) { |
| const DeviceState *dev = DEVICE(obj); |
| const MemoryDeviceState *md = MEMORY_DEVICE(obj); |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(obj); |
| |
| if (dev->realized && !memory_device_is_empty(md)) { |
| *size += mdc->get_plugged_size(md, &error_abort); |
| } |
| } |
| |
| object_child_foreach(obj, memory_device_plugged_size, opaque); |
| return 0; |
| } |
| |
| uint64_t get_plugged_memory_size(void) |
| { |
| uint64_t size = 0; |
| |
| memory_device_plugged_size(qdev_get_machine(), &size); |
| |
| return size; |
| } |
| |
| void memory_device_pre_plug(MemoryDeviceState *md, MachineState *ms, |
| Error **errp) |
| { |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); |
| Error *local_err = NULL; |
| uint64_t addr, align = 0; |
| MemoryRegion *mr; |
| |
| /* We support empty memory devices even without device memory. */ |
| if (memory_device_is_empty(md)) { |
| return; |
| } |
| |
| if (!ms->device_memory) { |
| error_setg(errp, "the configuration is not prepared for memory devices" |
| " (e.g., for memory hotplug), consider specifying the" |
| " maxmem option"); |
| return; |
| } |
| |
| mr = mdc->get_memory_region(md, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| memory_device_check_addable(ms, md, mr, &local_err); |
| if (local_err) { |
| goto out; |
| } |
| |
| /* |
| * We always want the memory region size to be multiples of the memory |
| * region alignment: for example, DIMMs with 1G+1byte size don't make |
| * any sense. Note that we don't check that the size is multiples |
| * of any additional alignment requirements the memory device might |
| * have when it comes to the address in physical address space. |
| */ |
| if (!QEMU_IS_ALIGNED(memory_region_size(mr), |
| memory_region_get_alignment(mr))) { |
| error_setg(errp, "backend memory size must be multiple of 0x%" |
| PRIx64, memory_region_get_alignment(mr)); |
| return; |
| } |
| |
| if (mdc->get_min_alignment) { |
| align = mdc->get_min_alignment(md); |
| } |
| align = MAX(align, memory_region_get_alignment(mr)); |
| addr = mdc->get_addr(md); |
| addr = memory_device_get_free_addr(ms, !addr ? NULL : &addr, align, |
| memory_region_size(mr), &local_err); |
| if (local_err) { |
| goto out; |
| } |
| mdc->set_addr(md, addr, &local_err); |
| if (!local_err) { |
| trace_memory_device_pre_plug(DEVICE(md)->id ? DEVICE(md)->id : "", |
| addr); |
| } |
| out: |
| error_propagate(errp, local_err); |
| } |
| |
| void memory_device_plug(MemoryDeviceState *md, MachineState *ms) |
| { |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); |
| unsigned int memslots; |
| uint64_t addr; |
| MemoryRegion *mr; |
| |
| if (memory_device_is_empty(md)) { |
| return; |
| } |
| |
| memslots = memory_device_get_memslots(md); |
| addr = mdc->get_addr(md); |
| |
| /* |
| * We expect that a previous call to memory_device_pre_plug() succeeded, so |
| * it can't fail at this point. |
| */ |
| mr = mdc->get_memory_region(md, &error_abort); |
| g_assert(ms->device_memory); |
| |
| ms->device_memory->used_region_size += memory_region_size(mr); |
| ms->device_memory->required_memslots += memslots; |
| if (mdc->decide_memslots && memslots > 1) { |
| ms->device_memory->memslot_auto_decision_active++; |
| } |
| |
| memory_region_add_subregion(&ms->device_memory->mr, |
| addr - ms->device_memory->base, mr); |
| trace_memory_device_plug(DEVICE(md)->id ? DEVICE(md)->id : "", addr); |
| } |
| |
| void memory_device_unplug(MemoryDeviceState *md, MachineState *ms) |
| { |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); |
| const unsigned int memslots = memory_device_get_memslots(md); |
| MemoryRegion *mr; |
| |
| if (memory_device_is_empty(md)) { |
| return; |
| } |
| |
| /* |
