blob: ea50718b6a2bac66c62c0addc36935f4588bfa7d [file] [log] [blame]
/*
* SPDX-License-Identifier: GPL-2.0-or-later
* Copyright (C) 2024 IBM Corp.
*
* ASPEED APB-OPB FSI interface
* IBM On-chip Peripheral Bus
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qom/object.h"
#include "qapi/error.h"
#include "trace.h"
#include "hw/fsi/aspeed_apb2opb.h"
#include "hw/qdev-core.h"
#define TO_REG(x) (x >> 2)
#define APB2OPB_VERSION TO_REG(0x00)
#define APB2OPB_TRIGGER TO_REG(0x04)
#define APB2OPB_CONTROL TO_REG(0x08)
#define APB2OPB_CONTROL_OFF BE_GENMASK(31, 13)
#define APB2OPB_OPB2FSI TO_REG(0x0c)
#define APB2OPB_OPB2FSI_OFF BE_GENMASK(31, 22)
#define APB2OPB_OPB0_SEL TO_REG(0x10)
#define APB2OPB_OPB1_SEL TO_REG(0x28)
#define APB2OPB_OPB_SEL_EN BIT(0)
#define APB2OPB_OPB0_MODE TO_REG(0x14)
#define APB2OPB_OPB1_MODE TO_REG(0x2c)
#define APB2OPB_OPB_MODE_RD BIT(0)
#define APB2OPB_OPB0_XFER TO_REG(0x18)
#define APB2OPB_OPB1_XFER TO_REG(0x30)
#define APB2OPB_OPB_XFER_FULL BIT(1)
#define APB2OPB_OPB_XFER_HALF BIT(0)
#define APB2OPB_OPB0_ADDR TO_REG(0x1c)
#define APB2OPB_OPB0_WRITE_DATA TO_REG(0x20)
#define APB2OPB_OPB1_ADDR TO_REG(0x34)
#define APB2OPB_OPB1_WRITE_DATA TO_REG(0x38)
#define APB2OPB_IRQ_STS TO_REG(0x48)
#define APB2OPB_IRQ_STS_OPB1_TX_ACK BIT(17)
#define APB2OPB_IRQ_STS_OPB0_TX_ACK BIT(16)
#define APB2OPB_OPB0_WRITE_WORD_ENDIAN TO_REG(0x4c)
#define APB2OPB_OPB0_WRITE_WORD_ENDIAN_BE 0x0011101b
#define APB2OPB_OPB0_WRITE_BYTE_ENDIAN TO_REG(0x50)
#define APB2OPB_OPB0_WRITE_BYTE_ENDIAN_BE 0x0c330f3f
#define APB2OPB_OPB1_WRITE_WORD_ENDIAN TO_REG(0x54)
#define APB2OPB_OPB1_WRITE_BYTE_ENDIAN TO_REG(0x58)
#define APB2OPB_OPB0_READ_BYTE_ENDIAN TO_REG(0x5c)
#define APB2OPB_OPB1_READ_BYTE_ENDIAN TO_REG(0x60)
#define APB2OPB_OPB0_READ_WORD_ENDIAN_BE 0x00030b1b
#define APB2OPB_OPB0_READ_DATA TO_REG(0x84)
#define APB2OPB_OPB1_READ_DATA TO_REG(0x90)
/*
* The following magic values came from AST2600 data sheet
* The register values are defined under section "FSI controller"
* as initial values.
