blob: 74c7190302bd4d93aba3e001b8b4cd27eb6fa836 [file] [log] [blame]
/*
* CFI parallel flash with Intel command set emulation
*
* Copyright (c) 2006 Thorsten Zitterell
* Copyright (c) 2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* For now, this code can emulate flashes of 1, 2 or 4 bytes width.
* Supported commands/modes are:
* - flash read
* - flash write
* - flash ID read
* - sector erase
* - CFI queries
*
* It does not support timings
* It does not support flash interleaving
* It does not implement software data protection as found in many real chips
* It does not implement erase suspend/resume commands
* It does not implement multiple sectors erase
*
* It does not implement much more ...
*/
#include "qemu/osdep.h"
#include "hw/block/block.h"
#include "hw/block/flash.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "sysemu/block-backend.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/bitops.h"
#include "qemu/error-report.h"
#include "qemu/host-utils.h"
#include "qemu/log.h"
#include "qemu/module.h"
#include "qemu/option.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "sysemu/blockdev.h"
#include "sysemu/runstate.h"
#include "trace.h"
#define PFLASH_BE 0
#define PFLASH_SECURE 1
struct PFlashCFI01 {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
BlockBackend *blk;
uint32_t nb_blocs;
uint64_t sector_len;
uint8_t bank_width;
uint8_t device_width; /* If 0, device width not specified. */
uint8_t max_device_width; /* max device width in bytes */
uint32_t features;
uint8_t wcycle; /* if 0, the flash is read normally */
bool ro;
uint8_t cmd;
uint8_t status;
uint16_t ident0;
uint16_t ident1;
uint16_t ident2;
uint16_t ident3;
uint8_t cfi_table[0x52];
uint64_t counter;
unsigned int writeblock_size;
MemoryRegion mem;
char *name;
void *storage;
VMChangeStateEntry *vmstate;
bool old_multiple_chip_handling;
};
static int pflash_post_load(void *opaque, int version_id);
static const VMStateDescription vmstate_pflash = {
.name = "pflash_cfi01",
.version_id = 1,
.minimum_version_id = 1,
.post_load = pflash_post_load,
.fields = (VMStateField[]) {
VMSTATE_UINT8(wcycle, PFlashCFI01),
VMSTATE_UINT8(cmd, PFlashCFI01),
VMSTATE_UINT8(status, PFlashCFI01),
VMSTATE_UINT64(counter, PFlashCFI01),
VMSTATE_END_OF_LIST()
}
};
/*
* Perform a CFI query based on the bank width of the flash.
* If this code is called we know we have a device_width set for
* this flash.
*/
static uint32_t pflash_cfi_query(PFlashCFI01 *pfl, hwaddr offset)
{
int i;
uint32_t resp = 0;
hwaddr boff;
/*
* Adjust incoming offset to match expected device-width
* addressing. CFI query addresses are always specified in terms of
* the maximum supported width of the device. This means that x8
* devices and x8/x16 devices in x8 mode behave differently. For
* devices that are not used at their max width, we will be
* provided with addresses that use higher address bits than
* expected (based on the max width), so we will shift them lower
* so that they will match the addresses used when
* device_width==max_device_width.
*/
boff = offset >> (ctz32(pfl->bank_width) +
ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
if (boff >= sizeof(pfl->cfi_table)) {
return 0;
}
/*
* Now we will construct the CFI response generated by a single
* device, then replicate that for all devices that make up the
* bus. For wide parts used in x8 mode, CFI query responses
* are different than native byte-wide parts.
*/
resp = pfl->cfi_table[boff];
if (pfl->device_width != pfl->max_device_width) {
/* The only case currently supported is x8 mode for a
* wider part.
*/
if (pfl->device_width != 1 || pfl->bank_width > 4) {
trace_pflash_unsupported_device_configuration(pfl->name,
pfl->device_width, pfl->max_device_width);
return 0;
}
/* CFI query data is repeated, rather than zero padded for
* wide devices used in x8 mode.
