blob: 29caabc149eafece0625ca8723e86c29531fc320 [file] [log] [blame]
/*
* vfio based device assignment support
*
* Copyright Red Hat, Inc. 2012
*
* Authors:
* Alex Williamson <alex.williamson@redhat.com>
*
* This work is licensed under the terms of the GNU GPL, version 2. See
* the COPYING file in the top-level directory.
*
* Based on qemu-kvm device-assignment:
* Adapted for KVM by Qumranet.
* Copyright (c) 2007, Neocleus, Alex Novik (alex@neocleus.com)
* Copyright (c) 2007, Neocleus, Guy Zana (guy@neocleus.com)
* Copyright (C) 2008, Qumranet, Amit Shah (amit.shah@qumranet.com)
* Copyright (C) 2008, Red Hat, Amit Shah (amit.shah@redhat.com)
* Copyright (C) 2008, IBM, Muli Ben-Yehuda (muli@il.ibm.com)
*/
#include <dirent.h>
#include <linux/vfio.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include "config.h"
#include "exec/address-spaces.h"
#include "exec/memory.h"
#include "hw/pci/msi.h"
#include "hw/pci/msix.h"
#include "hw/pci/pci.h"
#include "qemu-common.h"
#include "qemu/error-report.h"
#include "qemu/event_notifier.h"
#include "qemu/queue.h"
#include "qemu/range.h"
#include "sysemu/kvm.h"
#include "sysemu/sysemu.h"
#include "trace.h"
#include "hw/vfio/vfio.h"
#include "hw/vfio/vfio-common.h"
struct VFIOPCIDevice;
typedef struct VFIOQuirk {
MemoryRegion mem;
struct VFIOPCIDevice *vdev;
QLIST_ENTRY(VFIOQuirk) next;
struct {
uint32_t base_offset:TARGET_PAGE_BITS;
uint32_t address_offset:TARGET_PAGE_BITS;
uint32_t address_size:3;
uint32_t bar:3;
uint32_t address_match;
uint32_t address_mask;
uint32_t address_val:TARGET_PAGE_BITS;
uint32_t data_offset:TARGET_PAGE_BITS;
uint32_t data_size:3;
uint8_t flags;
uint8_t read_flags;
uint8_t write_flags;
} data;
} VFIOQuirk;
typedef struct VFIOBAR {
VFIORegion region;
bool ioport;
bool mem64;
QLIST_HEAD(, VFIOQuirk) quirks;
} VFIOBAR;
typedef struct VFIOVGARegion {
MemoryRegion mem;
off_t offset;
int nr;
QLIST_HEAD(, VFIOQuirk) quirks;
} VFIOVGARegion;
typedef struct VFIOVGA {
off_t fd_offset;
int fd;
VFIOVGARegion region[QEMU_PCI_VGA_NUM_REGIONS];
} VFIOVGA;
typedef struct VFIOINTx {
bool pending; /* interrupt pending */
bool kvm_accel; /* set when QEMU bypass through KVM enabled */
uint8_t pin; /* which pin to pull for qemu_set_irq */
EventNotifier interrupt; /* eventfd triggered on interrupt */
EventNotifier unmask; /* eventfd for unmask on QEMU bypass */
PCIINTxRoute route; /* routing info for QEMU bypass */
uint32_t mmap_timeout; /* delay to re-enable mmaps after interrupt */
QEMUTimer *mmap_timer; /* enable mmaps after periods w/o interrupts */
} VFIOINTx;
typedef struct VFIOMSIVector {
/*
* Two interrupt paths are configured per vector. The first, is only used
* for interrupts injected via QEMU. This is typically the non-accel path,
* but may also be used when we want QEMU to handle masking and pending
* bits. The KVM path bypasses QEMU and is therefore higher performance,
* but requires masking at the device. virq is used to track the MSI route
* through KVM, thus kvm_interrupt is only available when virq is set to a
* valid (>= 0) value.
*/
EventNotifier interrupt;
EventNotifier kvm_interrupt;
struct VFIOPCIDevice *vdev; /* back pointer to device */
int virq;
bool use;
} VFIOMSIVector;
enum {
VFIO_INT_NONE = 0,
VFIO_INT_INTx = 1,
VFIO_INT_MSI = 2,
VFIO_INT_MSIX = 3,
};
/* Cache of MSI-X setup plus extra mmap and memory region for split BAR map */
typedef struct VFIOMSIXInfo {
uint8_t table_bar;
uint8_t pba_bar;
uint16_t entries;
uint32_t table_offset;
uint32_t pba_offset;
MemoryRegion mmap_mem;
void *mmap;
} VFIOMSIXInfo;
typedef struct VFIOPCIDevice {
PCIDevice pdev;
VFIODevice vbasedev;
VFIOINTx intx;
unsigned int config_size;
uint8_t *emulated_config_bits; /* QEMU emulated bits, little-endian */
off_t config_offset; /* Offset of config space region within device fd */
unsigned int rom_size;
off_t rom_offset; /* Offset of ROM region within device fd */
void *rom;
int msi_cap_size;
VFIOMSIVector *msi_vectors;
VFIOMSIXInfo *msix;
int nr_vectors; /* Number of MSI/MSIX vectors currently in use */
int interrupt; /* Current interrupt type */
VFIOBAR bars[PCI_NUM_REGIONS - 1]; /* No ROM */
VFIOVGA vga; /* 0xa0000, 0x3b0, 0x3c0 */
PCIHostDeviceAddress host;
EventNotifier err_notifier;
uint32_t features;
#define VFIO_FEATURE_ENABLE_VGA_BIT 0
#define VFIO_FEATURE_ENABLE_VGA (1 << VFIO_FEATURE_ENABLE_VGA_BIT)
int32_t bootindex;
uint8_t pm_cap;
bool has_vga;
bool pci_aer;
bool has_flr;
bool has_pm_reset;
bool rom_read_failed;
} VFIOPCIDevice;
typedef struct VFIORomBlacklistEntry {
uint16_t vendor_id;
uint16_t device_id;
} VFIORomBlacklistEntry;
/*
* List of device ids/vendor ids for which to disable
* option rom loading. This avoids the guest hangs during rom
* execution as noticed with the BCM 57810 card for lack of a
* more better way to handle such issues.
* The user can still override by specifying a romfile or
* rombar=1.
* Please see https://bugs.launchpad.net/qemu/+bug/1284874
* for an analysis of the 57810 card hang. When adding
* a new vendor id/device id combination below, please also add
* your card/environment details and information that could
* help in debugging to the bug tracking this issue
*/
static const VFIORomBlacklistEntry romblacklist[] = {
/* Broadcom BCM 57810 */
{ 0x14e4, 0x168e }
};
#define MSIX_CAP_LENGTH 12
static void vfio_disable_interrupts(VFIOPCIDevice *vdev);
static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len);
static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
uint32_t val, int len);
static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled);
static int vfio_populate_device(VFIODevice *vbasedev);
/*
* Disabling BAR mmaping can be slow, but toggling it around INTx can
* also be a huge overhead. We try to get the best of both worlds by
* waiting until an interrupt to disable mmaps (subsequent transitions
* to the same state are effectively no overhead). If the interrupt has
* been serviced and the time gap is long enough, we re-enable mmaps for
* performance. This works well for things like graphics cards, which
* may not use their interrupt at all and are penalized to an unusable
* level by read/write BAR traps. Other devices, like NICs, have more
* regular interrupts and see much better latency by staying in non-mmap
* mode. We therefore set the default mmap_timeout such that a ping
* is just enough to keep the mmap disabled. Users can experiment with
* other options with the x-intx-mmap-timeout-ms parameter (a value of
* zero disables the timer).
*/
static void vfio_intx_mmap_enable(void *opaque)
{
VFIOPCIDevice *vdev = opaque;
if (vdev->intx.pending) {
timer_mod(vdev->intx.mmap_timer,
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
return;
}
vfio_mmap_set_enabled(vdev, true);
}
static void vfio_intx_interrupt(void *opaque)
{
VFIOPCIDevice *vdev = opaque;
if (!event_notifier_test_and_clear(&vdev->intx.interrupt)) {
return;
}
trace_vfio_intx_interrupt(vdev->vbasedev.name, 'A' + vdev->intx.pin);
vdev->intx.pending = true;
pci_irq_assert(&vdev->pdev);
vfio_mmap_set_enabled(vdev, false);
if (vdev->intx.mmap_timeout) {
timer_mod(vdev->intx.mmap_timer,
qemu_clock_get_ms(QEMU_CLOCK_VIRTUAL) + vdev->intx.mmap_timeout);
}
}
static void vfio_eoi(VFIODevice *vbasedev)
{
VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
if (!vdev->intx.pending) {
return;
}
trace_vfio_eoi(vbasedev->name);
vdev->intx.pending = false;
pci_irq_deassert(&vdev->pdev);
vfio_unmask_single_irqindex(vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
}
static void vfio_enable_intx_kvm(VFIOPCIDevice *vdev)
{
#ifdef CONFIG_KVM
struct kvm_irqfd irqfd = {
.fd = event_notifier_get_fd(&vdev->intx.interrupt),
.gsi = vdev->intx.route.irq,
.flags = KVM_IRQFD_FLAG_RESAMPLE,
};
struct vfio_irq_set *irq_set;
int ret, argsz;
int32_t *pfd;
if (!VFIO_ALLOW_KVM_INTX || !kvm_irqfds_enabled() ||
vdev->intx.route.mode != PCI_INTX_ENABLED ||
!kvm_resamplefds_enabled()) {
return;
}
/* Get to a known interrupt state */
qemu_set_fd_handler(irqfd.fd, NULL, NULL, vdev);
vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
vdev->intx.pending = false;
pci_irq_deassert(&vdev->pdev);
/* Get an eventfd for resample/unmask */
if (event_notifier_init(&vdev->intx.unmask, 0)) {
error_report("vfio: Error: event_notifier_init failed eoi");
goto fail;
}
/* KVM triggers it, VFIO listens for it */
irqfd.resamplefd = event_notifier_get_fd(&vdev->intx.unmask);
if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
error_report("vfio: Error: Failed to setup resample irqfd: %m");
goto fail_irqfd;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_UNMASK;
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = irqfd.resamplefd;
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
if (ret) {
error_report("vfio: Error: Failed to setup INTx unmask fd: %m");
goto fail_vfio;
}
/* Let'em rip */
vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
vdev->intx.kvm_accel = true;
trace_vfio_enable_intx_kvm(vdev->vbasedev.name);
return;
fail_vfio:
irqfd.flags = KVM_IRQFD_FLAG_DEASSIGN;
kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd);
fail_irqfd:
event_notifier_cleanup(&vdev->intx.unmask);
fail:
qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
#endif
}
static void vfio_disable_intx_kvm(VFIOPCIDevice *vdev)
{
#ifdef CONFIG_KVM
struct kvm_irqfd irqfd = {
.fd = event_notifier_get_fd(&vdev->intx.interrupt),
.gsi = vdev->intx.route.irq,
.flags = KVM_IRQFD_FLAG_DEASSIGN,
};
if (!vdev->intx.kvm_accel) {
return;
}
/*
* Get to a known state, hardware masked, QEMU ready to accept new
* interrupts, QEMU IRQ de-asserted.