*/
static const uint32_t aspeed_apb2opb_reset[ASPEED_APB2OPB_NR_REGS] = {
[APB2OPB_VERSION] = 0x000000a1,
[APB2OPB_OPB0_WRITE_WORD_ENDIAN] = 0x0044eee4,
[APB2OPB_OPB0_WRITE_BYTE_ENDIAN] = 0x0055aaff,
[APB2OPB_OPB1_WRITE_WORD_ENDIAN] = 0x00117717,
[APB2OPB_OPB1_WRITE_BYTE_ENDIAN] = 0xffaa5500,
[APB2OPB_OPB0_READ_BYTE_ENDIAN] = 0x0044eee4,
[APB2OPB_OPB1_READ_BYTE_ENDIAN] = 0x00117717
};
static void fsi_opb_fsi_master_address(FSIMasterState *fsi, hwaddr addr)
{
memory_region_transaction_begin();
memory_region_set_address(&fsi->iomem, addr);
memory_region_transaction_commit();
}
static void fsi_opb_opb2fsi_address(FSIMasterState *fsi, hwaddr addr)
{
memory_region_transaction_begin();
memory_region_set_address(&fsi->opb2fsi, addr);
memory_region_transaction_commit();
}
static uint64_t fsi_aspeed_apb2opb_read(void *opaque, hwaddr addr,
unsigned size)
{
AspeedAPB2OPBState *s = ASPEED_APB2OPB(opaque);
unsigned int reg = TO_REG(addr);
trace_fsi_aspeed_apb2opb_read(addr, size);
if (reg >= ASPEED_APB2OPB_NR_REGS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Out of bounds read: 0x%"HWADDR_PRIx" for %u\n",
__func__, addr, size);
return 0;
}
return s->regs[reg];
}
static MemTxResult fsi_aspeed_apb2opb_rw(AddressSpace *as, hwaddr addr,
MemTxAttrs attrs, uint32_t *data,
uint32_t size, bool is_write)
{
MemTxResult res;
if (is_write) {
switch (size) {
case 4:
address_space_stl_le(as, addr, *data, attrs, &res);
break;
case 2:
address_space_stw_le(as, addr, *data, attrs, &res);
break;
case 1:
address_space_stb(as, addr, *data, attrs, &res);
break;
default:
g_assert_not_reached();
}
} else {
switch (size) {
case 4:
*data = address_space_ldl_le(as, addr, attrs, &res);
break;
case 2:
*data = address_space_lduw_le(as, addr, attrs, &res);
break;
case 1:
*data = address_space_ldub(as, addr, attrs, &res);
break;
default:
g_assert_not_reached();
}
}
return res;
}
static void fsi_aspeed_apb2opb_write(void *opaque, hwaddr addr, uint64_t data,
unsigned size)
{
AspeedAPB2OPBState *s = ASPEED_APB2OPB(opaque);
unsigned int reg = TO_REG(addr);
trace_fsi_aspeed_apb2opb_write(addr, size, data);
if (reg >= ASPEED_APB2OPB_NR_REGS) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Out of bounds write: %"HWADDR_PRIx" for %u\n",
__func__, addr, size);
return;
}
switch (reg) {
case APB2OPB_CONTROL:
fsi_opb_fsi_master_address(&s->fsi[0],
data & APB2OPB_CONTROL_OFF);
break;
case APB2OPB_OPB2FSI:
fsi_opb_opb2fsi_address(&s->fsi[0],
data & APB2OPB_OPB2FSI_OFF);
break;
case APB2OPB_OPB0_WRITE_WORD_ENDIAN:
if (data != APB2OPB_OPB0_WRITE_WORD_ENDIAN_BE) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bridge needs to be driven as BE (0x%x)\n",
__func__, APB2OPB_OPB0_WRITE_WORD_ENDIAN_BE);
}
break;
case APB2OPB_OPB0_WRITE_BYTE_ENDIAN:
if (data != APB2OPB_OPB0_WRITE_BYTE_ENDIAN_BE) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bridge needs to be driven as BE (0x%x)\n",
__func__, APB2OPB_OPB0_WRITE_BYTE_ENDIAN_BE);
}
break;
case APB2OPB_OPB0_READ_BYTE_ENDIAN:
if (data != APB2OPB_OPB0_READ_WORD_ENDIAN_BE) {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Bridge needs to be driven as BE (0x%x)\n",
__func__, APB2OPB_OPB0_READ_WORD_ENDIAN_BE);
}
break;
case APB2OPB_TRIGGER:
{
uint32_t opb, op_mode, op_size, op_addr, op_data;
MemTxResult result;
bool is_write;
int index;
AddressSpace *as;
assert((s->regs[APB2OPB_OPB0_SEL] & APB2OPB_OPB_SEL_EN) ^
(s->regs[APB2OPB_OPB1_SEL] & APB2OPB_OPB_SEL_EN));
if (s->regs[APB2OPB_OPB0_SEL] & APB2OPB_OPB_SEL_EN) {
opb = 0;
op_mode = s->regs[APB2OPB_OPB0_MODE];
op_size = s->regs[APB2OPB_OPB0_XFER];
op_addr = s->regs[APB2OPB_OPB0_ADDR];
op_data = s->regs[APB2OPB_OPB0_WRITE_DATA];
} else if (s->regs[APB2OPB_OPB1_SEL] & APB2OPB_OPB_SEL_EN) {
opb = 1;
