| /* |
| * ARM V2M MPS2 board emulation, trustzone aware FPGA images |
| * |
| * Copyright (c) 2017 Linaro Limited |
| * Written by Peter Maydell |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License version 2 or |
| * (at your option) any later version. |
| */ |
| |
| /* The MPS2 and MPS2+ dev boards are FPGA based (the 2+ has a bigger |
| * FPGA but is otherwise the same as the 2). Since the CPU itself |
| * and most of the devices are in the FPGA, the details of the board |
| * as seen by the guest depend significantly on the FPGA image. |
| * This source file covers the following FPGA images, for TrustZone cores: |
| * "mps2-an505" -- Cortex-M33 as documented in ARM Application Note AN505 |
| * "mps2-an521" -- Dual Cortex-M33 as documented in Application Note AN521 |
| * "mps2-an524" -- Dual Cortex-M33 as documented in Application Note AN524 |
| * "mps2-an547" -- Single Cortex-M55 as documented in Application Note AN547 |
| * |
| * Links to the TRM for the board itself and to the various Application |
| * Notes which document the FPGA images can be found here: |
| * https://developer.arm.com/products/system-design/development-boards/fpga-prototyping-boards/mps2 |
| * |
| * Board TRM: |
| * https://developer.arm.com/documentation/100112/latest/ |
| * Application Note AN505: |
| * https://developer.arm.com/documentation/dai0505/latest/ |
| * Application Note AN521: |
| * https://developer.arm.com/documentation/dai0521/latest/ |
| * Application Note AN524: |
| * https://developer.arm.com/documentation/dai0524/latest/ |
| * Application Note AN547: |
| * https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/DAI0547B_SSE300_PLUS_U55_FPGA_for_mps3.pdf |
| * |
| * The AN505 defers to the Cortex-M33 processor ARMv8M IoT Kit FVP User Guide |
| * (ARM ECM0601256) for the details of some of the device layout: |
| * https://developer.arm.com/documentation/ecm0601256/latest |
| * Similarly, the AN521 and AN524 use the SSE-200, and the SSE-200 TRM defines |
| * most of the device layout: |
| * https://developer.arm.com/documentation/101104/latest/ |
| * and the AN547 uses the SSE-300, whose layout is in the SSE-300 TRM: |
| * https://developer.arm.com/documentation/101773/latest/ |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/units.h" |
| #include "qemu/cutils.h" |
| #include "qapi/error.h" |
| #include "qemu/error-report.h" |
| #include "hw/arm/boot.h" |
| #include "hw/arm/armv7m.h" |
| #include "hw/or-irq.h" |
| #include "hw/boards.h" |
| #include "exec/address-spaces.h" |
| #include "sysemu/sysemu.h" |
| #include "sysemu/reset.h" |
| #include "hw/misc/unimp.h" |
| #include "hw/char/cmsdk-apb-uart.h" |
| #include "hw/timer/cmsdk-apb-timer.h" |
| #include "hw/misc/mps2-scc.h" |
| #include "hw/misc/mps2-fpgaio.h" |
| #include "hw/misc/tz-mpc.h" |
| #include "hw/misc/tz-msc.h" |
| #include "hw/arm/armsse.h" |
| #include "hw/dma/pl080.h" |
| #include "hw/rtc/pl031.h" |
| #include "hw/ssi/pl022.h" |
| #include "hw/i2c/arm_sbcon_i2c.h" |
| #include "hw/net/lan9118.h" |
| #include "net/net.h" |
| #include "hw/core/split-irq.h" |
| #include "hw/qdev-clock.h" |
| #include "qom/object.h" |
| #include "hw/irq.h" |
| |
| #define MPS2TZ_NUMIRQ_MAX 96 |
| #define MPS2TZ_RAM_MAX 5 |
| |
| typedef enum MPS2TZFPGAType { |
| FPGA_AN505, |
| FPGA_AN521, |
| FPGA_AN524, |
| FPGA_AN547, |
| } MPS2TZFPGAType; |
| |
| /* |
| * Define the layout of RAM in a board, including which parts are |
| * behind which MPCs. |
| * mrindex specifies the index into mms->ram[] to use for the backing RAM; |
| * -1 means "use the system RAM". |
| */ |
| typedef struct RAMInfo { |
| const char *name; |
| uint32_t base; |
| uint32_t size; |
| int mpc; /* MPC number, -1 for "not behind an MPC" */ |
| int mrindex; |
| int flags; |
| } RAMInfo; |
| |
| /* |
| * Flag values: |
| * IS_ALIAS: this RAM area is an alias to the upstream end of the |
| * MPC specified by its .mpc value |
| * IS_ROM: this RAM area is read-only |
| */ |
| #define IS_ALIAS 1 |
| #define IS_ROM 2 |
| |
| struct MPS2TZMachineClass { |
| MachineClass parent; |
| MPS2TZFPGAType fpga_type; |
| uint32_t scc_id; |
| uint32_t sysclk_frq; /* Main SYSCLK frequency in Hz */ |
| uint32_t apb_periph_frq; /* APB peripheral frequency in Hz */ |
| uint32_t len_oscclk; |
| const uint32_t *oscclk; |
| uint32_t fpgaio_num_leds; /* Number of LEDs in FPGAIO LED0 register */ |
| bool fpgaio_has_switches; /* Does FPGAIO have SWITCH register? */ |
| bool fpgaio_has_dbgctrl; /* Does FPGAIO have DBGCTRL register? */ |
| int numirq; /* Number of external interrupts */ |
| int uart_overflow_irq; /* number of the combined UART overflow IRQ */ |
| uint32_t init_svtor; /* init-svtor setting for SSE */ |
| uint32_t sram_addr_width; /* SRAM_ADDR_WIDTH setting for SSE */ |
| const RAMInfo *raminfo; |
| const char *armsse_type; |
| uint32_t boot_ram_size; /* size of ram at address 0; 0 == find in raminfo */ |
| }; |
| |
| struct MPS2TZMachineState { |
| MachineState parent; |
| |
| ARMSSE iotkit; |
| MemoryRegion ram[MPS2TZ_RAM_MAX]; |
| MemoryRegion eth_usb_container; |
| |
| MPS2SCC scc; |
| MPS2FPGAIO fpgaio; |
| TZPPC ppc[5]; |
| TZMPC mpc[3]; |
| PL022State spi[5]; |
| ArmSbconI2CState i2c[5]; |
| UnimplementedDeviceState i2s_audio; |
| UnimplementedDeviceState gpio[4]; |
| UnimplementedDeviceState gfx; |
| UnimplementedDeviceState cldc; |
| UnimplementedDeviceState usb; |
| PL031State rtc; |
| PL080State dma[4]; |
| TZMSC msc[4]; |
| CMSDKAPBUART uart[6]; |
| SplitIRQ sec_resp_splitter; |
| qemu_or_irq uart_irq_orgate; |
| DeviceState *lan9118; |
| SplitIRQ cpu_irq_splitter[MPS2TZ_NUMIRQ_MAX]; |
| Clock *sysclk; |
| Clock *s32kclk; |
| |
| bool remap; |
| qemu_irq remap_irq; |
| }; |
| |
| #define TYPE_MPS2TZ_MACHINE "mps2tz" |
| #define TYPE_MPS2TZ_AN505_MACHINE MACHINE_TYPE_NAME("mps2-an505") |
| #define TYPE_MPS2TZ_AN521_MACHINE MACHINE_TYPE_NAME("mps2-an521") |
| #define TYPE_MPS3TZ_AN524_MACHINE MACHINE_TYPE_NAME("mps3-an524") |
| #define TYPE_MPS3TZ_AN547_MACHINE MACHINE_TYPE_NAME("mps3-an547") |