*/
vfio_mask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
vdev->intx.pending = false;
pci_irq_deassert(&vdev->pdev);
/* Tell KVM to stop listening for an INTx irqfd */
if (kvm_vm_ioctl(kvm_state, KVM_IRQFD, &irqfd)) {
error_report("vfio: Error: Failed to disable INTx irqfd: %m");
}
/* We only need to close the eventfd for VFIO to cleanup the kernel side */
event_notifier_cleanup(&vdev->intx.unmask);
/* QEMU starts listening for interrupt events. */
qemu_set_fd_handler(irqfd.fd, vfio_intx_interrupt, NULL, vdev);
vdev->intx.kvm_accel = false;
/* If we've missed an event, let it re-fire through QEMU */
vfio_unmask_single_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
trace_vfio_disable_intx_kvm(vdev->vbasedev.name);
#endif
}
static void vfio_update_irq(PCIDevice *pdev)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
PCIINTxRoute route;
if (vdev->interrupt != VFIO_INT_INTx) {
return;
}
route = pci_device_route_intx_to_irq(&vdev->pdev, vdev->intx.pin);
if (!pci_intx_route_changed(&vdev->intx.route, &route)) {
return; /* Nothing changed */
}
trace_vfio_update_irq(vdev->vbasedev.name,
vdev->intx.route.irq, route.irq);
vfio_disable_intx_kvm(vdev);
vdev->intx.route = route;
if (route.mode != PCI_INTX_ENABLED) {
return;
}
vfio_enable_intx_kvm(vdev);
/* Re-enable the interrupt in cased we missed an EOI */
vfio_eoi(&vdev->vbasedev);
}
static int vfio_enable_intx(VFIOPCIDevice *vdev)
{
uint8_t pin = vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1);
int ret, argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
if (!pin) {
return 0;
}
vfio_disable_interrupts(vdev);
vdev->intx.pin = pin - 1; /* Pin A (1) -> irq[0] */
pci_config_set_interrupt_pin(vdev->pdev.config, pin);
#ifdef CONFIG_KVM
/*
* Only conditional to avoid generating error messages on platforms
* where we won't actually use the result anyway.
*/
if (kvm_irqfds_enabled() && kvm_resamplefds_enabled()) {
vdev->intx.route = pci_device_route_intx_to_irq(&vdev->pdev,
vdev->intx.pin);
}
#endif
ret = event_notifier_init(&vdev->intx.interrupt, 0);
if (ret) {
error_report("vfio: Error: event_notifier_init failed");
return ret;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_INTX_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = event_notifier_get_fd(&vdev->intx.interrupt);
qemu_set_fd_handler(*pfd, vfio_intx_interrupt, NULL, vdev);
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
if (ret) {
error_report("vfio: Error: Failed to setup INTx fd: %m");
qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
event_notifier_cleanup(&vdev->intx.interrupt);
return -errno;
}
vfio_enable_intx_kvm(vdev);
vdev->interrupt = VFIO_INT_INTx;
trace_vfio_enable_intx(vdev->vbasedev.name);
return 0;
}
static void vfio_disable_intx(VFIOPCIDevice *vdev)
{
int fd;
timer_del(vdev->intx.mmap_timer);
vfio_disable_intx_kvm(vdev);
vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_INTX_IRQ_INDEX);
vdev->intx.pending = false;
pci_irq_deassert(&vdev->pdev);
vfio_mmap_set_enabled(vdev, true);
fd = event_notifier_get_fd(&vdev->intx.interrupt);
qemu_set_fd_handler(fd, NULL, NULL, vdev);
event_notifier_cleanup(&vdev->intx.interrupt);
vdev->interrupt = VFIO_INT_NONE;
trace_vfio_disable_intx(vdev->vbasedev.name);
}
/*
* MSI/X
*/
static void vfio_msi_interrupt(void *opaque)
{
VFIOMSIVector *vector = opaque;
VFIOPCIDevice *vdev = vector->vdev;
int nr = vector - vdev->msi_vectors;
if (!event_notifier_test_and_clear(&vector->interrupt)) {
return;
}
#ifdef DEBUG_VFIO
MSIMessage msg;
if (vdev->interrupt == VFIO_INT_MSIX) {
msg = msix_get_message(&vdev->pdev, nr);
} else if (vdev->interrupt == VFIO_INT_MSI) {
msg = msi_get_message(&vdev->pdev, nr);
} else {
abort();
}
trace_vfio_msi_interrupt(vbasedev->name, nr, msg.address, msg.data);
#endif
if (vdev->interrupt == VFIO_INT_MSIX) {
msix_notify(&vdev->pdev, nr);
} else if (vdev->interrupt == VFIO_INT_MSI) {
msi_notify(&vdev->pdev, nr);
} else {
error_report("vfio: MSI interrupt receieved, but not enabled?");
}
}
static int vfio_enable_vectors(VFIOPCIDevice *vdev, bool msix)
{
struct vfio_irq_set *irq_set;
int ret = 0, i, argsz;
int32_t *fds;
argsz = sizeof(*irq_set) + (vdev->nr_vectors * sizeof(*fds));
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD | VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = msix ? VFIO_PCI_MSIX_IRQ_INDEX : VFIO_PCI_MSI_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = vdev->nr_vectors;
fds = (int32_t *)&irq_set->data;
for (i = 0; i < vdev->nr_vectors; i++) {
int fd = -1;
/*
* MSI vs MSI-X - The guest has direct access to MSI mask and pending
* bits, therefore we always use the KVM signaling path when setup.
* MSI-X mask and pending bits are emulated, so we want to use the
* KVM signaling path only when configured and unmasked.
*/
if (vdev->msi_vectors[i].use) {
if (vdev->msi_vectors[i].virq < 0 ||
(msix && msix_is_masked(&vdev->pdev, i))) {
fd = event_notifier_get_fd(&vdev->msi_vectors[i].interrupt);
} else {
fd = event_notifier_get_fd(&vdev->msi_vectors[i].kvm_interrupt);
}
}
fds[i] = fd;
}
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
return ret;
}
static void vfio_add_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage *msg,
bool msix)
{
int virq;
if ((msix && !VFIO_ALLOW_KVM_MSIX) ||
(!msix && !VFIO_ALLOW_KVM_MSI) || !msg) {
return;
}
if (event_notifier_init(&vector->kvm_interrupt, 0)) {
return;
}
virq = kvm_irqchip_add_msi_route(kvm_state, *msg);
if (virq < 0) {
event_notifier_cleanup(&vector->kvm_interrupt);
return;
}
if (kvm_irqchip_add_irqfd_notifier(kvm_state, &vector->kvm_interrupt,
NULL, virq) < 0) {
kvm_irqchip_release_virq(kvm_state, virq);
event_notifier_cleanup(&vector->kvm_interrupt);
return;
}
vector->virq = virq;
}
static void vfio_remove_kvm_msi_virq(VFIOMSIVector *vector)
{
kvm_irqchip_remove_irqfd_notifier(kvm_state, &vector->kvm_interrupt,
vector->virq);
kvm_irqchip_release_virq(kvm_state, vector->virq);
vector->virq = -1;
event_notifier_cleanup(&vector->kvm_interrupt);
}
static void vfio_update_kvm_msi_virq(VFIOMSIVector *vector, MSIMessage msg)
{
kvm_irqchip_update_msi_route(kvm_state, vector->virq, msg);
}
static int vfio_msix_vector_do_use(PCIDevice *pdev, unsigned int nr,
MSIMessage *msg, IOHandler *handler)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
VFIOMSIVector *vector;
int ret;
trace_vfio_msix_vector_do_use(vdev->vbasedev.name, nr);
vector = &vdev->msi_vectors[nr];
if (!vector->use) {
vector->vdev = vdev;
vector->virq = -1;
if (event_notifier_init(&vector->interrupt, 0)) {
error_report("vfio: Error: event_notifier_init failed");
}
vector->use = true;
msix_vector_use(pdev, nr);
}
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
handler, NULL, vector);
/*
* Attempt to enable route through KVM irqchip,
* default to userspace handling if unavailable.
*/
if (vector->virq >= 0) {
if (!msg) {
vfio_remove_kvm_msi_virq(vector);
} else {
vfio_update_kvm_msi_virq(vector, *msg);
}
} else {
vfio_add_kvm_msi_virq(vector, msg, true);
}
/*
* We don't want to have the host allocate all possible MSI vectors
* for a device if they're not in use, so we shutdown and incrementally
* increase them as needed.
*/
if (vdev->nr_vectors < nr + 1) {
vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
vdev->nr_vectors = nr + 1;
ret = vfio_enable_vectors(vdev, true);
if (ret) {
error_report("vfio: failed to enable vectors, %d", ret);
}
} else {
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
irq_set->start = nr;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
if (vector->virq >= 0) {
*pfd = event_notifier_get_fd(&vector->kvm_interrupt);
} else {
*pfd = event_notifier_get_fd(&vector->interrupt);
}
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
if (ret) {
error_report("vfio: failed to modify vector, %d", ret);
}
}
return 0;
}
static int vfio_msix_vector_use(PCIDevice *pdev,
unsigned int nr, MSIMessage msg)
{
return vfio_msix_vector_do_use(pdev, nr, &msg, vfio_msi_interrupt);
}
static void vfio_msix_vector_release(PCIDevice *pdev, unsigned int nr)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
VFIOMSIVector *vector = &vdev->msi_vectors[nr];
trace_vfio_msix_vector_release(vdev->vbasedev.name, nr);
/*
* There are still old guests that mask and unmask vectors on every
* interrupt. If we're using QEMU bypass with a KVM irqfd, leave all of
* the KVM setup in place, simply switch VFIO to use the non-bypass
* eventfd. We'll then fire the interrupt through QEMU and the MSI-X
* core will mask the interrupt and set pending bits, allowing it to
* be re-asserted on unmask. Nothing to do if already using QEMU mode.
*/
if (vector->virq >= 0) {
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_MSIX_IRQ_INDEX;
irq_set->start = nr;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = event_notifier_get_fd(&vector->interrupt);
ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
g_free(irq_set);
}
}
static void vfio_enable_msix(VFIOPCIDevice *vdev)
{
vfio_disable_interrupts(vdev);
vdev->msi_vectors = g_malloc0(vdev->msix->entries * sizeof(VFIOMSIVector));
vdev->interrupt = VFIO_INT_MSIX;
/*
* Some communication channels between VF & PF or PF & fw rely on the
* physical state of the device and expect that enabling MSI-X from the
* guest enables the same on the host. When our guest is Linux, the
* guest driver call to pci_enable_msix() sets the enabling bit in the
* MSI-X capability, but leaves the vector table masked. We therefore
* can't rely on a vector_use callback (from request_irq() in the guest)
* to switch the physical device into MSI-X mode because that may come a
* long time after pci_enable_msix(). This code enables vector 0 with
* triggering to userspace, then immediately release the vector, leaving
* the physical device with no vectors enabled, but MSI-X enabled, just
* like the guest view.