*/
for (i = 1; i < pfl->max_device_width; i++) {
resp = deposit32(resp, 8 * i, 8, pfl->cfi_table[boff]);
}
}
/* Replicate responses for each device in bank. */
if (pfl->device_width < pfl->bank_width) {
for (i = pfl->device_width;
i < pfl->bank_width; i += pfl->device_width) {
resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
}
}
return resp;
}
/* Perform a device id query based on the bank width of the flash. */
static uint32_t pflash_devid_query(PFlashCFI01 *pfl, hwaddr offset)
{
int i;
uint32_t resp;
hwaddr boff;
/*
* Adjust incoming offset to match expected device-width
* addressing. Device ID read addresses are always specified in
* terms of the maximum supported width of the device. This means
* that x8 devices and x8/x16 devices in x8 mode behave
* differently. For devices that are not used at their max width,
* we will be provided with addresses that use higher address bits
* than expected (based on the max width), so we will shift them
* lower so that they will match the addresses used when
* device_width==max_device_width.
*/
boff = offset >> (ctz32(pfl->bank_width) +
ctz32(pfl->max_device_width) - ctz32(pfl->device_width));
/*
* Mask off upper bits which may be used in to query block
* or sector lock status at other addresses.
* Offsets 2/3 are block lock status, is not emulated.
*/
switch (boff & 0xFF) {
case 0:
resp = pfl->ident0;
trace_pflash_manufacturer_id(pfl->name, resp);
break;
case 1:
resp = pfl->ident1;
trace_pflash_device_id(pfl->name, resp);
break;
default:
trace_pflash_device_info(pfl->name, offset);
return 0;
}
/* Replicate responses for each device in bank. */
if (pfl->device_width < pfl->bank_width) {
for (i = pfl->device_width;
i < pfl->bank_width; i += pfl->device_width) {
resp = deposit32(resp, 8 * i, 8 * pfl->device_width, resp);
}
}
return resp;
}
static uint32_t pflash_data_read(PFlashCFI01 *pfl, hwaddr offset,
int width, int be)
{
uint8_t *p;
uint32_t ret;
p = pfl->storage;
switch (width) {
case 1:
ret = p[offset];
break;
case 2:
if (be) {
ret = p[offset] << 8;
ret |= p[offset + 1];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
}
break;
case 4:
if (be) {
ret = p[offset] << 24;
ret |= p[offset + 1] << 16;
ret |= p[offset + 2] << 8;
ret |= p[offset + 3];
} else {
ret = p[offset];
ret |= p[offset + 1] << 8;
ret |= p[offset + 2] << 16;
ret |= p[offset + 3] << 24;
}
break;
default:
abort();
}
trace_pflash_data_read(pfl->name, offset, width, ret);
return ret;
}
static uint32_t pflash_read(PFlashCFI01 *pfl, hwaddr offset,
int width, int be)
{
hwaddr boff;
uint32_t ret;
ret = -1;
switch (pfl->cmd) {
default:
/* This should never happen : reset state & treat it as a read */
trace_pflash_read_unknown_state(pfl->name, pfl->cmd);
pfl->wcycle = 0;
/*
* The command 0x00 is not assigned by the CFI open standard,
* but QEMU historically uses it for the READ_ARRAY command (0xff).
*/
pfl->cmd = 0x00;
/* fall through to read code */
case 0x00: /* This model reset value for READ_ARRAY (not CFI compliant) */
/* Flash area read */
ret = pflash_data_read(pfl, offset, width, be);
break;
case 0x10: /* Single byte program */
case 0x20: /* Block erase */
case 0x28: /* Block erase */
case 0x40: /* single byte program */
case 0x50: /* Clear status register */
case 0x60: /* Block /un)lock */
case 0x70: /* Status Register */
case 0xe8: /* Write block */
/*
* Status register read. Return status from each device in
* bank.