| |
| OBJECT_DECLARE_TYPE(MPS2TZMachineState, MPS2TZMachineClass, MPS2TZ_MACHINE) |
| |
| /* Slow 32Khz S32KCLK frequency in Hz */ |
| #define S32KCLK_FRQ (32 * 1000) |
| |
| /* |
| * The MPS3 DDR is 2GiB, but on a 32-bit host QEMU doesn't permit |
| * emulation of that much guest RAM, so artificially make it smaller. |
| */ |
| #if HOST_LONG_BITS == 32 |
| #define MPS3_DDR_SIZE (1 * GiB) |
| #else |
| #define MPS3_DDR_SIZE (2 * GiB) |
| #endif |
| |
| static const uint32_t an505_oscclk[] = { |
| 40000000, |
| 24580000, |
| 25000000, |
| }; |
| |
| static const uint32_t an524_oscclk[] = { |
| 24000000, |
| 32000000, |
| 50000000, |
| 50000000, |
| 24576000, |
| 23750000, |
| }; |
| |
| static const RAMInfo an505_raminfo[] = { { |
| .name = "ssram-0", |
| .base = 0x00000000, |
| .size = 0x00400000, |
| .mpc = 0, |
| .mrindex = 0, |
| }, { |
| .name = "ssram-1", |
| .base = 0x28000000, |
| .size = 0x00200000, |
| .mpc = 1, |
| .mrindex = 1, |
| }, { |
| .name = "ssram-2", |
| .base = 0x28200000, |
| .size = 0x00200000, |
| .mpc = 2, |
| .mrindex = 2, |
| }, { |
| .name = "ssram-0-alias", |
| .base = 0x00400000, |
| .size = 0x00400000, |
| .mpc = 0, |
| .mrindex = 3, |
| .flags = IS_ALIAS, |
| }, { |
| /* Use the largest bit of contiguous RAM as our "system memory" */ |
| .name = "mps.ram", |
| .base = 0x80000000, |
| .size = 16 * MiB, |
| .mpc = -1, |
| .mrindex = -1, |
| }, { |
| .name = NULL, |
| }, |
| }; |
| |
| /* |
| * Note that the addresses and MPC numbering here should match up |
| * with those used in remap_memory(), which can swap the BRAM and QSPI. |
| */ |
| static const RAMInfo an524_raminfo[] = { { |
| .name = "bram", |
| .base = 0x00000000, |
| .size = 512 * KiB, |
| .mpc = 0, |
| .mrindex = 0, |
| }, { |
| /* We don't model QSPI flash yet; for now expose it as simple ROM */ |
| .name = "QSPI", |
| .base = 0x28000000, |
| .size = 8 * MiB, |
| .mpc = 1, |
| .mrindex = 1, |
| .flags = IS_ROM, |
| }, { |
| .name = "DDR", |
| .base = 0x60000000, |
| .size = MPS3_DDR_SIZE, |
| .mpc = 2, |
| .mrindex = -1, |
| }, { |
| .name = NULL, |
| }, |
| }; |
| |
| static const RAMInfo an547_raminfo[] = { { |
| .name = "sram", |
| .base = 0x01000000, |
| .size = 2 * MiB, |
| .mpc = 0, |
| .mrindex = 1, |
| }, { |
| .name = "sram 2", |
| .base = 0x21000000, |
| .size = 4 * MiB, |
| .mpc = -1, |
| .mrindex = 3, |
| }, { |
| /* We don't model QSPI flash yet; for now expose it as simple ROM */ |
| .name = "QSPI", |
| .base = 0x28000000, |
| .size = 8 * MiB, |
| .mpc = 1, |
| .mrindex = 4, |
| .flags = IS_ROM, |
| }, { |
| .name = "DDR", |
| .base = 0x60000000, |
| .size = MPS3_DDR_SIZE, |
| .mpc = 2, |
| .mrindex = -1, |
| }, { |
| .name = NULL, |
| }, |
| }; |
| |
| static const RAMInfo *find_raminfo_for_mpc(MPS2TZMachineState *mms, int mpc) |
| { |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); |
| const RAMInfo *p; |
| const RAMInfo *found = NULL; |
| |
| for (p = mmc->raminfo; p->name; p++) { |
| if (p->mpc == mpc && !(p->flags & IS_ALIAS)) { |
| /* There should only be one entry in the array for this MPC */ |
| g_assert(!found); |
| found = p; |
| } |
| } |
| /* if raminfo array doesn't have an entry for each MPC this is a bug */ |
| assert(found); |
| return found; |
| } |
| |
| static MemoryRegion *mr_for_raminfo(MPS2TZMachineState *mms, |
| const RAMInfo *raminfo) |
| { |
| /* Return an initialized MemoryRegion for the RAMInfo. */ |
| MemoryRegion *ram; |
| |
| if (raminfo->mrindex < 0) { |
| /* Means this RAMInfo is for QEMU's "system memory" */ |
| MachineState *machine = MACHINE(mms); |
| assert(!(raminfo->flags & IS_ROM)); |
| return machine->ram; |
| } |
| |
| assert(raminfo->mrindex < MPS2TZ_RAM_MAX); |
| ram = &mms->ram[raminfo->mrindex]; |
| |
| memory_region_init_ram(ram, NULL, raminfo->name, |
| raminfo->size, &error_fatal); |
| if (raminfo->flags & IS_ROM) { |
| memory_region_set_readonly(ram, true); |
| } |
| return ram; |
| } |
| |
| /* Create an alias of an entire original MemoryRegion @orig |
| * located at @base in the memory map. |
| */ |
| static void make_ram_alias(MemoryRegion *mr, const char *name, |
| MemoryRegion *orig, hwaddr base) |
| { |
| memory_region_init_alias(mr, NULL, name, orig, 0, |
| memory_region_size(orig)); |
| memory_region_add_subregion(get_system_memory(), base, mr); |
| } |
| |
| static qemu_irq get_sse_irq_in(MPS2TZMachineState *mms, int irqno) |
| { |
| /* |
| * Return a qemu_irq which will signal IRQ n to all CPUs in the |
| * SSE. The irqno should be as the CPU sees it, so the first |
| * external-to-the-SSE interrupt is 32. |
| */ |
| MachineClass *mc = MACHINE_GET_CLASS(mms); |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); |
| |
| assert(irqno >= 32 && irqno < (mmc->numirq + 32)); |
| |
| /* |
| * Convert from "CPU irq number" (as listed in the FPGA image |
| * documentation) to the SSE external-interrupt number. |
| */ |
| irqno -= 32; |
| |
| if (mc->max_cpus > 1) { |
| return qdev_get_gpio_in(DEVICE(&mms->cpu_irq_splitter[irqno]), 0); |
| } else { |
| return qdev_get_gpio_in_named(DEVICE(&mms->iotkit), "EXP_IRQ", irqno); |
| } |
| } |
| |
| /* Most of the devices in the AN505 FPGA image sit behind |
| * Peripheral Protection Controllers. These data structures |
| * define the layout of which devices sit behind which PPCs. |
| * The devfn for each port is a function which creates, configures |
| * and initializes the device, returning the MemoryRegion which |
| * needs to be plugged into the downstream end of the PPC port. |
| */ |
| typedef MemoryRegion *MakeDevFn(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs); |
| |
| typedef struct PPCPortInfo { |
| const char *name; |
| MakeDevFn *devfn; |
| void *opaque; |
| hwaddr addr; |
| hwaddr size; |
| int irqs[3]; /* currently no device needs more IRQ lines than this */ |
| } PPCPortInfo; |
| |
| typedef struct PPCInfo { |
| const char *name; |
| PPCPortInfo ports[TZ_NUM_PORTS]; |
| } PPCInfo; |
| |
| static MemoryRegion *make_unimp_dev(MPS2TZMachineState *mms, |