*/
vfio_msix_vector_do_use(&vdev->pdev, 0, NULL, NULL);
vfio_msix_vector_release(&vdev->pdev, 0);
if (msix_set_vector_notifiers(&vdev->pdev, vfio_msix_vector_use,
vfio_msix_vector_release, NULL)) {
error_report("vfio: msix_set_vector_notifiers failed");
}
trace_vfio_enable_msix(vdev->vbasedev.name);
}
static void vfio_enable_msi(VFIOPCIDevice *vdev)
{
int ret, i;
vfio_disable_interrupts(vdev);
vdev->nr_vectors = msi_nr_vectors_allocated(&vdev->pdev);
retry:
vdev->msi_vectors = g_malloc0(vdev->nr_vectors * sizeof(VFIOMSIVector));
for (i = 0; i < vdev->nr_vectors; i++) {
VFIOMSIVector *vector = &vdev->msi_vectors[i];
MSIMessage msg = msi_get_message(&vdev->pdev, i);
vector->vdev = vdev;
vector->virq = -1;
vector->use = true;
if (event_notifier_init(&vector->interrupt, 0)) {
error_report("vfio: Error: event_notifier_init failed");
}
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
vfio_msi_interrupt, NULL, vector);
/*
* Attempt to enable route through KVM irqchip,
* default to userspace handling if unavailable.
*/
vfio_add_kvm_msi_virq(vector, &msg, false);
}
/* Set interrupt type prior to possible interrupts */
vdev->interrupt = VFIO_INT_MSI;
ret = vfio_enable_vectors(vdev, false);
if (ret) {
if (ret < 0) {
error_report("vfio: Error: Failed to setup MSI fds: %m");
} else if (ret != vdev->nr_vectors) {
error_report("vfio: Error: Failed to enable %d "
"MSI vectors, retry with %d", vdev->nr_vectors, ret);
}
for (i = 0; i < vdev->nr_vectors; i++) {
VFIOMSIVector *vector = &vdev->msi_vectors[i];
if (vector->virq >= 0) {
vfio_remove_kvm_msi_virq(vector);
}
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
NULL, NULL, NULL);
event_notifier_cleanup(&vector->interrupt);
}
g_free(vdev->msi_vectors);
if (ret > 0 && ret != vdev->nr_vectors) {
vdev->nr_vectors = ret;
goto retry;
}
vdev->nr_vectors = 0;
/*
* Failing to setup MSI doesn't really fall within any specification.
* Let's try leaving interrupts disabled and hope the guest figures
* out to fall back to INTx for this device.
*/
error_report("vfio: Error: Failed to enable MSI");
vdev->interrupt = VFIO_INT_NONE;
return;
}
trace_vfio_enable_msi(vdev->vbasedev.name, vdev->nr_vectors);
}
static void vfio_disable_msi_common(VFIOPCIDevice *vdev)
{
int i;
for (i = 0; i < vdev->nr_vectors; i++) {
VFIOMSIVector *vector = &vdev->msi_vectors[i];
if (vdev->msi_vectors[i].use) {
if (vector->virq >= 0) {
vfio_remove_kvm_msi_virq(vector);
}
qemu_set_fd_handler(event_notifier_get_fd(&vector->interrupt),
NULL, NULL, NULL);
event_notifier_cleanup(&vector->interrupt);
}
}
g_free(vdev->msi_vectors);
vdev->msi_vectors = NULL;
vdev->nr_vectors = 0;
vdev->interrupt = VFIO_INT_NONE;
vfio_enable_intx(vdev);
}
static void vfio_disable_msix(VFIOPCIDevice *vdev)
{
int i;
msix_unset_vector_notifiers(&vdev->pdev);
/*
* MSI-X will only release vectors if MSI-X is still enabled on the
* device, check through the rest and release it ourselves if necessary.
*/
for (i = 0; i < vdev->nr_vectors; i++) {
if (vdev->msi_vectors[i].use) {
vfio_msix_vector_release(&vdev->pdev, i);
msix_vector_unuse(&vdev->pdev, i);
}
}
if (vdev->nr_vectors) {
vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSIX_IRQ_INDEX);
}
vfio_disable_msi_common(vdev);
trace_vfio_disable_msix(vdev->vbasedev.name);
}
static void vfio_disable_msi(VFIOPCIDevice *vdev)
{
vfio_disable_irqindex(&vdev->vbasedev, VFIO_PCI_MSI_IRQ_INDEX);
vfio_disable_msi_common(vdev);
trace_vfio_disable_msi(vdev->vbasedev.name);
}
static void vfio_update_msi(VFIOPCIDevice *vdev)
{
int i;
for (i = 0; i < vdev->nr_vectors; i++) {
VFIOMSIVector *vector = &vdev->msi_vectors[i];
MSIMessage msg;
if (!vector->use || vector->virq < 0) {
continue;
}
msg = msi_get_message(&vdev->pdev, i);
vfio_update_kvm_msi_virq(vector, msg);
}
}
static void vfio_pci_load_rom(VFIOPCIDevice *vdev)
{
struct vfio_region_info reg_info = {
.argsz = sizeof(reg_info),
.index = VFIO_PCI_ROM_REGION_INDEX
};
uint64_t size;
off_t off = 0;
size_t bytes;
if (ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info)) {
error_report("vfio: Error getting ROM info: %m");
return;
}
trace_vfio_pci_load_rom(vdev->vbasedev.name, (unsigned long)reg_info.size,
(unsigned long)reg_info.offset,
(unsigned long)reg_info.flags);
vdev->rom_size = size = reg_info.size;
vdev->rom_offset = reg_info.offset;
if (!vdev->rom_size) {
vdev->rom_read_failed = true;
error_report("vfio-pci: Cannot read device rom at "
"%s", vdev->vbasedev.name);
error_printf("Device option ROM contents are probably invalid "
"(check dmesg).\nSkip option ROM probe with rombar=0, "
"or load from file with romfile=\n");
return;
}
vdev->rom = g_malloc(size);
memset(vdev->rom, 0xff, size);
while (size) {
bytes = pread(vdev->vbasedev.fd, vdev->rom + off,
size, vdev->rom_offset + off);
if (bytes == 0) {
break;
} else if (bytes > 0) {
off += bytes;
size -= bytes;
} else {
if (errno == EINTR || errno == EAGAIN) {
continue;
}
error_report("vfio: Error reading device ROM: %m");
break;
}
}
}
static uint64_t vfio_rom_read(void *opaque, hwaddr addr, unsigned size)
{
VFIOPCIDevice *vdev = opaque;
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
uint64_t qword;
} val;
uint64_t data = 0;
/* Load the ROM lazily when the guest tries to read it */
if (unlikely(!vdev->rom && !vdev->rom_read_failed)) {
vfio_pci_load_rom(vdev);
}
memcpy(&val, vdev->rom + addr,
(addr < vdev->rom_size) ? MIN(size, vdev->rom_size - addr) : 0);
switch (size) {
case 1:
data = val.byte;
break;
case 2:
data = le16_to_cpu(val.word);
break;
case 4:
data = le32_to_cpu(val.dword);
break;
default:
hw_error("vfio: unsupported read size, %d bytes\n", size);
break;
}
trace_vfio_rom_read(vdev->vbasedev.name, addr, size, data);
return data;
}
static void vfio_rom_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
}
static const MemoryRegionOps vfio_rom_ops = {
.read = vfio_rom_read,
.write = vfio_rom_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static bool vfio_blacklist_opt_rom(VFIOPCIDevice *vdev)
{
PCIDevice *pdev = &vdev->pdev;
uint16_t vendor_id, device_id;
int count = 0;
vendor_id = pci_get_word(pdev->config + PCI_VENDOR_ID);
device_id = pci_get_word(pdev->config + PCI_DEVICE_ID);
while (count < ARRAY_SIZE(romblacklist)) {
if (romblacklist[count].vendor_id == vendor_id &&
romblacklist[count].device_id == device_id) {
return true;
}
count++;
}
return false;
}
static void vfio_pci_size_rom(VFIOPCIDevice *vdev)
{
uint32_t orig, size = cpu_to_le32((uint32_t)PCI_ROM_ADDRESS_MASK);
off_t offset = vdev->config_offset + PCI_ROM_ADDRESS;
DeviceState *dev = DEVICE(vdev);
char name[32];
int fd = vdev->vbasedev.fd;
if (vdev->pdev.romfile || !vdev->pdev.rom_bar) {
/* Since pci handles romfile, just print a message and return */
if (vfio_blacklist_opt_rom(vdev) && vdev->pdev.romfile) {
error_printf("Warning : Device at %04x:%02x:%02x.%x "
"is known to cause system instability issues during "
"option rom execution. "
"Proceeding anyway since user specified romfile\n",
vdev->host.domain, vdev->host.bus, vdev->host.slot,
vdev->host.function);
}
return;
}
/*
* Use the same size ROM BAR as the physical device. The contents
* will get filled in later when the guest tries to read it.