*/
ret = pfl->status;
if (pfl->device_width && width > pfl->device_width) {
int shift = pfl->device_width * 8;
while (shift + pfl->device_width * 8 <= width * 8) {
ret |= pfl->status << shift;
shift += pfl->device_width * 8;
}
} else if (!pfl->device_width && width > 2) {
/*
* Handle 32 bit flash cases where device width is not
* set. (Existing behavior before device width added.)
*/
ret |= pfl->status << 16;
}
trace_pflash_read_status(pfl->name, ret);
break;
case 0x90:
if (!pfl->device_width) {
/* Preserve old behavior if device width not specified */
boff = offset & 0xFF;
if (pfl->bank_width == 2) {
boff = boff >> 1;
} else if (pfl->bank_width == 4) {
boff = boff >> 2;
}
switch (boff) {
case 0:
ret = pfl->ident0 << 8 | pfl->ident1;
trace_pflash_manufacturer_id(pfl->name, ret);
break;
case 1:
ret = pfl->ident2 << 8 | pfl->ident3;
trace_pflash_device_id(pfl->name, ret);
break;
default:
trace_pflash_device_info(pfl->name, boff);
ret = 0;
break;
}
} else {
/*
* If we have a read larger than the bank_width, combine multiple
* manufacturer/device ID queries into a single response.
*/
int i;
for (i = 0; i < width; i += pfl->bank_width) {
ret = deposit32(ret, i * 8, pfl->bank_width * 8,
pflash_devid_query(pfl,
offset + i * pfl->bank_width));
}
}
break;
case 0x98: /* Query mode */
if (!pfl->device_width) {
/* Preserve old behavior if device width not specified */
boff = offset & 0xFF;
if (pfl->bank_width == 2) {
boff = boff >> 1;
} else if (pfl->bank_width == 4) {
boff = boff >> 2;
}
if (boff < sizeof(pfl->cfi_table)) {
ret = pfl->cfi_table[boff];
} else {
ret = 0;
}
} else {
/*
* If we have a read larger than the bank_width, combine multiple
* CFI queries into a single response.
*/
int i;
for (i = 0; i < width; i += pfl->bank_width) {
ret = deposit32(ret, i * 8, pfl->bank_width * 8,
pflash_cfi_query(pfl,
offset + i * pfl->bank_width));
}
}
break;
}
trace_pflash_io_read(pfl->name, offset, width, ret, pfl->cmd, pfl->wcycle);
return ret;
}
/* update flash content on disk */
static void pflash_update(PFlashCFI01 *pfl, int offset,
int size)
{
int offset_end;
int ret;
if (pfl->blk) {
offset_end = offset + size;
/* widen to sector boundaries */
offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
ret = blk_pwrite(pfl->blk, offset, pfl->storage + offset,
offset_end - offset, 0);
if (ret < 0) {
/* TODO set error bit in status */
error_report("Could not update PFLASH: %s", strerror(-ret));
}
}
}
static inline void pflash_data_write(PFlashCFI01 *pfl, hwaddr offset,
uint32_t value, int width, int be)
{
uint8_t *p = pfl->storage;
trace_pflash_data_write(pfl->name, offset, width, value, pfl->counter);
switch (width) {
case 1:
p[offset] = value;
break;
case 2:
if (be) {
p[offset] = value >> 8;
p[offset + 1] = value;
} else {
p[offset] = value;
p[offset + 1] = value >> 8;
}
break;
case 4:
if (be) {
p[offset] = value >> 24;
p[offset + 1] = value >> 16;
p[offset + 2] = value >> 8;
p[offset + 3] = value;
} else {
p[offset] = value;
p[offset + 1] = value >> 8;
p[offset + 2] = value >> 16;
p[offset + 3] = value >> 24;
}
break;
}
}
static void pflash_write(PFlashCFI01 *pfl, hwaddr offset,
uint32_t value, int width, int be)
{
uint8_t *p;
uint8_t cmd;
cmd = value;
trace_pflash_io_write(pfl->name, offset, width, value, pfl->wcycle);
if (!pfl->wcycle) {
/* Set the device in I/O access mode */
memory_region_rom_device_set_romd(&pfl->mem, false);