| void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| /* Initialize, configure and realize a TYPE_UNIMPLEMENTED_DEVICE, |
| * and return a pointer to its MemoryRegion. |
| */ |
| UnimplementedDeviceState *uds = opaque; |
| |
| object_initialize_child(OBJECT(mms), name, uds, TYPE_UNIMPLEMENTED_DEVICE); |
| qdev_prop_set_string(DEVICE(uds), "name", name); |
| qdev_prop_set_uint64(DEVICE(uds), "size", size); |
| sysbus_realize(SYS_BUS_DEVICE(uds), &error_fatal); |
| return sysbus_mmio_get_region(SYS_BUS_DEVICE(uds), 0); |
| } |
| |
| static MemoryRegion *make_uart(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| /* The irq[] array is tx, rx, combined, in that order */ |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); |
| CMSDKAPBUART *uart = opaque; |
| int i = uart - &mms->uart[0]; |
| SysBusDevice *s; |
| DeviceState *orgate_dev = DEVICE(&mms->uart_irq_orgate); |
| |
| object_initialize_child(OBJECT(mms), name, uart, TYPE_CMSDK_APB_UART); |
| qdev_prop_set_chr(DEVICE(uart), "chardev", serial_hd(i)); |
| qdev_prop_set_uint32(DEVICE(uart), "pclk-frq", mmc->apb_periph_frq); |
| sysbus_realize(SYS_BUS_DEVICE(uart), &error_fatal); |
| s = SYS_BUS_DEVICE(uart); |
| sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0])); |
| sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1])); |
| sysbus_connect_irq(s, 2, qdev_get_gpio_in(orgate_dev, i * 2)); |
| sysbus_connect_irq(s, 3, qdev_get_gpio_in(orgate_dev, i * 2 + 1)); |
| sysbus_connect_irq(s, 4, get_sse_irq_in(mms, irqs[2])); |
| return sysbus_mmio_get_region(SYS_BUS_DEVICE(uart), 0); |
| } |
| |
| static MemoryRegion *make_scc(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| MPS2SCC *scc = opaque; |
| DeviceState *sccdev; |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); |
| uint32_t i; |
| |
| object_initialize_child(OBJECT(mms), "scc", scc, TYPE_MPS2_SCC); |
| sccdev = DEVICE(scc); |
| qdev_prop_set_uint32(sccdev, "scc-cfg0", mms->remap ? 1 : 0); |
| qdev_prop_set_uint32(sccdev, "scc-cfg4", 0x2); |
| qdev_prop_set_uint32(sccdev, "scc-aid", 0x00200008); |
| qdev_prop_set_uint32(sccdev, "scc-id", mmc->scc_id); |
| qdev_prop_set_uint32(sccdev, "len-oscclk", mmc->len_oscclk); |
| for (i = 0; i < mmc->len_oscclk; i++) { |
| g_autofree char *propname = g_strdup_printf("oscclk[%u]", i); |
| qdev_prop_set_uint32(sccdev, propname, mmc->oscclk[i]); |
| } |
| sysbus_realize(SYS_BUS_DEVICE(scc), &error_fatal); |
| return sysbus_mmio_get_region(SYS_BUS_DEVICE(sccdev), 0); |
| } |
| |
| static MemoryRegion *make_fpgaio(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| MPS2FPGAIO *fpgaio = opaque; |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); |
| |
| object_initialize_child(OBJECT(mms), "fpgaio", fpgaio, TYPE_MPS2_FPGAIO); |
| qdev_prop_set_uint32(DEVICE(fpgaio), "num-leds", mmc->fpgaio_num_leds); |
| qdev_prop_set_bit(DEVICE(fpgaio), "has-switches", mmc->fpgaio_has_switches); |
| qdev_prop_set_bit(DEVICE(fpgaio), "has-dbgctrl", mmc->fpgaio_has_dbgctrl); |
| sysbus_realize(SYS_BUS_DEVICE(fpgaio), &error_fatal); |
| return sysbus_mmio_get_region(SYS_BUS_DEVICE(fpgaio), 0); |
| } |
| |
| static MemoryRegion *make_eth_dev(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| SysBusDevice *s; |
| NICInfo *nd = &nd_table[0]; |
| |
| /* In hardware this is a LAN9220; the LAN9118 is software compatible |
| * except that it doesn't support the checksum-offload feature. |
| */ |
| qemu_check_nic_model(nd, "lan9118"); |
| mms->lan9118 = qdev_new(TYPE_LAN9118); |
| qdev_set_nic_properties(mms->lan9118, nd); |
| |
| s = SYS_BUS_DEVICE(mms->lan9118); |
| sysbus_realize_and_unref(s, &error_fatal); |
| sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0])); |
| return sysbus_mmio_get_region(s, 0); |
| } |
| |
| static MemoryRegion *make_eth_usb(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| /* |
| * The AN524 makes the ethernet and USB share a PPC port. |
| * irqs[] is the ethernet IRQ. |
| */ |
| SysBusDevice *s; |
| NICInfo *nd = &nd_table[0]; |
| |
| memory_region_init(&mms->eth_usb_container, OBJECT(mms), |
| "mps2-tz-eth-usb-container", 0x200000); |
| |
| /* |
| * In hardware this is a LAN9220; the LAN9118 is software compatible |
| * except that it doesn't support the checksum-offload feature. |
| */ |
| qemu_check_nic_model(nd, "lan9118"); |
| mms->lan9118 = qdev_new(TYPE_LAN9118); |
| qdev_set_nic_properties(mms->lan9118, nd); |
| |
| s = SYS_BUS_DEVICE(mms->lan9118); |
| sysbus_realize_and_unref(s, &error_fatal); |
| sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0])); |
| |
| memory_region_add_subregion(&mms->eth_usb_container, |
| 0, sysbus_mmio_get_region(s, 0)); |
| |
| /* The USB OTG controller is an ISP1763; we don't have a model of it. */ |
| object_initialize_child(OBJECT(mms), "usb-otg", |
| &mms->usb, TYPE_UNIMPLEMENTED_DEVICE); |
| qdev_prop_set_string(DEVICE(&mms->usb), "name", "usb-otg"); |
| qdev_prop_set_uint64(DEVICE(&mms->usb), "size", 0x100000); |
| s = SYS_BUS_DEVICE(&mms->usb); |
| sysbus_realize(s, &error_fatal); |
| |
| memory_region_add_subregion(&mms->eth_usb_container, |
| 0x100000, sysbus_mmio_get_region(s, 0)); |
| |
| return &mms->eth_usb_container; |
| } |
| |
| static MemoryRegion *make_mpc(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| TZMPC *mpc = opaque; |
| int i = mpc - &mms->mpc[0]; |
| MemoryRegion *upstream; |
| const RAMInfo *raminfo = find_raminfo_for_mpc(mms, i); |
| MemoryRegion *ram = mr_for_raminfo(mms, raminfo); |
| |
| object_initialize_child(OBJECT(mms), name, mpc, TYPE_TZ_MPC); |
| object_property_set_link(OBJECT(mpc), "downstream", OBJECT(ram), |
| &error_fatal); |
| sysbus_realize(SYS_BUS_DEVICE(mpc), &error_fatal); |
| /* Map the upstream end of the MPC into system memory */ |
| upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1); |
| memory_region_add_subregion(get_system_memory(), raminfo->base, upstream); |
| /* and connect its interrupt to the IoTKit */ |
| qdev_connect_gpio_out_named(DEVICE(mpc), "irq", 0, |