*/
if (pread(fd, &orig, 4, offset) != 4 ||
pwrite(fd, &size, 4, offset) != 4 ||
pread(fd, &size, 4, offset) != 4 ||
pwrite(fd, &orig, 4, offset) != 4) {
error_report("%s(%04x:%02x:%02x.%x) failed: %m",
__func__, vdev->host.domain, vdev->host.bus,
vdev->host.slot, vdev->host.function);
return;
}
size = ~(le32_to_cpu(size) & PCI_ROM_ADDRESS_MASK) + 1;
if (!size) {
return;
}
if (vfio_blacklist_opt_rom(vdev)) {
if (dev->opts && qemu_opt_get(dev->opts, "rombar")) {
error_printf("Warning : Device at %04x:%02x:%02x.%x "
"is known to cause system instability issues during "
"option rom execution. "
"Proceeding anyway since user specified non zero value for "
"rombar\n",
vdev->host.domain, vdev->host.bus, vdev->host.slot,
vdev->host.function);
} else {
error_printf("Warning : Rom loading for device at "
"%04x:%02x:%02x.%x has been disabled due to "
"system instability issues. "
"Specify rombar=1 or romfile to force\n",
vdev->host.domain, vdev->host.bus, vdev->host.slot,
vdev->host.function);
return;
}
}
trace_vfio_pci_size_rom(vdev->vbasedev.name, size);
snprintf(name, sizeof(name), "vfio[%04x:%02x:%02x.%x].rom",
vdev->host.domain, vdev->host.bus, vdev->host.slot,
vdev->host.function);
memory_region_init_io(&vdev->pdev.rom, OBJECT(vdev),
&vfio_rom_ops, vdev, name, size);
pci_register_bar(&vdev->pdev, PCI_ROM_SLOT,
PCI_BASE_ADDRESS_SPACE_MEMORY, &vdev->pdev.rom);
vdev->pdev.has_rom = true;
vdev->rom_read_failed = false;
}
static void vfio_vga_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOVGARegion *region = opaque;
VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
uint64_t qword;
} buf;
off_t offset = vga->fd_offset + region->offset + addr;
switch (size) {
case 1:
buf.byte = data;
break;
case 2:
buf.word = cpu_to_le16(data);
break;
case 4:
buf.dword = cpu_to_le32(data);
break;
default:
hw_error("vfio: unsupported write size, %d bytes", size);
break;
}
if (pwrite(vga->fd, &buf, size, offset) != size) {
error_report("%s(,0x%"HWADDR_PRIx", 0x%"PRIx64", %d) failed: %m",
__func__, region->offset + addr, data, size);
}
trace_vfio_vga_write(region->offset + addr, data, size);
}
static uint64_t vfio_vga_read(void *opaque, hwaddr addr, unsigned size)
{
VFIOVGARegion *region = opaque;
VFIOVGA *vga = container_of(region, VFIOVGA, region[region->nr]);
union {
uint8_t byte;
uint16_t word;
uint32_t dword;
uint64_t qword;
} buf;
uint64_t data = 0;
off_t offset = vga->fd_offset + region->offset + addr;
if (pread(vga->fd, &buf, size, offset) != size) {
error_report("%s(,0x%"HWADDR_PRIx", %d) failed: %m",
__func__, region->offset + addr, size);
return (uint64_t)-1;
}
switch (size) {
case 1:
data = buf.byte;
break;
case 2:
data = le16_to_cpu(buf.word);
break;
case 4:
data = le32_to_cpu(buf.dword);
break;
default:
hw_error("vfio: unsupported read size, %d bytes", size);
break;
}
trace_vfio_vga_read(region->offset + addr, size, data);
return data;
}
static const MemoryRegionOps vfio_vga_ops = {
.read = vfio_vga_read,
.write = vfio_vga_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
/*
* Device specific quirks
*/
/* Is range1 fully contained within range2? */
static bool vfio_range_contained(uint64_t first1, uint64_t len1,
uint64_t first2, uint64_t len2) {
return (first1 >= first2 && first1 + len1 <= first2 + len2);
}
static bool vfio_flags_enabled(uint8_t flags, uint8_t mask)
{
return (mask && (flags & mask) == mask);
}
static uint64_t vfio_generic_window_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
uint64_t data;
if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
ranges_overlap(addr, size,
quirk->data.data_offset, quirk->data.data_size)) {
hwaddr offset = addr - quirk->data.data_offset;
if (!vfio_range_contained(addr, size, quirk->data.data_offset,
quirk->data.data_size)) {
hw_error("%s: window data read not fully contained: %s",
__func__, memory_region_name(&quirk->mem));
}
data = vfio_pci_read_config(&vdev->pdev,
quirk->data.address_val + offset, size);
trace_vfio_generic_window_quirk_read(memory_region_name(&quirk->mem),
vdev->vbasedev.name,
quirk->data.bar,
addr, size, data);
} else {
data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
addr + quirk->data.base_offset, size);
}
return data;
}
static void vfio_generic_window_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
if (ranges_overlap(addr, size,
quirk->data.address_offset, quirk->data.address_size)) {
if (addr != quirk->data.address_offset) {
hw_error("%s: offset write into address window: %s",
__func__, memory_region_name(&quirk->mem));
}
if ((data & ~quirk->data.address_mask) == quirk->data.address_match) {
quirk->data.flags |= quirk->data.write_flags |
quirk->data.read_flags;
quirk->data.address_val = data & quirk->data.address_mask;
} else {
quirk->data.flags &= ~(quirk->data.write_flags |
quirk->data.read_flags);
}
}
if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
ranges_overlap(addr, size,
quirk->data.data_offset, quirk->data.data_size)) {
hwaddr offset = addr - quirk->data.data_offset;
if (!vfio_range_contained(addr, size, quirk->data.data_offset,
quirk->data.data_size)) {
hw_error("%s: window data write not fully contained: %s",
__func__, memory_region_name(&quirk->mem));
}
vfio_pci_write_config(&vdev->pdev,
quirk->data.address_val + offset, data, size);
trace_vfio_generic_window_quirk_write(memory_region_name(&quirk->mem),
vdev->vbasedev.name,
quirk->data.bar,
addr, data, size);
return;
}
vfio_region_write(&vdev->bars[quirk->data.bar].region,
addr + quirk->data.base_offset, data, size);
}
static const MemoryRegionOps vfio_generic_window_quirk = {
.read = vfio_generic_window_quirk_read,
.write = vfio_generic_window_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static uint64_t vfio_generic_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
uint64_t data;
if (vfio_flags_enabled(quirk->data.flags, quirk->data.read_flags) &&
ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
if (!vfio_range_contained(addr, size, offset,
quirk->data.address_mask + 1)) {
hw_error("%s: read not fully contained: %s",
__func__, memory_region_name(&quirk->mem));
}
data = vfio_pci_read_config(&vdev->pdev, addr - offset, size);
trace_vfio_generic_quirk_read(memory_region_name(&quirk->mem),
vdev->vbasedev.name, quirk->data.bar,
addr + base, size, data);
} else {
data = vfio_region_read(&vdev->bars[quirk->data.bar].region,
addr + base, size);
}
return data;
}
static void vfio_generic_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
hwaddr offset = quirk->data.address_match & ~TARGET_PAGE_MASK;
if (vfio_flags_enabled(quirk->data.flags, quirk->data.write_flags) &&
ranges_overlap(addr, size, offset, quirk->data.address_mask + 1)) {
if (!vfio_range_contained(addr, size, offset,
quirk->data.address_mask + 1)) {
hw_error("%s: write not fully contained: %s",
__func__, memory_region_name(&quirk->mem));
}
vfio_pci_write_config(&vdev->pdev, addr - offset, data, size);
trace_vfio_generic_quirk_write(memory_region_name(&quirk->mem),
vdev->vbasedev.name, quirk->data.bar,
addr + base, data, size);
} else {
vfio_region_write(&vdev->bars[quirk->data.bar].region,
addr + base, data, size);
}
}
static const MemoryRegionOps vfio_generic_quirk = {
.read = vfio_generic_quirk_read,
.write = vfio_generic_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
#define PCI_VENDOR_ID_ATI 0x1002
/*
* Radeon HD cards (HD5450 & HD7850) report the upper byte of the I/O port BAR
* through VGA register 0x3c3. On newer cards, the I/O port BAR is always
* BAR4 (older cards like the X550 used BAR1, but we don't care to support
* those). Note that on bare metal, a read of 0x3c3 doesn't always return the
* I/O port BAR address. Originally this was coded to return the virtual BAR
* address only if the physical register read returns the actual BAR address,
* but users have reported greater success if we return the virtual address
* unconditionally.
*/
static uint64_t vfio_ati_3c3_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
uint64_t data = vfio_pci_read_config(&vdev->pdev,
PCI_BASE_ADDRESS_0 + (4 * 4) + 1,
size);
trace_vfio_ati_3c3_quirk_read(data);
return data;
}
static const MemoryRegionOps vfio_ati_3c3_quirk = {
.read = vfio_ati_3c3_quirk_read,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_vga_probe_ati_3c3_quirk(VFIOPCIDevice *vdev)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
return;
}
/*
* As long as the BAR is >= 256 bytes it will be aligned such that the
* lower byte is always zero. Filter out anything else, if it exists.
*/
if (!vdev->bars[4].ioport || vdev->bars[4].region.size < 256) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->vdev = vdev;
memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_ati_3c3_quirk, quirk,
"vfio-ati-3c3-quirk", 1);
memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
3 /* offset 3 bytes from 0x3c0 */, &quirk->mem);
QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
quirk, next);
trace_vfio_vga_probe_ati_3c3_quirk(vdev->vbasedev.name);
}
/*
* Newer ATI/AMD devices, including HD5450 and HD7850, have a window to PCI
* config space through MMIO BAR2 at offset 0x4000. Nothing seems to access
* the MMIO space directly, but a window to this space is provided through
* I/O port BAR4. Offset 0x0 is the address register and offset 0x4 is the
* data register. When the address is programmed to a range of 0x4000-0x4fff
* PCI configuration space is available. Experimentation seems to indicate
* that only read-only access is provided, but we drop writes when the window
* is enabled to config space nonetheless.
*/
static void vfio_probe_ati_bar4_window_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
if (!vdev->has_vga || nr != 4 ||
pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->vdev = vdev;
quirk->data.address_size = 4;
quirk->data.data_offset = 4;
quirk->data.data_size = 4;
quirk->data.address_match = 0x4000;
quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
quirk->data.bar = nr;
quirk->data.read_flags = quirk->data.write_flags = 1;
memory_region_init_io(&quirk->mem, OBJECT(vdev),
&vfio_generic_window_quirk, quirk,
"vfio-ati-bar4-window-quirk", 8);
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
quirk->data.base_offset, &quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_ati_bar4_window_quirk(vdev->vbasedev.name);
}
#define PCI_VENDOR_ID_REALTEK 0x10ec
/*
* RTL8168 devices have a backdoor that can access the MSI-X table. At BAR2
* offset 0x70 there is a dword data register, offset 0x74 is a dword address
* register. According to the Linux r8169 driver, the MSI-X table is addressed
* when the "type" portion of the address register is set to 0x1. This appears
* to be bits 16:30. Bit 31 is both a write indicator and some sort of
* "address latched" indicator. Bits 12:15 are a mask field, which we can
* ignore because the MSI-X table should always be accessed as a dword (full
* mask). Bits 0:11 is offset within the type.
*
* Example trace:
*
* Read from MSI-X table offset 0
* vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x1f000, 4) // store read addr
* vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x8001f000 // latch
* vfio: vfio_bar_read(0000:05:00.0:BAR2+0x70, 4) = 0xfee00398 // read data
*
* Write 0xfee00000 to MSI-X table offset 0
* vfio: vfio_bar_write(0000:05:00.0:BAR2+0x70, 0xfee00000, 4) // write data
* vfio: vfio_bar_write(0000:05:00.0:BAR2+0x74, 0x8001f000, 4) // do write
* vfio: vfio_bar_read(0000:05:00.0:BAR2+0x74, 4) = 0x1f000 // complete
*/
static uint64_t vfio_rtl8168_window_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
switch (addr) {
case 4: /* address */
if (quirk->data.flags) {
trace_vfio_rtl8168_window_quirk_read_fake(
memory_region_name(&quirk->mem),
vdev->vbasedev.name);
return quirk->data.address_match ^ 0x10000000U;
}
break;
case 0: /* data */
if (quirk->data.flags) {
uint64_t val;
trace_vfio_rtl8168_window_quirk_read_table(
memory_region_name(&quirk->mem),
vdev->vbasedev.name);
if (!(vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX)) {
return 0;
}
io_mem_read(&vdev->pdev.msix_table_mmio,
(hwaddr)(quirk->data.address_match & 0xfff),
&val, size);
return val;
}
}
trace_vfio_rtl8168_window_quirk_read_direct(memory_region_name(&quirk->mem),
vdev->vbasedev.name);
return vfio_region_read(&vdev->bars[quirk->data.bar].region,
addr + 0x70, size);
}
static void vfio_rtl8168_window_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
switch (addr) {
case 4: /* address */
if ((data & 0x7fff0000) == 0x10000) {
if (data & 0x10000000U &&
vdev->pdev.cap_present & QEMU_PCI_CAP_MSIX) {
trace_vfio_rtl8168_window_quirk_write_table(
memory_region_name(&quirk->mem),
vdev->vbasedev.name);
io_mem_write(&vdev->pdev.msix_table_mmio,
(hwaddr)(quirk->data.address_match & 0xfff),
data, size);
}
quirk->data.flags = 1;
quirk->data.address_match = data;
return;
}
quirk->data.flags = 0;
break;
case 0: /* data */
quirk->data.address_mask = data;
break;
}
trace_vfio_rtl8168_window_quirk_write_direct(
memory_region_name(&quirk->mem),
vdev->vbasedev.name);
vfio_region_write(&vdev->bars[quirk->data.bar].region,
addr + 0x70, data, size);
}
static const MemoryRegionOps vfio_rtl8168_window_quirk = {
.read = vfio_rtl8168_window_quirk_read,
.write = vfio_rtl8168_window_quirk_write,
.valid = {
.min_access_size = 4,
.max_access_size = 4,
.unaligned = false,
},
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_probe_rtl8168_bar2_window_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_REALTEK ||
pci_get_word(pdev->config + PCI_DEVICE_ID) != 0x8168 || nr != 2) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->vdev = vdev;
quirk->data.bar = nr;
memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_rtl8168_window_quirk,
quirk, "vfio-rtl8168-window-quirk", 8);
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
0x70, &quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_rtl8168_bar2_window_quirk(vdev->vbasedev.name);
}
/*
* Trap the BAR2 MMIO window to config space as well.