}
switch (pfl->wcycle) {
case 0:
/* read mode */
switch (cmd) {
case 0x00: /* This model reset value for READ_ARRAY (not CFI) */
goto mode_read_array;
case 0x10: /* Single Byte Program */
case 0x40: /* Single Byte Program */
trace_pflash_write(pfl->name, "single byte program (0)");
break;
case 0x20: /* Block erase */
p = pfl->storage;
offset &= ~(pfl->sector_len - 1);
trace_pflash_write_block_erase(pfl->name, offset, pfl->sector_len);
if (!pfl->ro) {
memset(p + offset, 0xff, pfl->sector_len);
pflash_update(pfl, offset, pfl->sector_len);
} else {
pfl->status |= 0x20; /* Block erase error */
}
pfl->status |= 0x80; /* Ready! */
break;
case 0x50: /* Clear status bits */
trace_pflash_write(pfl->name, "clear status bits");
pfl->status = 0x0;
goto mode_read_array;
case 0x60: /* Block (un)lock */
trace_pflash_write(pfl->name, "block unlock");
break;
case 0x70: /* Status Register */
trace_pflash_write(pfl->name, "read status register");
pfl->cmd = cmd;
return;
case 0x90: /* Read Device ID */
trace_pflash_write(pfl->name, "read device information");
pfl->cmd = cmd;
return;
case 0x98: /* CFI query */
trace_pflash_write(pfl->name, "CFI query");
break;
case 0xe8: /* Write to buffer */
trace_pflash_write(pfl->name, "write to buffer");
/* FIXME should save @offset, @width for case 1+ */
qemu_log_mask(LOG_UNIMP,
"%s: Write to buffer emulation is flawed\n",
__func__);
pfl->status |= 0x80; /* Ready! */
break;
case 0xf0: /* Probe for AMD flash */
trace_pflash_write(pfl->name, "probe for AMD flash");
goto mode_read_array;
case 0xff: /* Read Array */
trace_pflash_write(pfl->name, "read array mode");
goto mode_read_array;
default:
goto error_flash;
}
pfl->wcycle++;
pfl->cmd = cmd;
break;
case 1:
switch (pfl->cmd) {
case 0x10: /* Single Byte Program */
case 0x40: /* Single Byte Program */
trace_pflash_write(pfl->name, "single byte program (1)");
if (!pfl->ro) {
pflash_data_write(pfl, offset, value, width, be);
pflash_update(pfl, offset, width);
} else {
pfl->status |= 0x10; /* Programming error */
}
pfl->status |= 0x80; /* Ready! */
pfl->wcycle = 0;
break;
case 0x20: /* Block erase */
case 0x28:
if (cmd == 0xd0) { /* confirm */
pfl->wcycle = 0;
pfl->status |= 0x80;
} else if (cmd == 0xff) { /* Read Array */
goto mode_read_array;
} else
goto error_flash;
break;
case 0xe8:
/*
* Mask writeblock size based on device width, or bank width if
* device width not specified.
*/
/* FIXME check @offset, @width */
if (pfl->device_width) {
value = extract32(value, 0, pfl->device_width * 8);
} else {
value = extract32(value, 0, pfl->bank_width * 8);
}
trace_pflash_write_block(pfl->name, value);
pfl->counter = value;
pfl->wcycle++;
break;
case 0x60:
if (cmd == 0xd0) {
pfl->wcycle = 0;
pfl->status |= 0x80;
} else if (cmd == 0x01) {
pfl->wcycle = 0;
pfl->status |= 0x80;
} else if (cmd == 0xff) { /* Read Array */
goto mode_read_array;
} else {
trace_pflash_write(pfl->name, "unknown (un)locking command");
goto mode_read_array;
}
break;
case 0x98:
if (cmd == 0xff) { /* Read Array */
goto mode_read_array;
} else {
trace_pflash_write(pfl->name, "leaving query mode");
}
break;
default:
goto error_flash;
}
break;
case 2:
switch (pfl->cmd) {
case 0xe8: /* Block write */
/* FIXME check @offset, @width */
if (!pfl->ro) {
/*
* FIXME writing straight to memory is *wrong*. We
* should write to a buffer, and flush it to memory
* only on confirm command (see below).