| * We expect that a previous call to memory_device_pre_plug() succeeded, so |
| * it can't fail at this point. |
| */ |
| mr = mdc->get_memory_region(md, &error_abort); |
| g_assert(ms->device_memory); |
| |
| memory_region_del_subregion(&ms->device_memory->mr, mr); |
| |
| if (mdc->decide_memslots && memslots > 1) { |
| ms->device_memory->memslot_auto_decision_active--; |
| } |
| ms->device_memory->used_region_size -= memory_region_size(mr); |
| ms->device_memory->required_memslots -= memslots; |
| trace_memory_device_unplug(DEVICE(md)->id ? DEVICE(md)->id : "", |
| mdc->get_addr(md)); |
| } |
| |
| uint64_t memory_device_get_region_size(const MemoryDeviceState *md, |
| Error **errp) |
| { |
| const MemoryDeviceClass *mdc = MEMORY_DEVICE_GET_CLASS(md); |
| MemoryRegion *mr; |
| |
| /* dropping const here is fine as we don't touch the memory region */ |
| mr = mdc->get_memory_region((MemoryDeviceState *)md, errp); |
| if (!mr) { |
| return 0; |
| } |
| |
| return memory_region_size(mr); |
| } |
| |
| static void memory_devices_region_mod(MemoryListener *listener, |
| MemoryRegionSection *mrs, bool add) |
| { |
| DeviceMemoryState *dms = container_of(listener, DeviceMemoryState, |
| listener); |
| |
| if (!memory_region_is_ram(mrs->mr)) { |
| warn_report("Unexpected memory region mapped into device memory region."); |
| return; |
| } |
| |
| /* |
| * The expectation is that each distinct RAM memory region section in |
| * our region for memory devices consumes exactly one memslot in KVM |
| * and in vhost. For vhost, this is true, except: |
| * * ROM memory regions don't consume a memslot. These get used very |
| * rarely for memory devices (R/O NVDIMMs). |
| * * Memslots without a fd (memory-backend-ram) don't necessarily |
| * consume a memslot. Such setups are quite rare and possibly bogus: |
| * the memory would be inaccessible by such vhost devices. |
| * |
| * So for vhost, in corner cases we might over-estimate the number of |
| * memslots that are currently used or that might still be reserved |
| * (required - used). |
| */ |
| dms->used_memslots += add ? 1 : -1; |
| |
| if (dms->used_memslots > dms->required_memslots) { |
| warn_report("Memory devices use more memory slots than indicated as required."); |
| } |
| } |
| |
| static void memory_devices_region_add(MemoryListener *listener, |
| MemoryRegionSection *mrs) |
| { |
| return memory_devices_region_mod(listener, mrs, true); |
| } |
| |
| static void memory_devices_region_del(MemoryListener *listener, |
| MemoryRegionSection *mrs) |
| { |
| return memory_devices_region_mod(listener, mrs, false); |
| } |
| |
| void machine_memory_devices_init(MachineState *ms, hwaddr base, uint64_t size) |
| { |
| g_assert(size); |
| g_assert(!ms->device_memory); |
| ms->device_memory = g_new0(DeviceMemoryState, 1); |
| ms->device_memory->base = base; |
| |
| memory_region_init(&ms->device_memory->mr, OBJECT(ms), "device-memory", |
| size); |
| address_space_init(&ms->device_memory->as, &ms->device_memory->mr, |
| "device-memory"); |
| memory_region_add_subregion(get_system_memory(), ms->device_memory->base, |
| &ms->device_memory->mr); |
| |
| /* Track the number of memslots used by memory devices. */ |
| ms->device_memory->listener.region_add = memory_devices_region_add; |
| ms->device_memory->listener.region_del = memory_devices_region_del; |
| memory_listener_register(&ms->device_memory->listener, |
| &ms->device_memory->as); |
| } |
| |
| static const TypeInfo memory_device_info = { |
| .name = TYPE_MEMORY_DEVICE, |
| .parent = TYPE_INTERFACE, |
| .class_size = sizeof(MemoryDeviceClass), |
| }; |
| |
| static void memory_device_register_types(void) |
| { |
| type_register_static(&memory_device_info); |
| } |
| |
| type_init(memory_device_register_types) |