| qdev_get_gpio_in_named(DEVICE(&mms->iotkit), |
| "mpcexp_status", i)); |
| |
| /* Return the register interface MR for our caller to map behind the PPC */ |
| return sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 0); |
| } |
| |
| static hwaddr boot_mem_base(MPS2TZMachineState *mms) |
| { |
| /* |
| * Return the canonical address of the block which will be mapped |
| * at address 0x0 (i.e. where the vector table is). |
| * This is usually 0, but if the AN524 alternate memory map is |
| * enabled it will be the base address of the QSPI block. |
| */ |
| return mms->remap ? 0x28000000 : 0; |
| } |
| |
| static void remap_memory(MPS2TZMachineState *mms, int map) |
| { |
| /* |
| * Remap the memory for the AN524. 'map' is the value of |
| * SCC CFG_REG0 bit 0, i.e. 0 for the default map and 1 |
| * for the "option 1" mapping where QSPI is at address 0. |
| * |
| * Effectively we need to swap around the "upstream" ends of |
| * MPC 0 and MPC 1. |
| */ |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); |
| int i; |
| |
| if (mmc->fpga_type != FPGA_AN524) { |
| return; |
| } |
| |
| memory_region_transaction_begin(); |
| for (i = 0; i < 2; i++) { |
| TZMPC *mpc = &mms->mpc[i]; |
| MemoryRegion *upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(mpc), 1); |
| hwaddr addr = (i ^ map) ? 0x28000000 : 0; |
| |
| memory_region_set_address(upstream, addr); |
| } |
| memory_region_transaction_commit(); |
| } |
| |
| static void remap_irq_fn(void *opaque, int n, int level) |
| { |
| MPS2TZMachineState *mms = opaque; |
| |
| remap_memory(mms, level); |
| } |
| |
| static MemoryRegion *make_dma(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| /* The irq[] array is DMACINTR, DMACINTERR, DMACINTTC, in that order */ |
| PL080State *dma = opaque; |
| int i = dma - &mms->dma[0]; |
| SysBusDevice *s; |
| char *mscname = g_strdup_printf("%s-msc", name); |
| TZMSC *msc = &mms->msc[i]; |
| DeviceState *iotkitdev = DEVICE(&mms->iotkit); |
| MemoryRegion *msc_upstream; |
| MemoryRegion *msc_downstream; |
| |
| /* |
| * Each DMA device is a PL081 whose transaction master interface |
| * is guarded by a Master Security Controller. The downstream end of |
| * the MSC connects to the IoTKit AHB Slave Expansion port, so the |
| * DMA devices can see all devices and memory that the CPU does. |
| */ |
| object_initialize_child(OBJECT(mms), mscname, msc, TYPE_TZ_MSC); |
| msc_downstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(&mms->iotkit), 0); |
| object_property_set_link(OBJECT(msc), "downstream", |
| OBJECT(msc_downstream), &error_fatal); |
| object_property_set_link(OBJECT(msc), "idau", OBJECT(mms), &error_fatal); |
| sysbus_realize(SYS_BUS_DEVICE(msc), &error_fatal); |
| |
| qdev_connect_gpio_out_named(DEVICE(msc), "irq", 0, |
| qdev_get_gpio_in_named(iotkitdev, |
| "mscexp_status", i)); |
| qdev_connect_gpio_out_named(iotkitdev, "mscexp_clear", i, |
| qdev_get_gpio_in_named(DEVICE(msc), |
| "irq_clear", 0)); |
| qdev_connect_gpio_out_named(iotkitdev, "mscexp_ns", i, |
| qdev_get_gpio_in_named(DEVICE(msc), |
| "cfg_nonsec", 0)); |
| qdev_connect_gpio_out(DEVICE(&mms->sec_resp_splitter), |
| ARRAY_SIZE(mms->ppc) + i, |
| qdev_get_gpio_in_named(DEVICE(msc), |
| "cfg_sec_resp", 0)); |
| msc_upstream = sysbus_mmio_get_region(SYS_BUS_DEVICE(msc), 0); |
| |
| object_initialize_child(OBJECT(mms), name, dma, TYPE_PL081); |
| object_property_set_link(OBJECT(dma), "downstream", OBJECT(msc_upstream), |
| &error_fatal); |
| sysbus_realize(SYS_BUS_DEVICE(dma), &error_fatal); |
| |
| s = SYS_BUS_DEVICE(dma); |
| /* Wire up DMACINTR, DMACINTERR, DMACINTTC */ |
| sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0])); |
| sysbus_connect_irq(s, 1, get_sse_irq_in(mms, irqs[1])); |
| sysbus_connect_irq(s, 2, get_sse_irq_in(mms, irqs[2])); |
| |
| g_free(mscname); |
| return sysbus_mmio_get_region(s, 0); |
| } |
| |
| static MemoryRegion *make_spi(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| /* |
| * The AN505 has five PL022 SPI controllers. |
| * One of these should have the LCD controller behind it; the others |
| * are connected only to the FPGA's "general purpose SPI connector" |
| * or "shield" expansion connectors. |
| * Note that if we do implement devices behind SPI, the chip select |
| * lines are set via the "MISC" register in the MPS2 FPGAIO device. |
| */ |
| PL022State *spi = opaque; |
| SysBusDevice *s; |
| |
| object_initialize_child(OBJECT(mms), name, spi, TYPE_PL022); |
| sysbus_realize(SYS_BUS_DEVICE(spi), &error_fatal); |
| s = SYS_BUS_DEVICE(spi); |
| sysbus_connect_irq(s, 0, get_sse_irq_in(mms, irqs[0])); |
| return sysbus_mmio_get_region(s, 0); |
| } |
| |
| static MemoryRegion *make_i2c(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| ArmSbconI2CState *i2c = opaque; |
| SysBusDevice *s; |
| |
| object_initialize_child(OBJECT(mms), name, i2c, TYPE_ARM_SBCON_I2C); |
| s = SYS_BUS_DEVICE(i2c); |
| sysbus_realize(s, &error_fatal); |
| return sysbus_mmio_get_region(s, 0); |
| } |
| |
| static MemoryRegion *make_rtc(MPS2TZMachineState *mms, void *opaque, |
| const char *name, hwaddr size, |
| const int *irqs) |
| { |
| PL031State *pl031 = opaque; |
| SysBusDevice *s; |
| |
| object_initialize_child(OBJECT(mms), name, pl031, TYPE_PL031); |
| s = SYS_BUS_DEVICE(pl031); |
| sysbus_realize(s, &error_fatal); |
| /* |
| * The board docs don't give an IRQ number for the PL031, so |
| * presumably it is not connected. |
| */ |
| return sysbus_mmio_get_region(s, 0); |
| } |
| |
| static void create_non_mpc_ram(MPS2TZMachineState *mms) |
| { |
| /* |
| * Handle the RAMs which are either not behind MPCs or which are |
| * aliases to another MPC. |
| */ |
| const RAMInfo *p; |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); |
| |
| for (p = mmc->raminfo; p->name; p++) { |
| if (p->flags & IS_ALIAS) { |
| SysBusDevice *mpc_sbd = SYS_BUS_DEVICE(&mms->mpc[p->mpc]); |
| MemoryRegion *upstream = sysbus_mmio_get_region(mpc_sbd, 1); |
| make_ram_alias(&mms->ram[p->mrindex], p->name, upstream, p->base); |