*/
pflash_data_write(pfl, offset, value, width, be);
} else {
pfl->status |= 0x10; /* Programming error */
}
pfl->status |= 0x80;
if (!pfl->counter) {
hwaddr mask = pfl->writeblock_size - 1;
mask = ~mask;
trace_pflash_write(pfl->name, "block write finished");
pfl->wcycle++;
if (!pfl->ro) {
/* Flush the entire write buffer onto backing storage. */
/* FIXME premature! */
pflash_update(pfl, offset & mask, pfl->writeblock_size);
} else {
pfl->status |= 0x10; /* Programming error */
}
}
pfl->counter--;
break;
default:
goto error_flash;
}
break;
case 3: /* Confirm mode */
switch (pfl->cmd) {
case 0xe8: /* Block write */
if (cmd == 0xd0) {
/* FIXME this is where we should write out the buffer */
pfl->wcycle = 0;
pfl->status |= 0x80;
} else {
qemu_log_mask(LOG_UNIMP,
"%s: Aborting write to buffer not implemented,"
" the data is already written to storage!\n"
"Flash device reset into READ mode.\n",
__func__);
goto mode_read_array;
}
break;
default:
goto error_flash;
}
break;
default:
/* Should never happen */
trace_pflash_write(pfl->name, "invalid write state");
goto mode_read_array;
}
return;
error_flash:
qemu_log_mask(LOG_UNIMP, "%s: Unimplemented flash cmd sequence "
"(offset " TARGET_FMT_plx ", wcycle 0x%x cmd 0x%x value 0x%x)"
"\n", __func__, offset, pfl->wcycle, pfl->cmd, value);
mode_read_array:
trace_pflash_mode_read_array(pfl->name);
memory_region_rom_device_set_romd(&pfl->mem, true);
pfl->wcycle = 0;
pfl->cmd = 0x00; /* This model reset value for READ_ARRAY (not CFI) */
}
static MemTxResult pflash_mem_read_with_attrs(void *opaque, hwaddr addr, uint64_t *value,
unsigned len, MemTxAttrs attrs)
{
PFlashCFI01 *pfl = opaque;
bool be = !!(pfl->features & (1 << PFLASH_BE));
if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
*value = pflash_data_read(opaque, addr, len, be);
} else {
*value = pflash_read(opaque, addr, len, be);
}
return MEMTX_OK;
}
static MemTxResult pflash_mem_write_with_attrs(void *opaque, hwaddr addr, uint64_t value,
unsigned len, MemTxAttrs attrs)
{
PFlashCFI01 *pfl = opaque;
bool be = !!(pfl->features & (1 << PFLASH_BE));
if ((pfl->features & (1 << PFLASH_SECURE)) && !attrs.secure) {
return MEMTX_ERROR;
} else {
pflash_write(opaque, addr, value, len, be);
return MEMTX_OK;
}
}
static const MemoryRegionOps pflash_cfi01_ops = {
.read_with_attrs = pflash_mem_read_with_attrs,
.write_with_attrs = pflash_mem_write_with_attrs,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void pflash_cfi01_fill_cfi_table(PFlashCFI01 *pfl)
{
uint64_t blocks_per_device, sector_len_per_device, device_len;
int num_devices;
/*
* These are only used to expose the parameters of each device
* in the cfi_table[].