*/
static void vfio_probe_ati_bar2_4000_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
/* Only enable on newer devices where BAR2 is 64bit */
if (!vdev->has_vga || nr != 2 || !vdev->bars[2].mem64 ||
pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_ATI) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->vdev = vdev;
quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
quirk->data.address_match = 0x4000;
quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
quirk->data.bar = nr;
memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
"vfio-ati-bar2-4000-quirk",
TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
quirk->data.address_match & TARGET_PAGE_MASK,
&quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_ati_bar2_4000_quirk(vdev->vbasedev.name);
}
/*
* Older ATI/AMD cards like the X550 have a similar window to that above.
* I/O port BAR1 provides a window to a mirror of PCI config space located
* in BAR2 at offset 0xf00. We don't care to support such older cards, but
* note it for future reference.
*/
#define PCI_VENDOR_ID_NVIDIA 0x10de
/*
* Nvidia has several different methods to get to config space, the
* nouveu project has several of these documented here:
* https://github.com/pathscale/envytools/tree/master/hwdocs
*
* The first quirk is actually not documented in envytools and is found
* on 10de:01d1 (NVIDIA Corporation G72 [GeForce 7300 LE]). This is an
* NV46 chipset. The backdoor uses the legacy VGA I/O ports to access
* the mirror of PCI config space found at BAR0 offset 0x1800. The access
* sequence first writes 0x338 to I/O port 0x3d4. The target offset is
* then written to 0x3d0. Finally 0x538 is written for a read and 0x738
* is written for a write to 0x3d4. The BAR0 offset is then accessible
* through 0x3d0. This quirk doesn't seem to be necessary on newer cards
* that use the I/O port BAR5 window but it doesn't hurt to leave it.
*/
enum {
NV_3D0_NONE = 0,
NV_3D0_SELECT,
NV_3D0_WINDOW,
NV_3D0_READ,
NV_3D0_WRITE,
};
static uint64_t vfio_nvidia_3d0_quirk_read(void *opaque,
hwaddr addr, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
PCIDevice *pdev = &vdev->pdev;
uint64_t data = vfio_vga_read(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
addr + quirk->data.base_offset, size);
if (quirk->data.flags == NV_3D0_READ && addr == quirk->data.data_offset) {
data = vfio_pci_read_config(pdev, quirk->data.address_val, size);
trace_vfio_nvidia_3d0_quirk_read(size, data);
}
quirk->data.flags = NV_3D0_NONE;
return data;
}
static void vfio_nvidia_3d0_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
PCIDevice *pdev = &vdev->pdev;
switch (quirk->data.flags) {
case NV_3D0_NONE:
if (addr == quirk->data.address_offset && data == 0x338) {
quirk->data.flags = NV_3D0_SELECT;
}
break;
case NV_3D0_SELECT:
quirk->data.flags = NV_3D0_NONE;
if (addr == quirk->data.data_offset &&
(data & ~quirk->data.address_mask) == quirk->data.address_match) {
quirk->data.flags = NV_3D0_WINDOW;
quirk->data.address_val = data & quirk->data.address_mask;
}
break;
case NV_3D0_WINDOW:
quirk->data.flags = NV_3D0_NONE;
if (addr == quirk->data.address_offset) {
if (data == 0x538) {
quirk->data.flags = NV_3D0_READ;
} else if (data == 0x738) {
quirk->data.flags = NV_3D0_WRITE;
}
}
break;
case NV_3D0_WRITE:
quirk->data.flags = NV_3D0_NONE;
if (addr == quirk->data.data_offset) {
vfio_pci_write_config(pdev, quirk->data.address_val, data, size);
trace_vfio_nvidia_3d0_quirk_write(data, size);
return;
}
break;
}
vfio_vga_write(&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
addr + quirk->data.base_offset, data, size);
}
static const MemoryRegionOps vfio_nvidia_3d0_quirk = {
.read = vfio_nvidia_3d0_quirk_read,
.write = vfio_nvidia_3d0_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_vga_probe_nvidia_3d0_quirk(VFIOPCIDevice *vdev)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
if (pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA ||
!vdev->bars[1].region.size) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->vdev = vdev;
quirk->data.base_offset = 0x10;
quirk->data.address_offset = 4;
quirk->data.address_size = 2;
quirk->data.address_match = 0x1800;
quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
quirk->data.data_offset = 0;
quirk->data.data_size = 4;
memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_3d0_quirk,
quirk, "vfio-nvidia-3d0-quirk", 6);
memory_region_add_subregion(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
quirk->data.base_offset, &quirk->mem);
QLIST_INSERT_HEAD(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks,
quirk, next);
trace_vfio_vga_probe_nvidia_3d0_quirk(vdev->vbasedev.name);
}
/*
* The second quirk is documented in envytools. The I/O port BAR5 is just
* a set of address/data ports to the MMIO BARs. The BAR we care about is
* again BAR0. This backdoor is apparently a bit newer than the one above
* so we need to not only trap 256 bytes @0x1800, but all of PCI config
* space, including extended space is available at the 4k @0x88000.
*/
enum {
NV_BAR5_ADDRESS = 0x1,
NV_BAR5_ENABLE = 0x2,
NV_BAR5_MASTER = 0x4,
NV_BAR5_VALID = 0x7,
};
static void vfio_nvidia_bar5_window_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOQuirk *quirk = opaque;
switch (addr) {
case 0x0:
if (data & 0x1) {
quirk->data.flags |= NV_BAR5_MASTER;
} else {
quirk->data.flags &= ~NV_BAR5_MASTER;
}
break;
case 0x4:
if (data & 0x1) {
quirk->data.flags |= NV_BAR5_ENABLE;
} else {
quirk->data.flags &= ~NV_BAR5_ENABLE;
}
break;
case 0x8:
if (quirk->data.flags & NV_BAR5_MASTER) {
if ((data & ~0xfff) == 0x88000) {
quirk->data.flags |= NV_BAR5_ADDRESS;
quirk->data.address_val = data & 0xfff;
} else if ((data & ~0xff) == 0x1800) {
quirk->data.flags |= NV_BAR5_ADDRESS;
quirk->data.address_val = data & 0xff;
} else {
quirk->data.flags &= ~NV_BAR5_ADDRESS;
}
}
break;
}
vfio_generic_window_quirk_write(opaque, addr, data, size);
}
static const MemoryRegionOps vfio_nvidia_bar5_window_quirk = {
.read = vfio_generic_window_quirk_read,
.write = vfio_nvidia_bar5_window_quirk_write,
.valid.min_access_size = 4,
.endianness = DEVICE_LITTLE_ENDIAN,
};
static void vfio_probe_nvidia_bar5_window_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
if (!vdev->has_vga || nr != 5 ||
pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->vdev = vdev;
quirk->data.read_flags = quirk->data.write_flags = NV_BAR5_VALID;
quirk->data.address_offset = 0x8;
quirk->data.address_size = 0; /* actually 4, but avoids generic code */
quirk->data.data_offset = 0xc;
quirk->data.data_size = 4;
quirk->data.bar = nr;
memory_region_init_io(&quirk->mem, OBJECT(vdev),
&vfio_nvidia_bar5_window_quirk, quirk,
"vfio-nvidia-bar5-window-quirk", 16);
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
0, &quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_nvidia_bar5_window_quirk(vdev->vbasedev.name);
}
static void vfio_nvidia_88000_quirk_write(void *opaque, hwaddr addr,
uint64_t data, unsigned size)
{
VFIOQuirk *quirk = opaque;
VFIOPCIDevice *vdev = quirk->vdev;
PCIDevice *pdev = &vdev->pdev;
hwaddr base = quirk->data.address_match & TARGET_PAGE_MASK;
vfio_generic_quirk_write(opaque, addr, data, size);
/*
* Nvidia seems to acknowledge MSI interrupts by writing 0xff to the
* MSI capability ID register. Both the ID and next register are
* read-only, so we allow writes covering either of those to real hw.
* NB - only fixed for the 0x88000 MMIO window.
*/
if ((pdev->cap_present & QEMU_PCI_CAP_MSI) &&
vfio_range_contained(addr, size, pdev->msi_cap, PCI_MSI_FLAGS)) {
vfio_region_write(&vdev->bars[quirk->data.bar].region,
addr + base, data, size);
}
}
static const MemoryRegionOps vfio_nvidia_88000_quirk = {
.read = vfio_generic_quirk_read,
.write = vfio_nvidia_88000_quirk_write,
.endianness = DEVICE_LITTLE_ENDIAN,
};
/*
* Finally, BAR0 itself. We want to redirect any accesses to either
* 0x1800 or 0x88000 through the PCI config space access functions.
*
* NB - quirk at a page granularity or else they don't seem to work when
* BARs are mmap'd
*
* Here's offset 0x88000...
*/
static void vfio_probe_nvidia_bar0_88000_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
uint16_t vendor, class;
vendor = pci_get_word(pdev->config + PCI_VENDOR_ID);
class = pci_get_word(pdev->config + PCI_CLASS_DEVICE);
if (nr != 0 || vendor != PCI_VENDOR_ID_NVIDIA ||
class != PCI_CLASS_DISPLAY_VGA) {
return;
}
quirk = g_malloc0(sizeof(*quirk));
quirk->vdev = vdev;
quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
quirk->data.address_match = 0x88000;
quirk->data.address_mask = PCIE_CONFIG_SPACE_SIZE - 1;
quirk->data.bar = nr;
memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_nvidia_88000_quirk,
quirk, "vfio-nvidia-bar0-88000-quirk",
TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
quirk->data.address_match & TARGET_PAGE_MASK,
&quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_nvidia_bar0_88000_quirk(vdev->vbasedev.name);
}
/*
* And here's the same for BAR0 offset 0x1800...