| } else if (p->mpc == -1) { |
| /* RAM not behind an MPC */ |
| MemoryRegion *mr = mr_for_raminfo(mms, p); |
| memory_region_add_subregion(get_system_memory(), p->base, mr); |
| } |
| } |
| } |
| |
| static uint32_t boot_ram_size(MPS2TZMachineState *mms) |
| { |
| /* Return the size of the RAM block at guest address zero */ |
| const RAMInfo *p; |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); |
| |
| /* |
| * Use a per-board specification (for when the boot RAM is in |
| * the SSE and so doesn't have a RAMInfo list entry) |
| */ |
| if (mmc->boot_ram_size) { |
| return mmc->boot_ram_size; |
| } |
| |
| for (p = mmc->raminfo; p->name; p++) { |
| if (p->base == boot_mem_base(mms)) { |
| return p->size; |
| } |
| } |
| g_assert_not_reached(); |
| } |
| |
| static void mps2tz_common_init(MachineState *machine) |
| { |
| MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine); |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_GET_CLASS(mms); |
| MachineClass *mc = MACHINE_GET_CLASS(machine); |
| MemoryRegion *system_memory = get_system_memory(); |
| DeviceState *iotkitdev; |
| DeviceState *dev_splitter; |
| const PPCInfo *ppcs; |
| int num_ppcs; |
| int i; |
| |
| if (strcmp(machine->cpu_type, mc->default_cpu_type) != 0) { |
| error_report("This board can only be used with CPU %s", |
| mc->default_cpu_type); |
| exit(1); |
| } |
| |
| if (machine->ram_size != mc->default_ram_size) { |
| char *sz = size_to_str(mc->default_ram_size); |
| error_report("Invalid RAM size, should be %s", sz); |
| g_free(sz); |
| exit(EXIT_FAILURE); |
| } |
| |
| /* These clocks don't need migration because they are fixed-frequency */ |
| mms->sysclk = clock_new(OBJECT(machine), "SYSCLK"); |
| clock_set_hz(mms->sysclk, mmc->sysclk_frq); |
| mms->s32kclk = clock_new(OBJECT(machine), "S32KCLK"); |
| clock_set_hz(mms->s32kclk, S32KCLK_FRQ); |
| |
| object_initialize_child(OBJECT(machine), TYPE_IOTKIT, &mms->iotkit, |
| mmc->armsse_type); |
| iotkitdev = DEVICE(&mms->iotkit); |
| object_property_set_link(OBJECT(&mms->iotkit), "memory", |
| OBJECT(system_memory), &error_abort); |
| qdev_prop_set_uint32(iotkitdev, "EXP_NUMIRQ", mmc->numirq); |
| qdev_prop_set_uint32(iotkitdev, "init-svtor", mmc->init_svtor); |
| qdev_prop_set_uint32(iotkitdev, "SRAM_ADDR_WIDTH", mmc->sram_addr_width); |
| qdev_connect_clock_in(iotkitdev, "MAINCLK", mms->sysclk); |
| qdev_connect_clock_in(iotkitdev, "S32KCLK", mms->s32kclk); |
| sysbus_realize(SYS_BUS_DEVICE(&mms->iotkit), &error_fatal); |
| |
| /* |
| * If this board has more than one CPU, then we need to create splitters |
| * to feed the IRQ inputs for each CPU in the SSE from each device in the |
| * board. If there is only one CPU, we can just wire the device IRQ |
| * directly to the SSE's IRQ input. |
| */ |
| assert(mmc->numirq <= MPS2TZ_NUMIRQ_MAX); |
| if (mc->max_cpus > 1) { |
| for (i = 0; i < mmc->numirq; i++) { |
| char *name = g_strdup_printf("mps2-irq-splitter%d", i); |
| SplitIRQ *splitter = &mms->cpu_irq_splitter[i]; |
| |
| object_initialize_child_with_props(OBJECT(machine), name, |
| splitter, sizeof(*splitter), |
| TYPE_SPLIT_IRQ, &error_fatal, |
| NULL); |
| g_free(name); |
| |
| object_property_set_int(OBJECT(splitter), "num-lines", 2, |
| &error_fatal); |
| qdev_realize(DEVICE(splitter), NULL, &error_fatal); |
| qdev_connect_gpio_out(DEVICE(splitter), 0, |
| qdev_get_gpio_in_named(DEVICE(&mms->iotkit), |
| "EXP_IRQ", i)); |
| qdev_connect_gpio_out(DEVICE(splitter), 1, |
| qdev_get_gpio_in_named(DEVICE(&mms->iotkit), |
| "EXP_CPU1_IRQ", i)); |
| } |
| } |
| |
| /* The sec_resp_cfg output from the IoTKit must be split into multiple |
| * lines, one for each of the PPCs we create here, plus one per MSC. |
| */ |
| object_initialize_child(OBJECT(machine), "sec-resp-splitter", |
| &mms->sec_resp_splitter, TYPE_SPLIT_IRQ); |
| object_property_set_int(OBJECT(&mms->sec_resp_splitter), "num-lines", |
| ARRAY_SIZE(mms->ppc) + ARRAY_SIZE(mms->msc), |
| &error_fatal); |
| qdev_realize(DEVICE(&mms->sec_resp_splitter), NULL, &error_fatal); |
| dev_splitter = DEVICE(&mms->sec_resp_splitter); |
| qdev_connect_gpio_out_named(iotkitdev, "sec_resp_cfg", 0, |
| qdev_get_gpio_in(dev_splitter, 0)); |
| |
| /* |
| * The IoTKit sets up much of the memory layout, including |
| * the aliases between secure and non-secure regions in the |
| * address space, and also most of the devices in the system. |
| * The FPGA itself contains various RAMs and some additional devices. |
| * The FPGA images have an odd combination of different RAMs, |
| * because in hardware they are different implementations and |
| * connected to different buses, giving varying performance/size |
| * tradeoffs. For QEMU they're all just RAM, though. We arbitrarily |
| * call the largest lump our "system memory". |
| */ |
| |
| /* |
| * The overflow IRQs for all UARTs are ORed together. |
| * Tx, Rx and "combined" IRQs are sent to the NVIC separately. |
| * Create the OR gate for this: it has one input for the TX overflow |
| * and one for the RX overflow for each UART we might have. |
| * (If the board has fewer than the maximum possible number of UARTs |
| * those inputs are never wired up and are treated as always-zero.) |
| */ |
| object_initialize_child(OBJECT(mms), "uart-irq-orgate", |
| &mms->uart_irq_orgate, TYPE_OR_IRQ); |
| object_property_set_int(OBJECT(&mms->uart_irq_orgate), "num-lines", |
| 2 * ARRAY_SIZE(mms->uart), |
| &error_fatal); |
| qdev_realize(DEVICE(&mms->uart_irq_orgate), NULL, &error_fatal); |
| qdev_connect_gpio_out(DEVICE(&mms->uart_irq_orgate), 0, |
| get_sse_irq_in(mms, mmc->uart_overflow_irq)); |
| |
| /* Most of the devices in the FPGA are behind Peripheral Protection |
| * Controllers. The required order for initializing things is: |
| * + initialize the PPC |
| * + initialize, configure and realize downstream devices |
| * + connect downstream device MemoryRegions to the PPC |
| * + realize the PPC |
| * + map the PPC's MemoryRegions to the places in the address map |