*/
num_devices = pfl->device_width ? (pfl->bank_width / pfl->device_width) : 1;
if (pfl->old_multiple_chip_handling) {
blocks_per_device = pfl->nb_blocs / num_devices;
sector_len_per_device = pfl->sector_len;
} else {
blocks_per_device = pfl->nb_blocs;
sector_len_per_device = pfl->sector_len / num_devices;
}
device_len = sector_len_per_device * blocks_per_device;
/* Hardcoded CFI table */
/* Standard "QRY" string */
pfl->cfi_table[0x10] = 'Q';
pfl->cfi_table[0x11] = 'R';
pfl->cfi_table[0x12] = 'Y';
/* Command set (Intel) */
pfl->cfi_table[0x13] = 0x01;
pfl->cfi_table[0x14] = 0x00;
/* Primary extended table address (none) */
pfl->cfi_table[0x15] = 0x31;
pfl->cfi_table[0x16] = 0x00;
/* Alternate command set (none) */
pfl->cfi_table[0x17] = 0x00;
pfl->cfi_table[0x18] = 0x00;
/* Alternate extended table (none) */
pfl->cfi_table[0x19] = 0x00;
pfl->cfi_table[0x1A] = 0x00;
/* Vcc min */
pfl->cfi_table[0x1B] = 0x45;
/* Vcc max */
pfl->cfi_table[0x1C] = 0x55;
/* Vpp min (no Vpp pin) */
pfl->cfi_table[0x1D] = 0x00;
/* Vpp max (no Vpp pin) */
pfl->cfi_table[0x1E] = 0x00;
/* Reserved */
pfl->cfi_table[0x1F] = 0x07;
/* Timeout for min size buffer write */
pfl->cfi_table[0x20] = 0x07;
/* Typical timeout for block erase */
pfl->cfi_table[0x21] = 0x0a;
/* Typical timeout for full chip erase (4096 ms) */
pfl->cfi_table[0x22] = 0x00;
/* Reserved */
pfl->cfi_table[0x23] = 0x04;
/* Max timeout for buffer write */
pfl->cfi_table[0x24] = 0x04;
/* Max timeout for block erase */
pfl->cfi_table[0x25] = 0x04;
/* Max timeout for chip erase */
pfl->cfi_table[0x26] = 0x00;
/* Device size */
pfl->cfi_table[0x27] = ctz32(device_len); /* + 1; */
/* Flash device interface (8 & 16 bits) */
pfl->cfi_table[0x28] = 0x02;
pfl->cfi_table[0x29] = 0x00;
/* Max number of bytes in multi-bytes write */
if (pfl->bank_width == 1) {
pfl->cfi_table[0x2A] = 0x08;
} else {
pfl->cfi_table[0x2A] = 0x0B;
}
pfl->writeblock_size = 1 << pfl->cfi_table[0x2A];
if (!pfl->old_multiple_chip_handling && num_devices > 1) {
pfl->writeblock_size *= num_devices;
}
pfl->cfi_table[0x2B] = 0x00;
/* Number of erase block regions (uniform) */
pfl->cfi_table[0x2C] = 0x01;
/* Erase block region 1 */
pfl->cfi_table[0x2D] = blocks_per_device - 1;
pfl->cfi_table[0x2E] = (blocks_per_device - 1) >> 8;
pfl->cfi_table[0x2F] = sector_len_per_device >> 8;
pfl->cfi_table[0x30] = sector_len_per_device >> 16;
/* Extended */
pfl->cfi_table[0x31] = 'P';
pfl->cfi_table[0x32] = 'R';
pfl->cfi_table[0x33] = 'I';
pfl->cfi_table[0x34] = '1';
pfl->cfi_table[0x35] = '0';
pfl->cfi_table[0x36] = 0x00;
pfl->cfi_table[0x37] = 0x00;
pfl->cfi_table[0x38] = 0x00;
pfl->cfi_table[0x39] = 0x00;
pfl->cfi_table[0x3a] = 0x00;
pfl->cfi_table[0x3b] = 0x00;
pfl->cfi_table[0x3c] = 0x00;
pfl->cfi_table[0x3f] = 0x01; /* Number of protection fields */
}
static void pflash_cfi01_realize(DeviceState *dev, Error **errp)
{
ERRP_GUARD();
PFlashCFI01 *pfl = PFLASH_CFI01(dev);
uint64_t total_len;
int ret;
if (pfl->sector_len == 0) {
error_setg(errp, "attribute \"sector-length\" not specified or zero.");
return;
}
if (pfl->nb_blocs == 0) {