*/
static void vfio_probe_nvidia_bar0_1800_quirk(VFIOPCIDevice *vdev, int nr)
{
PCIDevice *pdev = &vdev->pdev;
VFIOQuirk *quirk;
if (!vdev->has_vga || nr != 0 ||
pci_get_word(pdev->config + PCI_VENDOR_ID) != PCI_VENDOR_ID_NVIDIA) {
return;
}
/* Log the chipset ID */
trace_vfio_probe_nvidia_bar0_1800_quirk_id(
(unsigned int)(vfio_region_read(&vdev->bars[0].region, 0, 4) >> 20)
& 0xff);
quirk = g_malloc0(sizeof(*quirk));
quirk->vdev = vdev;
quirk->data.flags = quirk->data.read_flags = quirk->data.write_flags = 1;
quirk->data.address_match = 0x1800;
quirk->data.address_mask = PCI_CONFIG_SPACE_SIZE - 1;
quirk->data.bar = nr;
memory_region_init_io(&quirk->mem, OBJECT(vdev), &vfio_generic_quirk, quirk,
"vfio-nvidia-bar0-1800-quirk",
TARGET_PAGE_ALIGN(quirk->data.address_mask + 1));
memory_region_add_subregion_overlap(&vdev->bars[nr].region.mem,
quirk->data.address_match & TARGET_PAGE_MASK,
&quirk->mem, 1);
QLIST_INSERT_HEAD(&vdev->bars[nr].quirks, quirk, next);
trace_vfio_probe_nvidia_bar0_1800_quirk(vdev->vbasedev.name);
}
/*
* TODO - Some Nvidia devices provide config access to their companion HDA
* device and even to their parent bridge via these config space mirrors.
* Add quirks for those regions.
*/
/*
* Common quirk probe entry points.
*/
static void vfio_vga_quirk_setup(VFIOPCIDevice *vdev)
{
vfio_vga_probe_ati_3c3_quirk(vdev);
vfio_vga_probe_nvidia_3d0_quirk(vdev);
}
static void vfio_vga_quirk_teardown(VFIOPCIDevice *vdev)
{
int i;
for (i = 0; i < ARRAY_SIZE(vdev->vga.region); i++) {
while (!QLIST_EMPTY(&vdev->vga.region[i].quirks)) {
VFIOQuirk *quirk = QLIST_FIRST(&vdev->vga.region[i].quirks);
memory_region_del_subregion(&vdev->vga.region[i].mem, &quirk->mem);
object_unparent(OBJECT(&quirk->mem));
QLIST_REMOVE(quirk, next);
g_free(quirk);
}
}
}
static void vfio_bar_quirk_setup(VFIOPCIDevice *vdev, int nr)
{
vfio_probe_ati_bar4_window_quirk(vdev, nr);
vfio_probe_ati_bar2_4000_quirk(vdev, nr);
vfio_probe_nvidia_bar5_window_quirk(vdev, nr);
vfio_probe_nvidia_bar0_88000_quirk(vdev, nr);
vfio_probe_nvidia_bar0_1800_quirk(vdev, nr);
vfio_probe_rtl8168_bar2_window_quirk(vdev, nr);
}
static void vfio_bar_quirk_teardown(VFIOPCIDevice *vdev, int nr)
{
VFIOBAR *bar = &vdev->bars[nr];
while (!QLIST_EMPTY(&bar->quirks)) {
VFIOQuirk *quirk = QLIST_FIRST(&bar->quirks);
memory_region_del_subregion(&bar->region.mem, &quirk->mem);
object_unparent(OBJECT(&quirk->mem));
QLIST_REMOVE(quirk, next);
g_free(quirk);
}
}
/*
* PCI config space
*/
static uint32_t vfio_pci_read_config(PCIDevice *pdev, uint32_t addr, int len)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
uint32_t emu_bits = 0, emu_val = 0, phys_val = 0, val;
memcpy(&emu_bits, vdev->emulated_config_bits + addr, len);
emu_bits = le32_to_cpu(emu_bits);
if (emu_bits) {
emu_val = pci_default_read_config(pdev, addr, len);
}
if (~emu_bits & (0xffffffffU >> (32 - len * 8))) {
ssize_t ret;
ret = pread(vdev->vbasedev.fd, &phys_val, len,
vdev->config_offset + addr);
if (ret != len) {
error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x) failed: %m",
__func__, vdev->host.domain, vdev->host.bus,
vdev->host.slot, vdev->host.function, addr, len);
return -errno;
}
phys_val = le32_to_cpu(phys_val);
}
val = (emu_val & emu_bits) | (phys_val & ~emu_bits);
trace_vfio_pci_read_config(vdev->vbasedev.name, addr, len, val);
return val;
}
static void vfio_pci_write_config(PCIDevice *pdev, uint32_t addr,
uint32_t val, int len)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
uint32_t val_le = cpu_to_le32(val);
trace_vfio_pci_write_config(vdev->vbasedev.name, addr, val, len);
/* Write everything to VFIO, let it filter out what we can't write */
if (pwrite(vdev->vbasedev.fd, &val_le, len, vdev->config_offset + addr)
!= len) {
error_report("%s(%04x:%02x:%02x.%x, 0x%x, 0x%x, 0x%x) failed: %m",
__func__, vdev->host.domain, vdev->host.bus,
vdev->host.slot, vdev->host.function, addr, val, len);
}
/* MSI/MSI-X Enabling/Disabling */
if (pdev->cap_present & QEMU_PCI_CAP_MSI &&
ranges_overlap(addr, len, pdev->msi_cap, vdev->msi_cap_size)) {
int is_enabled, was_enabled = msi_enabled(pdev);
pci_default_write_config(pdev, addr, val, len);
is_enabled = msi_enabled(pdev);
if (!was_enabled) {
if (is_enabled) {
vfio_enable_msi(vdev);
}
} else {
if (!is_enabled) {
vfio_disable_msi(vdev);
} else {
vfio_update_msi(vdev);
}
}
} else if (pdev->cap_present & QEMU_PCI_CAP_MSIX &&
ranges_overlap(addr, len, pdev->msix_cap, MSIX_CAP_LENGTH)) {
int is_enabled, was_enabled = msix_enabled(pdev);
pci_default_write_config(pdev, addr, val, len);
is_enabled = msix_enabled(pdev);
if (!was_enabled && is_enabled) {
vfio_enable_msix(vdev);
} else if (was_enabled && !is_enabled) {
vfio_disable_msix(vdev);
}
} else {
/* Write everything to QEMU to keep emulated bits correct */
pci_default_write_config(pdev, addr, val, len);
}
}
/*
* Interrupt setup
*/
static void vfio_disable_interrupts(VFIOPCIDevice *vdev)
{
/*
* More complicated than it looks. Disabling MSI/X transitions the
* device to INTx mode (if supported). Therefore we need to first
* disable MSI/X and then cleanup by disabling INTx.
*/
if (vdev->interrupt == VFIO_INT_MSIX) {
vfio_disable_msix(vdev);
} else if (vdev->interrupt == VFIO_INT_MSI) {
vfio_disable_msi(vdev);
}
if (vdev->interrupt == VFIO_INT_INTx) {
vfio_disable_intx(vdev);
}
}
static int vfio_setup_msi(VFIOPCIDevice *vdev, int pos)
{
uint16_t ctrl;
bool msi_64bit, msi_maskbit;
int ret, entries;
if (pread(vdev->vbasedev.fd, &ctrl, sizeof(ctrl),
vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
return -errno;
}
ctrl = le16_to_cpu(ctrl);
msi_64bit = !!(ctrl & PCI_MSI_FLAGS_64BIT);
msi_maskbit = !!(ctrl & PCI_MSI_FLAGS_MASKBIT);
entries = 1 << ((ctrl & PCI_MSI_FLAGS_QMASK) >> 1);
trace_vfio_setup_msi(vdev->vbasedev.name, pos);
ret = msi_init(&vdev->pdev, pos, entries, msi_64bit, msi_maskbit);
if (ret < 0) {
if (ret == -ENOTSUP) {
return 0;
}
error_report("vfio: msi_init failed");
return ret;
}
vdev->msi_cap_size = 0xa + (msi_maskbit ? 0xa : 0) + (msi_64bit ? 0x4 : 0);
return 0;
}
/*
* We don't have any control over how pci_add_capability() inserts
* capabilities into the chain. In order to setup MSI-X we need a
* MemoryRegion for the BAR. In order to setup the BAR and not
* attempt to mmap the MSI-X table area, which VFIO won't allow, we
* need to first look for where the MSI-X table lives. So we
* unfortunately split MSI-X setup across two functions.