| * where the downstream devices should appear |
| * + wire up the PPC's control lines to the IoTKit object |
| */ |
| |
| const PPCInfo an505_ppcs[] = { { |
| .name = "apb_ppcexp0", |
| .ports = { |
| { "ssram-0-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 }, |
| { "ssram-1-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 }, |
| { "ssram-2-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 }, |
| }, |
| }, { |
| .name = "apb_ppcexp1", |
| .ports = { |
| { "spi0", make_spi, &mms->spi[0], 0x40205000, 0x1000, { 51 } }, |
| { "spi1", make_spi, &mms->spi[1], 0x40206000, 0x1000, { 52 } }, |
| { "spi2", make_spi, &mms->spi[2], 0x40209000, 0x1000, { 53 } }, |
| { "spi3", make_spi, &mms->spi[3], 0x4020a000, 0x1000, { 54 } }, |
| { "spi4", make_spi, &mms->spi[4], 0x4020b000, 0x1000, { 55 } }, |
| { "uart0", make_uart, &mms->uart[0], 0x40200000, 0x1000, { 32, 33, 42 } }, |
| { "uart1", make_uart, &mms->uart[1], 0x40201000, 0x1000, { 34, 35, 43 } }, |
| { "uart2", make_uart, &mms->uart[2], 0x40202000, 0x1000, { 36, 37, 44 } }, |
| { "uart3", make_uart, &mms->uart[3], 0x40203000, 0x1000, { 38, 39, 45 } }, |
| { "uart4", make_uart, &mms->uart[4], 0x40204000, 0x1000, { 40, 41, 46 } }, |
| { "i2c0", make_i2c, &mms->i2c[0], 0x40207000, 0x1000 }, |
| { "i2c1", make_i2c, &mms->i2c[1], 0x40208000, 0x1000 }, |
| { "i2c2", make_i2c, &mms->i2c[2], 0x4020c000, 0x1000 }, |
| { "i2c3", make_i2c, &mms->i2c[3], 0x4020d000, 0x1000 }, |
| }, |
| }, { |
| .name = "apb_ppcexp2", |
| .ports = { |
| { "scc", make_scc, &mms->scc, 0x40300000, 0x1000 }, |
| { "i2s-audio", make_unimp_dev, &mms->i2s_audio, |
| 0x40301000, 0x1000 }, |
| { "fpgaio", make_fpgaio, &mms->fpgaio, 0x40302000, 0x1000 }, |
| }, |
| }, { |
| .name = "ahb_ppcexp0", |
| .ports = { |
| { "gfx", make_unimp_dev, &mms->gfx, 0x41000000, 0x140000 }, |
| { "gpio0", make_unimp_dev, &mms->gpio[0], 0x40100000, 0x1000 }, |
| { "gpio1", make_unimp_dev, &mms->gpio[1], 0x40101000, 0x1000 }, |
| { "gpio2", make_unimp_dev, &mms->gpio[2], 0x40102000, 0x1000 }, |
| { "gpio3", make_unimp_dev, &mms->gpio[3], 0x40103000, 0x1000 }, |
| { "eth", make_eth_dev, NULL, 0x42000000, 0x100000, { 48 } }, |
| }, |
| }, { |
| .name = "ahb_ppcexp1", |
| .ports = { |
| { "dma0", make_dma, &mms->dma[0], 0x40110000, 0x1000, { 58, 56, 57 } }, |
| { "dma1", make_dma, &mms->dma[1], 0x40111000, 0x1000, { 61, 59, 60 } }, |
| { "dma2", make_dma, &mms->dma[2], 0x40112000, 0x1000, { 64, 62, 63 } }, |
| { "dma3", make_dma, &mms->dma[3], 0x40113000, 0x1000, { 67, 65, 66 } }, |
| }, |
| }, |
| }; |
| |
| const PPCInfo an524_ppcs[] = { { |
| .name = "apb_ppcexp0", |
| .ports = { |
| { "bram-mpc", make_mpc, &mms->mpc[0], 0x58007000, 0x1000 }, |
| { "qspi-mpc", make_mpc, &mms->mpc[1], 0x58008000, 0x1000 }, |
| { "ddr-mpc", make_mpc, &mms->mpc[2], 0x58009000, 0x1000 }, |
| }, |
| }, { |
| .name = "apb_ppcexp1", |
| .ports = { |
| { "i2c0", make_i2c, &mms->i2c[0], 0x41200000, 0x1000 }, |
| { "i2c1", make_i2c, &mms->i2c[1], 0x41201000, 0x1000 }, |
| { "spi0", make_spi, &mms->spi[0], 0x41202000, 0x1000, { 52 } }, |
| { "spi1", make_spi, &mms->spi[1], 0x41203000, 0x1000, { 53 } }, |
| { "spi2", make_spi, &mms->spi[2], 0x41204000, 0x1000, { 54 } }, |
| { "i2c2", make_i2c, &mms->i2c[2], 0x41205000, 0x1000 }, |
| { "i2c3", make_i2c, &mms->i2c[3], 0x41206000, 0x1000 }, |
| { /* port 7 reserved */ }, |
| { "i2c4", make_i2c, &mms->i2c[4], 0x41208000, 0x1000 }, |
| }, |
| }, { |
| .name = "apb_ppcexp2", |
| .ports = { |
| { "scc", make_scc, &mms->scc, 0x41300000, 0x1000 }, |
| { "i2s-audio", make_unimp_dev, &mms->i2s_audio, |
| 0x41301000, 0x1000 }, |
| { "fpgaio", make_fpgaio, &mms->fpgaio, 0x41302000, 0x1000 }, |
| { "uart0", make_uart, &mms->uart[0], 0x41303000, 0x1000, { 32, 33, 42 } }, |
| { "uart1", make_uart, &mms->uart[1], 0x41304000, 0x1000, { 34, 35, 43 } }, |
| { "uart2", make_uart, &mms->uart[2], 0x41305000, 0x1000, { 36, 37, 44 } }, |
| { "uart3", make_uart, &mms->uart[3], 0x41306000, 0x1000, { 38, 39, 45 } }, |
| { "uart4", make_uart, &mms->uart[4], 0x41307000, 0x1000, { 40, 41, 46 } }, |
| { "uart5", make_uart, &mms->uart[5], 0x41308000, 0x1000, { 124, 125, 126 } }, |
| |
| { /* port 9 reserved */ }, |
| { "clcd", make_unimp_dev, &mms->cldc, 0x4130a000, 0x1000 }, |
| { "rtc", make_rtc, &mms->rtc, 0x4130b000, 0x1000 }, |
| }, |
| }, { |
| .name = "ahb_ppcexp0", |
| .ports = { |
| { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 }, |
| { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 }, |
| { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 }, |
| { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 }, |
| { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 48 } }, |
| }, |
| }, |
| }; |
| |
| const PPCInfo an547_ppcs[] = { { |
| .name = "apb_ppcexp0", |
| .ports = { |
| { "ssram-mpc", make_mpc, &mms->mpc[0], 0x57000000, 0x1000 }, |
| { "qspi-mpc", make_mpc, &mms->mpc[1], 0x57001000, 0x1000 }, |
| { "ddr-mpc", make_mpc, &mms->mpc[2], 0x57002000, 0x1000 }, |
| }, |
| }, { |
| .name = "apb_ppcexp1", |
| .ports = { |
| { "i2c0", make_i2c, &mms->i2c[0], 0x49200000, 0x1000 }, |
| { "i2c1", make_i2c, &mms->i2c[1], 0x49201000, 0x1000 }, |
| { "spi0", make_spi, &mms->spi[0], 0x49202000, 0x1000, { 53 } }, |
| { "spi1", make_spi, &mms->spi[1], 0x49203000, 0x1000, { 54 } }, |
| { "spi2", make_spi, &mms->spi[2], 0x49204000, 0x1000, { 55 } }, |
| { "i2c2", make_i2c, &mms->i2c[2], 0x49205000, 0x1000 }, |
| { "i2c3", make_i2c, &mms->i2c[3], 0x49206000, 0x1000 }, |
| { /* port 7 reserved */ }, |
| { "i2c4", make_i2c, &mms->i2c[4], 0x49208000, 0x1000 }, |
| }, |
| }, { |
| .name = "apb_ppcexp2", |
| .ports = { |
| { "scc", make_scc, &mms->scc, 0x49300000, 0x1000 }, |
| { "i2s-audio", make_unimp_dev, &mms->i2s_audio, 0x49301000, 0x1000 }, |
| { "fpgaio", make_fpgaio, &mms->fpgaio, 0x49302000, 0x1000 }, |
| { "uart0", make_uart, &mms->uart[0], 0x49303000, 0x1000, { 33, 34, 43 } }, |
| { "uart1", make_uart, &mms->uart[1], 0x49304000, 0x1000, { 35, 36, 44 } }, |