error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
return;
}
if (pfl->name == NULL) {
error_setg(errp, "attribute \"name\" not specified.");
return;
}
total_len = pfl->sector_len * pfl->nb_blocs;
memory_region_init_rom_device(
&pfl->mem, OBJECT(dev),
&pflash_cfi01_ops,
pfl,
pfl->name, total_len, errp);
if (*errp) {
return;
}
pfl->storage = memory_region_get_ram_ptr(&pfl->mem);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
if (pfl->blk) {
uint64_t perm;
pfl->ro = !blk_supports_write_perm(pfl->blk);
perm = BLK_PERM_CONSISTENT_READ | (pfl->ro ? 0 : BLK_PERM_WRITE);
ret = blk_set_perm(pfl->blk, perm, BLK_PERM_ALL, errp);
if (ret < 0) {
return;
}
} else {
pfl->ro = false;
}
if (pfl->blk) {
if (!blk_check_size_and_read_all(pfl->blk, pfl->storage, total_len,
errp)) {
vmstate_unregister_ram(&pfl->mem, DEVICE(pfl));
return;
}
}
/*
* Default to devices being used at their maximum device width. This was
* assumed before the device_width support was added.
*/
if (!pfl->max_device_width) {
pfl->max_device_width = pfl->device_width;
}
pfl->wcycle = 0;
/*
* The command 0x00 is not assigned by the CFI open standard,
* but QEMU historically uses it for the READ_ARRAY command (0xff).
*/
pfl->cmd = 0x00;
pfl->status = 0x80; /* WSM ready */
pflash_cfi01_fill_cfi_table(pfl);
}
static void pflash_cfi01_system_reset(DeviceState *dev)
{
PFlashCFI01 *pfl = PFLASH_CFI01(dev);
trace_pflash_reset(pfl->name);
/*
* The command 0x00 is not assigned by the CFI open standard,
* but QEMU historically uses it for the READ_ARRAY command (0xff).
*/
pfl->cmd = 0x00;
pfl->wcycle = 0;
memory_region_rom_device_set_romd(&pfl->mem, true);
/*
* The WSM ready timer occurs at most 150ns after system reset.
* This model deliberately ignores this delay.
*/
pfl->status = 0x80;
}
static Property pflash_cfi01_properties[] = {
DEFINE_PROP_DRIVE("drive", PFlashCFI01, blk),
/* num-blocks is the number of blocks actually visible to the guest,
* ie the total size of the device divided by the sector length.
* If we're emulating flash devices wired in parallel the actual
* number of blocks per indvidual device will differ.
*/
DEFINE_PROP_UINT32("num-blocks", PFlashCFI01, nb_blocs, 0),
DEFINE_PROP_UINT64("sector-length", PFlashCFI01, sector_len, 0),
/* width here is the overall width of this QEMU device in bytes.
* The QEMU device may be emulating a number of flash devices
* wired up in parallel; the width of each individual flash
* device should be specified via device-width. If the individual
* devices have a maximum width which is greater than the width
* they are being used for, this maximum width should be set via
* max-device-width (which otherwise defaults to device-width).
* So for instance a 32-bit wide QEMU flash device made from four
* 16-bit flash devices used in 8-bit wide mode would be configured
* with width = 4, device-width = 1, max-device-width = 2.
*
* If device-width is not specified we default to backwards
* compatible behaviour which is a bad emulation of two
* 16 bit devices making up a 32 bit wide QEMU device. This
* is deprecated for new uses of this device.