*/
static int vfio_early_setup_msix(VFIOPCIDevice *vdev)
{
uint8_t pos;
uint16_t ctrl;
uint32_t table, pba;
int fd = vdev->vbasedev.fd;
pos = pci_find_capability(&vdev->pdev, PCI_CAP_ID_MSIX);
if (!pos) {
return 0;
}
if (pread(fd, &ctrl, sizeof(ctrl),
vdev->config_offset + pos + PCI_CAP_FLAGS) != sizeof(ctrl)) {
return -errno;
}
if (pread(fd, &table, sizeof(table),
vdev->config_offset + pos + PCI_MSIX_TABLE) != sizeof(table)) {
return -errno;
}
if (pread(fd, &pba, sizeof(pba),
vdev->config_offset + pos + PCI_MSIX_PBA) != sizeof(pba)) {
return -errno;
}
ctrl = le16_to_cpu(ctrl);
table = le32_to_cpu(table);
pba = le32_to_cpu(pba);
vdev->msix = g_malloc0(sizeof(*(vdev->msix)));
vdev->msix->table_bar = table & PCI_MSIX_FLAGS_BIRMASK;
vdev->msix->table_offset = table & ~PCI_MSIX_FLAGS_BIRMASK;
vdev->msix->pba_bar = pba & PCI_MSIX_FLAGS_BIRMASK;
vdev->msix->pba_offset = pba & ~PCI_MSIX_FLAGS_BIRMASK;
vdev->msix->entries = (ctrl & PCI_MSIX_FLAGS_QSIZE) + 1;
trace_vfio_early_setup_msix(vdev->vbasedev.name, pos,
vdev->msix->table_bar,
vdev->msix->table_offset,
vdev->msix->entries);
return 0;
}
static int vfio_setup_msix(VFIOPCIDevice *vdev, int pos)
{
int ret;
ret = msix_init(&vdev->pdev, vdev->msix->entries,
&vdev->bars[vdev->msix->table_bar].region.mem,
vdev->msix->table_bar, vdev->msix->table_offset,
&vdev->bars[vdev->msix->pba_bar].region.mem,
vdev->msix->pba_bar, vdev->msix->pba_offset, pos);
if (ret < 0) {
if (ret == -ENOTSUP) {
return 0;
}
error_report("vfio: msix_init failed");
return ret;
}
return 0;
}
static void vfio_teardown_msi(VFIOPCIDevice *vdev)
{
msi_uninit(&vdev->pdev);
if (vdev->msix) {
msix_uninit(&vdev->pdev,
&vdev->bars[vdev->msix->table_bar].region.mem,
&vdev->bars[vdev->msix->pba_bar].region.mem);
}
}
/*
* Resource setup
*/
static void vfio_mmap_set_enabled(VFIOPCIDevice *vdev, bool enabled)
{
int i;
for (i = 0; i < PCI_ROM_SLOT; i++) {
VFIOBAR *bar = &vdev->bars[i];
if (!bar->region.size) {
continue;
}
memory_region_set_enabled(&bar->region.mmap_mem, enabled);
if (vdev->msix && vdev->msix->table_bar == i) {
memory_region_set_enabled(&vdev->msix->mmap_mem, enabled);
}
}
}
static void vfio_unmap_bar(VFIOPCIDevice *vdev, int nr)
{
VFIOBAR *bar = &vdev->bars[nr];
if (!bar->region.size) {
return;
}
vfio_bar_quirk_teardown(vdev, nr);
memory_region_del_subregion(&bar->region.mem, &bar->region.mmap_mem);
munmap(bar->region.mmap, memory_region_size(&bar->region.mmap_mem));
if (vdev->msix && vdev->msix->table_bar == nr) {
memory_region_del_subregion(&bar->region.mem, &vdev->msix->mmap_mem);
munmap(vdev->msix->mmap, memory_region_size(&vdev->msix->mmap_mem));
}
}
static void vfio_map_bar(VFIOPCIDevice *vdev, int nr)
{
VFIOBAR *bar = &vdev->bars[nr];
uint64_t size = bar->region.size;
char name[64];
uint32_t pci_bar;
uint8_t type;
int ret;
/* Skip both unimplemented BARs and the upper half of 64bit BARS. */
if (!size) {
return;
}
snprintf(name, sizeof(name), "VFIO %04x:%02x:%02x.%x BAR %d",
vdev->host.domain, vdev->host.bus, vdev->host.slot,
vdev->host.function, nr);
/* Determine what type of BAR this is for registration */
ret = pread(vdev->vbasedev.fd, &pci_bar, sizeof(pci_bar),
vdev->config_offset + PCI_BASE_ADDRESS_0 + (4 * nr));
if (ret != sizeof(pci_bar)) {
error_report("vfio: Failed to read BAR %d (%m)", nr);
return;
}
pci_bar = le32_to_cpu(pci_bar);
bar->ioport = (pci_bar & PCI_BASE_ADDRESS_SPACE_IO);
bar->mem64 = bar->ioport ? 0 : (pci_bar & PCI_BASE_ADDRESS_MEM_TYPE_64);
type = pci_bar & (bar->ioport ? ~PCI_BASE_ADDRESS_IO_MASK :
~PCI_BASE_ADDRESS_MEM_MASK);
/* A "slow" read/write mapping underlies all BARs */
memory_region_init_io(&bar->region.mem, OBJECT(vdev), &vfio_region_ops,
bar, name, size);
pci_register_bar(&vdev->pdev, nr, type, &bar->region.mem);
/*
* We can't mmap areas overlapping the MSIX vector table, so we
* potentially insert a direct-mapped subregion before and after it.
*/
if (vdev->msix && vdev->msix->table_bar == nr) {
size = vdev->msix->table_offset & qemu_host_page_mask;
}
strncat(name, " mmap", sizeof(name) - strlen(name) - 1);
if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
&bar->region.mmap_mem, &bar->region.mmap,
size, 0, name)) {
error_report("%s unsupported. Performance may be slow", name);
}
if (vdev->msix && vdev->msix->table_bar == nr) {
uint64_t start;
start = HOST_PAGE_ALIGN(vdev->msix->table_offset +
(vdev->msix->entries * PCI_MSIX_ENTRY_SIZE));
size = start < bar->region.size ? bar->region.size - start : 0;
strncat(name, " msix-hi", sizeof(name) - strlen(name) - 1);
/* VFIOMSIXInfo contains another MemoryRegion for this mapping */
if (vfio_mmap_region(OBJECT(vdev), &bar->region, &bar->region.mem,
&vdev->msix->mmap_mem,
&vdev->msix->mmap, size, start, name)) {
error_report("%s unsupported. Performance may be slow", name);
}
}
vfio_bar_quirk_setup(vdev, nr);
}
static void vfio_map_bars(VFIOPCIDevice *vdev)
{
int i;
for (i = 0; i < PCI_ROM_SLOT; i++) {
vfio_map_bar(vdev, i);
}
if (vdev->has_vga) {
memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
OBJECT(vdev), &vfio_vga_ops,
&vdev->vga.region[QEMU_PCI_VGA_MEM],
"vfio-vga-mmio@0xa0000",
QEMU_PCI_VGA_MEM_SIZE);
memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
OBJECT(vdev), &vfio_vga_ops,
&vdev->vga.region[QEMU_PCI_VGA_IO_LO],
"vfio-vga-io@0x3b0",
QEMU_PCI_VGA_IO_LO_SIZE);
memory_region_init_io(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem,
OBJECT(vdev), &vfio_vga_ops,
&vdev->vga.region[QEMU_PCI_VGA_IO_HI],
"vfio-vga-io@0x3c0",
QEMU_PCI_VGA_IO_HI_SIZE);
pci_register_vga(&vdev->pdev, &vdev->vga.region[QEMU_PCI_VGA_MEM].mem,
&vdev->vga.region[QEMU_PCI_VGA_IO_LO].mem,
&vdev->vga.region[QEMU_PCI_VGA_IO_HI].mem);
vfio_vga_quirk_setup(vdev);
}
}
static void vfio_unmap_bars(VFIOPCIDevice *vdev)
{
int i;
for (i = 0; i < PCI_ROM_SLOT; i++) {
vfio_unmap_bar(vdev, i);
}
if (vdev->has_vga) {
vfio_vga_quirk_teardown(vdev);
pci_unregister_vga(&vdev->pdev);
}
}
/*
* General setup
*/
static uint8_t vfio_std_cap_max_size(PCIDevice *pdev, uint8_t pos)
{
uint8_t tmp, next = 0xff;
for (tmp = pdev->config[PCI_CAPABILITY_LIST]; tmp;
tmp = pdev->config[tmp + 1]) {
if (tmp > pos && tmp < next) {
next = tmp;
}
}
return next - pos;
}
static void vfio_set_word_bits(uint8_t *buf, uint16_t val, uint16_t mask)
{
pci_set_word(buf, (pci_get_word(buf) & ~mask) | val);
}
static void vfio_add_emulated_word(VFIOPCIDevice *vdev, int pos,
uint16_t val, uint16_t mask)
{
vfio_set_word_bits(vdev->pdev.config + pos, val, mask);
vfio_set_word_bits(vdev->pdev.wmask + pos, ~mask, mask);
vfio_set_word_bits(vdev->emulated_config_bits + pos, mask, mask);
}
static void vfio_set_long_bits(uint8_t *buf, uint32_t val, uint32_t mask)
{
pci_set_long(buf, (pci_get_long(buf) & ~mask) | val);
}
static void vfio_add_emulated_long(VFIOPCIDevice *vdev, int pos,
uint32_t val, uint32_t mask)
{
vfio_set_long_bits(vdev->pdev.config + pos, val, mask);
vfio_set_long_bits(vdev->pdev.wmask + pos, ~mask, mask);
vfio_set_long_bits(vdev->emulated_config_bits + pos, mask, mask);
}
static int vfio_setup_pcie_cap(VFIOPCIDevice *vdev, int pos, uint8_t size)
{
uint16_t flags;
uint8_t type;
flags = pci_get_word(vdev->pdev.config + pos + PCI_CAP_FLAGS);
type = (flags & PCI_EXP_FLAGS_TYPE) >> 4;
if (type != PCI_EXP_TYPE_ENDPOINT &&
type != PCI_EXP_TYPE_LEG_END &&
type != PCI_EXP_TYPE_RC_END) {
error_report("vfio: Assignment of PCIe type 0x%x "
"devices is not currently supported", type);
return -EINVAL;
}
if (!pci_bus_is_express(vdev->pdev.bus)) {
/*
* Use express capability as-is on PCI bus. It doesn't make much
* sense to even expose, but some drivers (ex. tg3) depend on it
* and guests don't seem to be particular about it. We'll need
* to revist this or force express devices to express buses if we
* ever expose an IOMMU to the guest.
*/
} else if (pci_bus_is_root(vdev->pdev.bus)) {
/*
* On a Root Complex bus Endpoints become Root Complex Integrated
* Endpoints, which changes the type and clears the LNK & LNK2 fields.
*/
if (type == PCI_EXP_TYPE_ENDPOINT) {
vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
PCI_EXP_TYPE_RC_END << 4,
PCI_EXP_FLAGS_TYPE);
/* Link Capabilities, Status, and Control goes away */
if (size > PCI_EXP_LNKCTL) {
vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP, 0, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA, 0, ~0);
#ifndef PCI_EXP_LNKCAP2
#define PCI_EXP_LNKCAP2 44
#endif
#ifndef PCI_EXP_LNKSTA2
#define PCI_EXP_LNKSTA2 50
#endif
/* Link 2 Capabilities, Status, and Control goes away */
if (size > PCI_EXP_LNKCAP2) {
vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP2, 0, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL2, 0, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA2, 0, ~0);
}
}
} else if (type == PCI_EXP_TYPE_LEG_END) {
/*
* Legacy endpoints don't belong on the root complex. Windows
* seems to be happier with devices if we skip the capability.
*/
return 0;
}
} else {
/*
* Convert Root Complex Integrated Endpoints to regular endpoints.
* These devices don't support LNK/LNK2 capabilities, so make them up.