| { "uart2", make_uart, &mms->uart[2], 0x49305000, 0x1000, { 37, 38, 45 } }, |
| { "uart3", make_uart, &mms->uart[3], 0x49306000, 0x1000, { 39, 40, 46 } }, |
| { "uart4", make_uart, &mms->uart[4], 0x49307000, 0x1000, { 41, 42, 47 } }, |
| { "uart5", make_uart, &mms->uart[5], 0x49308000, 0x1000, { 125, 126, 127 } }, |
| |
| { /* port 9 reserved */ }, |
| { "clcd", make_unimp_dev, &mms->cldc, 0x4930a000, 0x1000 }, |
| { "rtc", make_rtc, &mms->rtc, 0x4930b000, 0x1000 }, |
| }, |
| }, { |
| .name = "ahb_ppcexp0", |
| .ports = { |
| { "gpio0", make_unimp_dev, &mms->gpio[0], 0x41100000, 0x1000 }, |
| { "gpio1", make_unimp_dev, &mms->gpio[1], 0x41101000, 0x1000 }, |
| { "gpio2", make_unimp_dev, &mms->gpio[2], 0x41102000, 0x1000 }, |
| { "gpio3", make_unimp_dev, &mms->gpio[3], 0x41103000, 0x1000 }, |
| { "eth-usb", make_eth_usb, NULL, 0x41400000, 0x200000, { 49 } }, |
| }, |
| }, |
| }; |
| |
| switch (mmc->fpga_type) { |
| case FPGA_AN505: |
| case FPGA_AN521: |
| ppcs = an505_ppcs; |
| num_ppcs = ARRAY_SIZE(an505_ppcs); |
| break; |
| case FPGA_AN524: |
| ppcs = an524_ppcs; |
| num_ppcs = ARRAY_SIZE(an524_ppcs); |
| break; |
| case FPGA_AN547: |
| ppcs = an547_ppcs; |
| num_ppcs = ARRAY_SIZE(an547_ppcs); |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| |
| for (i = 0; i < num_ppcs; i++) { |
| const PPCInfo *ppcinfo = &ppcs[i]; |
| TZPPC *ppc = &mms->ppc[i]; |
| DeviceState *ppcdev; |
| int port; |
| char *gpioname; |
| |
| object_initialize_child(OBJECT(machine), ppcinfo->name, ppc, |
| TYPE_TZ_PPC); |
| ppcdev = DEVICE(ppc); |
| |
| for (port = 0; port < TZ_NUM_PORTS; port++) { |
| const PPCPortInfo *pinfo = &ppcinfo->ports[port]; |
| MemoryRegion *mr; |
| char *portname; |
| |
| if (!pinfo->devfn) { |
| continue; |
| } |
| |
| mr = pinfo->devfn(mms, pinfo->opaque, pinfo->name, pinfo->size, |
| pinfo->irqs); |
| portname = g_strdup_printf("port[%d]", port); |
| object_property_set_link(OBJECT(ppc), portname, OBJECT(mr), |
| &error_fatal); |
| g_free(portname); |
| } |
| |
| sysbus_realize(SYS_BUS_DEVICE(ppc), &error_fatal); |
| |
| for (port = 0; port < TZ_NUM_PORTS; port++) { |
| const PPCPortInfo *pinfo = &ppcinfo->ports[port]; |
| |
| if (!pinfo->devfn) { |
| continue; |
| } |
| sysbus_mmio_map(SYS_BUS_DEVICE(ppc), port, pinfo->addr); |
| |
| gpioname = g_strdup_printf("%s_nonsec", ppcinfo->name); |
| qdev_connect_gpio_out_named(iotkitdev, gpioname, port, |
| qdev_get_gpio_in_named(ppcdev, |
| "cfg_nonsec", |
| port)); |
| g_free(gpioname); |
| gpioname = g_strdup_printf("%s_ap", ppcinfo->name); |
| qdev_connect_gpio_out_named(iotkitdev, gpioname, port, |
| qdev_get_gpio_in_named(ppcdev, |
| "cfg_ap", port)); |
| g_free(gpioname); |
| } |
| |
| gpioname = g_strdup_printf("%s_irq_enable", ppcinfo->name); |
| qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, |
| qdev_get_gpio_in_named(ppcdev, |
| "irq_enable", 0)); |
| g_free(gpioname); |
| gpioname = g_strdup_printf("%s_irq_clear", ppcinfo->name); |
| qdev_connect_gpio_out_named(iotkitdev, gpioname, 0, |
| qdev_get_gpio_in_named(ppcdev, |
| "irq_clear", 0)); |
| g_free(gpioname); |
| gpioname = g_strdup_printf("%s_irq_status", ppcinfo->name); |
| qdev_connect_gpio_out_named(ppcdev, "irq", 0, |
| qdev_get_gpio_in_named(iotkitdev, |
| gpioname, 0)); |
| g_free(gpioname); |
| |
| qdev_connect_gpio_out(dev_splitter, i, |
| qdev_get_gpio_in_named(ppcdev, |
| "cfg_sec_resp", 0)); |
| } |
| |
| create_unimplemented_device("FPGA NS PC", 0x48007000, 0x1000); |
| |
| if (mmc->fpga_type == FPGA_AN547) { |
| create_unimplemented_device("U55 timing adapter 0", 0x48102000, 0x1000); |
| create_unimplemented_device("U55 timing adapter 1", 0x48103000, 0x1000); |
| } |
| |
| create_non_mpc_ram(mms); |
| |
| if (mmc->fpga_type == FPGA_AN524) { |
| /* |
| * Connect the line from the SCC so that we can remap when the |
| * guest updates that register. |
| */ |
| mms->remap_irq = qemu_allocate_irq(remap_irq_fn, mms, 0); |
| qdev_connect_gpio_out_named(DEVICE(&mms->scc), "remap", 0, |
| mms->remap_irq); |
| } |
| |
| armv7m_load_kernel(ARM_CPU(first_cpu), machine->kernel_filename, |
| boot_ram_size(mms)); |
| } |
| |
| static void mps2_tz_idau_check(IDAUInterface *ii, uint32_t address, |
| int *iregion, bool *exempt, bool *ns, bool *nsc) |
| { |
| /* |
| * The MPS2 TZ FPGA images have IDAUs in them which are connected to |
| * the Master Security Controllers. Thes have the same logic as |
| * is used by the IoTKit for the IDAU connected to the CPU, except |
| * that MSCs don't care about the NSC attribute. |
| */ |
| int region = extract32(address, 28, 4); |
| |
| *ns = !(region & 1); |
| *nsc = false; |
| /* 0xe0000000..0xe00fffff and 0xf0000000..0xf00fffff are exempt */ |
| *exempt = (address & 0xeff00000) == 0xe0000000; |
| *iregion = region; |
| } |
| |
| static char *mps2_get_remap(Object *obj, Error **errp) |
| { |
| MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj); |
| const char *val = mms->remap ? "QSPI" : "BRAM"; |
| return g_strdup(val); |
| } |
| |
| static void mps2_set_remap(Object *obj, const char *value, Error **errp) |
| { |
| MPS2TZMachineState *mms = MPS2TZ_MACHINE(obj); |
| |
| if (!strcmp(value, "BRAM")) { |
| mms->remap = false; |
| } else if (!strcmp(value, "QSPI")) { |
| mms->remap = true; |
| } else { |
| error_setg(errp, "Invalid remap value"); |
| error_append_hint(errp, "Valid values are BRAM and QSPI.\n"); |
| } |
| } |
| |
| static void mps2_machine_reset(MachineState *machine) |
| { |
| MPS2TZMachineState *mms = MPS2TZ_MACHINE(machine); |
| |
| /* |
| * Set the initial memory mapping before triggering the reset of |
| * the rest of the system, so that the guest image loader and CPU |
| * reset see the correct mapping. |
| */ |
| remap_memory(mms, mms->remap); |
| qemu_devices_reset(); |
| } |
| |
| static void mps2tz_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| IDAUInterfaceClass *iic = IDAU_INTERFACE_CLASS(oc); |
| |
| mc->init = mps2tz_common_init; |
| mc->reset = mps2_machine_reset; |
| iic->check = mps2_tz_idau_check; |
| } |
| |