op_mode = s->regs[APB2OPB_OPB1_MODE];
op_size = s->regs[APB2OPB_OPB1_XFER];
op_addr = s->regs[APB2OPB_OPB1_ADDR];
op_data = s->regs[APB2OPB_OPB1_WRITE_DATA];
} else {
qemu_log_mask(LOG_GUEST_ERROR,
"%s: Invalid operation: 0x%"HWADDR_PRIx" for %u\n",
__func__, addr, size);
return;
}
if (op_size & ~(APB2OPB_OPB_XFER_HALF | APB2OPB_OPB_XFER_FULL)) {
qemu_log_mask(LOG_GUEST_ERROR,
"OPB transaction failed: Unrecognized access width: %d\n",
op_size);
return;
}
op_size += 1;
is_write = !(op_mode & APB2OPB_OPB_MODE_RD);
index = opb ? APB2OPB_OPB1_READ_DATA : APB2OPB_OPB0_READ_DATA;
as = &s->opb[opb].as;
result = fsi_aspeed_apb2opb_rw(as, op_addr, MEMTXATTRS_UNSPECIFIED,
&op_data, op_size, is_write);
if (result != MEMTX_OK) {
qemu_log_mask(LOG_GUEST_ERROR, "%s: OPB %s failed @%08x\n",
__func__, is_write ? "write" : "read", op_addr);
return;
}
if (!is_write) {
s->regs[index] = op_data;
}
s->regs[APB2OPB_IRQ_STS] |= opb ? APB2OPB_IRQ_STS_OPB1_TX_ACK
: APB2OPB_IRQ_STS_OPB0_TX_ACK;
break;
}
}
s->regs[reg] = data;
}
static const struct MemoryRegionOps aspeed_apb2opb_ops = {
.read = fsi_aspeed_apb2opb_read,
.write = fsi_aspeed_apb2opb_write,
.valid.max_access_size = 4,
.valid.min_access_size = 4,
.impl.max_access_size = 4,
.impl.min_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void fsi_aspeed_apb2opb_init(Object *o)
{
AspeedAPB2OPBState *s = ASPEED_APB2OPB(o);
int i;
for (i = 0; i < ASPEED_FSI_NUM; i++) {
object_initialize_child(o, "fsi-master[*]", &s->fsi[i],
TYPE_FSI_MASTER);
}
}
static void fsi_aspeed_apb2opb_realize(DeviceState *dev, Error **errp)
{
SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
AspeedAPB2OPBState *s = ASPEED_APB2OPB(dev);
int i;
/*
* TODO: The OPBus model initializes the OPB address space in
* the .instance_init handler and this is problematic for test
* device-introspect-test. To avoid a memory corruption and a QEMU
* crash, qbus_init() should be called from realize(). Something to
* improve. Possibly, OPBus could also be removed.
*/
for (i = 0; i < ASPEED_FSI_NUM; i++) {
qbus_init(&s->opb[i], sizeof(s->opb[i]), TYPE_OP_BUS, DEVICE(s),
NULL);
}
sysbus_init_irq(sbd, &s->irq);
memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_apb2opb_ops, s,
TYPE_ASPEED_APB2OPB, 0x1000);
sysbus_init_mmio(sbd, &s->iomem);
for (i = 0; i < ASPEED_FSI_NUM; i++) {
if (!qdev_realize(DEVICE(&s->fsi[i]), BUS(&s->opb[i]), errp)) {
return;
}
memory_region_add_subregion(&s->opb[i].mr, 0x80000000,
&s->fsi[i].iomem);
memory_region_add_subregion(&s->opb[i].mr, 0xa0000000,
&s->fsi[i].opb2fsi);
}
}
static void fsi_aspeed_apb2opb_reset(DeviceState *dev)
{
AspeedAPB2OPBState *s = ASPEED_APB2OPB(dev);
memcpy(s->regs, aspeed_apb2opb_reset, ASPEED_APB2OPB_NR_REGS);
}
static void fsi_aspeed_apb2opb_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->desc = "ASPEED APB2OPB Bridge";
dc->realize = fsi_aspeed_apb2opb_realize;
dc->reset = fsi_aspeed_apb2opb_reset;
}
static const TypeInfo aspeed_apb2opb_info = {
.name = TYPE_ASPEED_APB2OPB,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_init = fsi_aspeed_apb2opb_init,
.instance_size = sizeof(AspeedAPB2OPBState),
.class_init = fsi_aspeed_apb2opb_class_init,
};
static void aspeed_apb2opb_register_types(void)
{
type_register_static(&aspeed_apb2opb_info);
}
type_init(aspeed_apb2opb_register_types);
static void fsi_opb_init(Object *o)
{
OPBus *opb = OP_BUS(o);
memory_region_init(&opb->mr, 0, TYPE_FSI_OPB, UINT32_MAX);
address_space_init(&opb->as, &opb->mr, TYPE_FSI_OPB);
}
static const TypeInfo opb_info = {
.name = TYPE_OP_BUS,
.parent = TYPE_BUS,
.instance_init = fsi_opb_init,
.instance_size = sizeof(OPBus),
};
static void fsi_opb_register_types(void)
{
type_register_static(&opb_info);
}
type_init(fsi_opb_register_types);