*/
DEFINE_PROP_UINT8("width", PFlashCFI01, bank_width, 0),
DEFINE_PROP_UINT8("device-width", PFlashCFI01, device_width, 0),
DEFINE_PROP_UINT8("max-device-width", PFlashCFI01, max_device_width, 0),
DEFINE_PROP_BIT("big-endian", PFlashCFI01, features, PFLASH_BE, 0),
DEFINE_PROP_BIT("secure", PFlashCFI01, features, PFLASH_SECURE, 0),
DEFINE_PROP_UINT16("id0", PFlashCFI01, ident0, 0),
DEFINE_PROP_UINT16("id1", PFlashCFI01, ident1, 0),
DEFINE_PROP_UINT16("id2", PFlashCFI01, ident2, 0),
DEFINE_PROP_UINT16("id3", PFlashCFI01, ident3, 0),
DEFINE_PROP_STRING("name", PFlashCFI01, name),
DEFINE_PROP_BOOL("old-multiple-chip-handling", PFlashCFI01,
old_multiple_chip_handling, false),
DEFINE_PROP_END_OF_LIST(),
};
static void pflash_cfi01_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->reset = pflash_cfi01_system_reset;
dc->realize = pflash_cfi01_realize;
device_class_set_props(dc, pflash_cfi01_properties);
dc->vmsd = &vmstate_pflash;
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
}
static const TypeInfo pflash_cfi01_info = {
.name = TYPE_PFLASH_CFI01,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PFlashCFI01),
.class_init = pflash_cfi01_class_init,
};
static void pflash_cfi01_register_types(void)
{
type_register_static(&pflash_cfi01_info);
}
type_init(pflash_cfi01_register_types)
PFlashCFI01 *pflash_cfi01_register(hwaddr base,
const char *name,
hwaddr size,
BlockBackend *blk,
uint32_t sector_len,
int bank_width,
uint16_t id0, uint16_t id1,
uint16_t id2, uint16_t id3,
int be)
{
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
if (blk) {
qdev_prop_set_drive(dev, "drive", blk);
}
assert(QEMU_IS_ALIGNED(size, sector_len));
qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
qdev_prop_set_uint64(dev, "sector-length", sector_len);
qdev_prop_set_uint8(dev, "width", bank_width);
qdev_prop_set_bit(dev, "big-endian", !!be);
qdev_prop_set_uint16(dev, "id0", id0);
qdev_prop_set_uint16(dev, "id1", id1);
qdev_prop_set_uint16(dev, "id2", id2);
qdev_prop_set_uint16(dev, "id3", id3);
qdev_prop_set_string(dev, "name", name);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
return PFLASH_CFI01(dev);
}
BlockBackend *pflash_cfi01_get_blk(PFlashCFI01 *fl)
{
return fl->blk;
}
MemoryRegion *pflash_cfi01_get_memory(PFlashCFI01 *fl)
{
return &fl->mem;
}
/*
* Handle -drive if=pflash for machines that use properties.
* If @dinfo is null, do nothing.
* Else if @fl's property "drive" is already set, fatal error.
* Else set it to the BlockBackend with @dinfo.
*/
void pflash_cfi01_legacy_drive(PFlashCFI01 *fl, DriveInfo *dinfo)
{
Location loc;
if (!dinfo) {
return;
}
loc_push_none(&loc);
qemu_opts_loc_restore(dinfo->opts);
if (fl->blk) {
error_report("clashes with -machine");
exit(1);
}
qdev_prop_set_drive_err(DEVICE(fl), "drive", blk_by_legacy_dinfo(dinfo),
&error_fatal);
loc_pop(&loc);
}
static void postload_update_cb(void *opaque, bool running, RunState state)
{
PFlashCFI01 *pfl = opaque;
/* This is called after bdrv_activate_all. */
qemu_del_vm_change_state_handler(pfl->vmstate);
pfl->vmstate = NULL;
trace_pflash_postload_cb(pfl->name);
pflash_update(pfl, 0, pfl->sector_len * pfl->nb_blocs);
}
static int pflash_post_load(void *opaque, int version_id)
{
PFlashCFI01 *pfl = opaque;
if (!pfl->ro) {
pfl->vmstate = qemu_add_vm_change_state_handler(postload_update_cb,
pfl);
}
return 0;
}