| static void mps2tz_set_default_ram_info(MPS2TZMachineClass *mmc) |
| { |
| /* |
| * Set mc->default_ram_size and default_ram_id from the |
| * information in mmc->raminfo. |
| */ |
| MachineClass *mc = MACHINE_CLASS(mmc); |
| const RAMInfo *p; |
| |
| for (p = mmc->raminfo; p->name; p++) { |
| if (p->mrindex < 0) { |
| /* Found the entry for "system memory" */ |
| mc->default_ram_size = p->size; |
| mc->default_ram_id = p->name; |
| return; |
| } |
| } |
| g_assert_not_reached(); |
| } |
| |
| static void mps2tz_an505_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); |
| |
| mc->desc = "ARM MPS2 with AN505 FPGA image for Cortex-M33"; |
| mc->default_cpus = 1; |
| mc->min_cpus = mc->default_cpus; |
| mc->max_cpus = mc->default_cpus; |
| mmc->fpga_type = FPGA_AN505; |
| mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); |
| mmc->scc_id = 0x41045050; |
| mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */ |
| mmc->apb_periph_frq = mmc->sysclk_frq; |
| mmc->oscclk = an505_oscclk; |
| mmc->len_oscclk = ARRAY_SIZE(an505_oscclk); |
| mmc->fpgaio_num_leds = 2; |
| mmc->fpgaio_has_switches = false; |
| mmc->fpgaio_has_dbgctrl = false; |
| mmc->numirq = 92; |
| mmc->uart_overflow_irq = 47; |
| mmc->init_svtor = 0x10000000; |
| mmc->sram_addr_width = 15; |
| mmc->raminfo = an505_raminfo; |
| mmc->armsse_type = TYPE_IOTKIT; |
| mmc->boot_ram_size = 0; |
| mps2tz_set_default_ram_info(mmc); |
| } |
| |
| static void mps2tz_an521_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); |
| |
| mc->desc = "ARM MPS2 with AN521 FPGA image for dual Cortex-M33"; |
| mc->default_cpus = 2; |
| mc->min_cpus = mc->default_cpus; |
| mc->max_cpus = mc->default_cpus; |
| mmc->fpga_type = FPGA_AN521; |
| mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); |
| mmc->scc_id = 0x41045210; |
| mmc->sysclk_frq = 20 * 1000 * 1000; /* 20MHz */ |
| mmc->apb_periph_frq = mmc->sysclk_frq; |
| mmc->oscclk = an505_oscclk; /* AN521 is the same as AN505 here */ |
| mmc->len_oscclk = ARRAY_SIZE(an505_oscclk); |
| mmc->fpgaio_num_leds = 2; |
| mmc->fpgaio_has_switches = false; |
| mmc->fpgaio_has_dbgctrl = false; |
| mmc->numirq = 92; |
| mmc->uart_overflow_irq = 47; |
| mmc->init_svtor = 0x10000000; |
| mmc->sram_addr_width = 15; |
| mmc->raminfo = an505_raminfo; /* AN521 is the same as AN505 here */ |
| mmc->armsse_type = TYPE_SSE200; |
| mmc->boot_ram_size = 0; |
| mps2tz_set_default_ram_info(mmc); |
| } |
| |
| static void mps3tz_an524_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); |
| |
| mc->desc = "ARM MPS3 with AN524 FPGA image for dual Cortex-M33"; |
| mc->default_cpus = 2; |
| mc->min_cpus = mc->default_cpus; |
| mc->max_cpus = mc->default_cpus; |
| mmc->fpga_type = FPGA_AN524; |
| mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m33"); |
| mmc->scc_id = 0x41045240; |
| mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */ |
| mmc->apb_periph_frq = mmc->sysclk_frq; |
| mmc->oscclk = an524_oscclk; |
| mmc->len_oscclk = ARRAY_SIZE(an524_oscclk); |
| mmc->fpgaio_num_leds = 10; |
| mmc->fpgaio_has_switches = true; |
| mmc->fpgaio_has_dbgctrl = false; |
| mmc->numirq = 95; |
| mmc->uart_overflow_irq = 47; |
| mmc->init_svtor = 0x10000000; |
| mmc->sram_addr_width = 15; |
| mmc->raminfo = an524_raminfo; |
| mmc->armsse_type = TYPE_SSE200; |
| mmc->boot_ram_size = 0; |
| mps2tz_set_default_ram_info(mmc); |
| |
| object_class_property_add_str(oc, "remap", mps2_get_remap, mps2_set_remap); |
| object_class_property_set_description(oc, "remap", |
| "Set memory mapping. Valid values " |
| "are BRAM (default) and QSPI."); |
| } |
| |
| static void mps3tz_an547_class_init(ObjectClass *oc, void *data) |
| { |
| MachineClass *mc = MACHINE_CLASS(oc); |
| MPS2TZMachineClass *mmc = MPS2TZ_MACHINE_CLASS(oc); |
| |
| mc->desc = "ARM MPS3 with AN547 FPGA image for Cortex-M55"; |
| mc->default_cpus = 1; |
| mc->min_cpus = mc->default_cpus; |
| mc->max_cpus = mc->default_cpus; |
| mmc->fpga_type = FPGA_AN547; |
| mc->default_cpu_type = ARM_CPU_TYPE_NAME("cortex-m55"); |
| mmc->scc_id = 0x41055470; |
| mmc->sysclk_frq = 32 * 1000 * 1000; /* 32MHz */ |
| mmc->apb_periph_frq = 25 * 1000 * 1000; /* 25MHz */ |
| mmc->oscclk = an524_oscclk; /* same as AN524 */ |
| mmc->len_oscclk = ARRAY_SIZE(an524_oscclk); |
| mmc->fpgaio_num_leds = 10; |
| mmc->fpgaio_has_switches = true; |
| mmc->fpgaio_has_dbgctrl = true; |
| mmc->numirq = 96; |
| mmc->uart_overflow_irq = 48; |
| mmc->init_svtor = 0x00000000; |
| mmc->sram_addr_width = 21; |
| mmc->raminfo = an547_raminfo; |
| mmc->armsse_type = TYPE_SSE300; |
| mmc->boot_ram_size = 512 * KiB; |
| mps2tz_set_default_ram_info(mmc); |
| } |
| |
| static const TypeInfo mps2tz_info = { |
| .name = TYPE_MPS2TZ_MACHINE, |
| .parent = TYPE_MACHINE, |
| .abstract = true, |
| .instance_size = sizeof(MPS2TZMachineState), |
| .class_size = sizeof(MPS2TZMachineClass), |
| .class_init = mps2tz_class_init, |
| .interfaces = (InterfaceInfo[]) { |
| { TYPE_IDAU_INTERFACE }, |
| { } |
| }, |
| }; |
| |
| static const TypeInfo mps2tz_an505_info = { |
| .name = TYPE_MPS2TZ_AN505_MACHINE, |
| .parent = TYPE_MPS2TZ_MACHINE, |
| .class_init = mps2tz_an505_class_init, |
| }; |
| |
| static const TypeInfo mps2tz_an521_info = { |
| .name = TYPE_MPS2TZ_AN521_MACHINE, |
| .parent = TYPE_MPS2TZ_MACHINE, |
| .class_init = mps2tz_an521_class_init, |
| }; |
| |
| static const TypeInfo mps3tz_an524_info = { |
| .name = TYPE_MPS3TZ_AN524_MACHINE, |
| .parent = TYPE_MPS2TZ_MACHINE, |
| .class_init = mps3tz_an524_class_init, |
| }; |
| |
| static const TypeInfo mps3tz_an547_info = { |
| .name = TYPE_MPS3TZ_AN547_MACHINE, |
| .parent = TYPE_MPS2TZ_MACHINE, |
| .class_init = mps3tz_an547_class_init, |
| }; |
| |
| static void mps2tz_machine_init(void) |
| { |
| type_register_static(&mps2tz_info); |
| type_register_static(&mps2tz_an505_info); |
| type_register_static(&mps2tz_an521_info); |
| type_register_static(&mps3tz_an524_info); |
| type_register_static(&mps3tz_an547_info); |
| } |
| |
| type_init(mps2tz_machine_init); |