*/
if (type == PCI_EXP_TYPE_RC_END) {
vfio_add_emulated_word(vdev, pos + PCI_CAP_FLAGS,
PCI_EXP_TYPE_ENDPOINT << 4,
PCI_EXP_FLAGS_TYPE);
vfio_add_emulated_long(vdev, pos + PCI_EXP_LNKCAP,
PCI_EXP_LNK_MLW_1 | PCI_EXP_LNK_LS_25, ~0);
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKCTL, 0, ~0);
}
/* Mark the Link Status bits as emulated to allow virtual negotiation */
vfio_add_emulated_word(vdev, pos + PCI_EXP_LNKSTA,
pci_get_word(vdev->pdev.config + pos +
PCI_EXP_LNKSTA),
PCI_EXP_LNKCAP_MLW | PCI_EXP_LNKCAP_SLS);
}
pos = pci_add_capability(&vdev->pdev, PCI_CAP_ID_EXP, pos, size);
if (pos >= 0) {
vdev->pdev.exp.exp_cap = pos;
}
return pos;
}
static void vfio_check_pcie_flr(VFIOPCIDevice *vdev, uint8_t pos)
{
uint32_t cap = pci_get_long(vdev->pdev.config + pos + PCI_EXP_DEVCAP);
if (cap & PCI_EXP_DEVCAP_FLR) {
trace_vfio_check_pcie_flr(vdev->vbasedev.name);
vdev->has_flr = true;
}
}
static void vfio_check_pm_reset(VFIOPCIDevice *vdev, uint8_t pos)
{
uint16_t csr = pci_get_word(vdev->pdev.config + pos + PCI_PM_CTRL);
if (!(csr & PCI_PM_CTRL_NO_SOFT_RESET)) {
trace_vfio_check_pm_reset(vdev->vbasedev.name);
vdev->has_pm_reset = true;
}
}
static void vfio_check_af_flr(VFIOPCIDevice *vdev, uint8_t pos)
{
uint8_t cap = pci_get_byte(vdev->pdev.config + pos + PCI_AF_CAP);
if ((cap & PCI_AF_CAP_TP) && (cap & PCI_AF_CAP_FLR)) {
trace_vfio_check_af_flr(vdev->vbasedev.name);
vdev->has_flr = true;
}
}
static int vfio_add_std_cap(VFIOPCIDevice *vdev, uint8_t pos)
{
PCIDevice *pdev = &vdev->pdev;
uint8_t cap_id, next, size;
int ret;
cap_id = pdev->config[pos];
next = pdev->config[pos + 1];
/*
* If it becomes important to configure capabilities to their actual
* size, use this as the default when it's something we don't recognize.
* Since QEMU doesn't actually handle many of the config accesses,
* exact size doesn't seem worthwhile.
*/
size = vfio_std_cap_max_size(pdev, pos);
/*
* pci_add_capability always inserts the new capability at the head
* of the chain. Therefore to end up with a chain that matches the
* physical device, we insert from the end by making this recursive.
* This is also why we pre-caclulate size above as cached config space
* will be changed as we unwind the stack.
*/
if (next) {
ret = vfio_add_std_cap(vdev, next);
if (ret) {
return ret;
}
} else {
/* Begin the rebuild, use QEMU emulated list bits */
pdev->config[PCI_CAPABILITY_LIST] = 0;
vdev->emulated_config_bits[PCI_CAPABILITY_LIST] = 0xff;
vdev->emulated_config_bits[PCI_STATUS] |= PCI_STATUS_CAP_LIST;
}
/* Use emulated next pointer to allow dropping caps */
pci_set_byte(vdev->emulated_config_bits + pos + 1, 0xff);
switch (cap_id) {
case PCI_CAP_ID_MSI:
ret = vfio_setup_msi(vdev, pos);
break;
case PCI_CAP_ID_EXP:
vfio_check_pcie_flr(vdev, pos);
ret = vfio_setup_pcie_cap(vdev, pos, size);
break;
case PCI_CAP_ID_MSIX:
ret = vfio_setup_msix(vdev, pos);
break;
case PCI_CAP_ID_PM:
vfio_check_pm_reset(vdev, pos);
vdev->pm_cap = pos;
ret = pci_add_capability(pdev, cap_id, pos, size);
break;
case PCI_CAP_ID_AF:
vfio_check_af_flr(vdev, pos);
ret = pci_add_capability(pdev, cap_id, pos, size);
break;
default:
ret = pci_add_capability(pdev, cap_id, pos, size);
break;
}
if (ret < 0) {
error_report("vfio: %04x:%02x:%02x.%x Error adding PCI capability "
"0x%x[0x%x]@0x%x: %d", vdev->host.domain,
vdev->host.bus, vdev->host.slot, vdev->host.function,
cap_id, size, pos, ret);
return ret;
}
return 0;
}
static int vfio_add_capabilities(VFIOPCIDevice *vdev)
{
PCIDevice *pdev = &vdev->pdev;
if (!(pdev->config[PCI_STATUS] & PCI_STATUS_CAP_LIST) ||
!pdev->config[PCI_CAPABILITY_LIST]) {
return 0; /* Nothing to add */
}
return vfio_add_std_cap(vdev, pdev->config[PCI_CAPABILITY_LIST]);
}
static void vfio_pci_pre_reset(VFIOPCIDevice *vdev)
{
PCIDevice *pdev = &vdev->pdev;
uint16_t cmd;
vfio_disable_interrupts(vdev);
/* Make sure the device is in D0 */
if (vdev->pm_cap) {
uint16_t pmcsr;
uint8_t state;
pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
state = pmcsr & PCI_PM_CTRL_STATE_MASK;
if (state) {
pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
vfio_pci_write_config(pdev, vdev->pm_cap + PCI_PM_CTRL, pmcsr, 2);
/* vfio handles the necessary delay here */
pmcsr = vfio_pci_read_config(pdev, vdev->pm_cap + PCI_PM_CTRL, 2);
state = pmcsr & PCI_PM_CTRL_STATE_MASK;
if (state) {
error_report("vfio: Unable to power on device, stuck in D%d",
state);
}
}
}
/*
* Stop any ongoing DMA by disconecting I/O, MMIO, and bus master.
* Also put INTx Disable in known state.
*/
cmd = vfio_pci_read_config(pdev, PCI_COMMAND, 2);
cmd &= ~(PCI_COMMAND_IO | PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER |
PCI_COMMAND_INTX_DISABLE);
vfio_pci_write_config(pdev, PCI_COMMAND, cmd, 2);
}
static void vfio_pci_post_reset(VFIOPCIDevice *vdev)
{
vfio_enable_intx(vdev);
}
static bool vfio_pci_host_match(PCIHostDeviceAddress *host1,
PCIHostDeviceAddress *host2)
{
return (host1->domain == host2->domain && host1->bus == host2->bus &&
host1->slot == host2->slot && host1->function == host2->function);
}
static int vfio_pci_hot_reset(VFIOPCIDevice *vdev, bool single)
{
VFIOGroup *group;
struct vfio_pci_hot_reset_info *info;
struct vfio_pci_dependent_device *devices;
struct vfio_pci_hot_reset *reset;
int32_t *fds;
int ret, i, count;
bool multi = false;
trace_vfio_pci_hot_reset(vdev->vbasedev.name, single ? "one" : "multi");
vfio_pci_pre_reset(vdev);
vdev->vbasedev.needs_reset = false;
info = g_malloc0(sizeof(*info));
info->argsz = sizeof(*info);
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
if (ret && errno != ENOSPC) {
ret = -errno;
if (!vdev->has_pm_reset) {
error_report("vfio: Cannot reset device %04x:%02x:%02x.%x, "
"no available reset mechanism.", vdev->host.domain,
vdev->host.bus, vdev->host.slot, vdev->host.function);
}
goto out_single;
}
count = info->count;
info = g_realloc(info, sizeof(*info) + (count * sizeof(*devices)));
info->argsz = sizeof(*info) + (count * sizeof(*devices));
devices = &info->devices[0];
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_PCI_HOT_RESET_INFO, info);
if (ret) {
ret = -errno;
error_report("vfio: hot reset info failed: %m");
goto out_single;
}
trace_vfio_pci_hot_reset_has_dep_devices(vdev->vbasedev.name);
/* Verify that we have all the groups required */
for (i = 0; i < info->count; i++) {
PCIHostDeviceAddress host;
VFIOPCIDevice *tmp;
VFIODevice *vbasedev_iter;
host.domain = devices[i].segment;
host.bus = devices[i].bus;
host.slot = PCI_SLOT(devices[i].devfn);
host.function = PCI_FUNC(devices[i].devfn);
trace_vfio_pci_hot_reset_dep_devices(host.domain,
host.bus, host.slot, host.function, devices[i].group_id);
if (vfio_pci_host_match(&host, &vdev->host)) {
continue;
}
QLIST_FOREACH(group, &vfio_group_list, next) {
if (group->groupid == devices[i].group_id) {
break;
}
}
if (!group) {
if (!vdev->has_pm_reset) {
error_report("vfio: Cannot reset device %s, "
"depends on group %d which is not owned.",
vdev->vbasedev.name, devices[i].group_id);
}
ret = -EPERM;
goto out;
}
/* Prep dependent devices for reset and clear our marker. */
QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
continue;
}
tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
if (vfio_pci_host_match(&host, &tmp->host)) {
if (single) {
ret = -EINVAL;
goto out_single;
}
vfio_pci_pre_reset(tmp);
tmp->vbasedev.needs_reset = false;
multi = true;
break;
}
}
}
if (!single && !multi) {
ret = -EINVAL;
goto out_single;
}
/* Determine how many group fds need to be passed */
count = 0;
QLIST_FOREACH(group, &vfio_group_list, next) {
for (i = 0; i < info->count; i++) {
if (group->groupid == devices[i].group_id) {
count++;
break;
}
}
}
reset = g_malloc0(sizeof(*reset) + (count * sizeof(*fds)));
reset->argsz = sizeof(*reset) + (count * sizeof(*fds));
fds = &reset->group_fds[0];
/* Fill in group fds */
QLIST_FOREACH(group, &vfio_group_list, next) {
for (i = 0; i < info->count; i++) {
if (group->groupid == devices[i].group_id) {
fds[reset->count++] = group->fd;
break;
}
}
}
/* Bus reset! */
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_PCI_HOT_RESET, reset);
g_free(reset);
trace_vfio_pci_hot_reset_result(vdev->vbasedev.name,
ret ? "%m" : "Success");
out:
/* Re-enable INTx on affected devices */
for (i = 0; i < info->count; i++) {
PCIHostDeviceAddress host;
VFIOPCIDevice *tmp;
VFIODevice *vbasedev_iter;
host.domain = devices[i].segment;
host.bus = devices[i].bus;
host.slot = PCI_SLOT(devices[i].devfn);
host.function = PCI_FUNC(devices[i].devfn);
if (vfio_pci_host_match(&host, &vdev->host)) {
continue;
}
QLIST_FOREACH(group, &vfio_group_list, next) {
if (group->groupid == devices[i].group_id) {
break;
}
}
if (!group) {
break;
}
QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
if (vbasedev_iter->type != VFIO_DEVICE_TYPE_PCI) {
continue;
}
tmp = container_of(vbasedev_iter, VFIOPCIDevice, vbasedev);
if (vfio_pci_host_match(&host, &tmp->host)) {
vfio_pci_post_reset(tmp);
break;
}
}
}
out_single:
vfio_pci_post_reset(vdev);
g_free(info);
return ret;
}
/*
* We want to differentiate hot reset of mulitple in-use devices vs hot reset
* of a single in-use device. VFIO_DEVICE_RESET will already handle the case
* of doing hot resets when there is only a single device per bus. The in-use
* here refers to how many VFIODevices are affected. A hot reset that affects
* multiple devices, but only a single in-use device, means that we can call
* it from our bus ->reset() callback since the extent is effectively a single
* device. This allows us to make use of it in the hotplug path. When there
* are multiple in-use devices, we can only trigger the hot reset during a
* system reset and thus from our reset handler. We separate _one vs _multi
* here so that we don't overlap and do a double reset on the system reset
* path where both our reset handler and ->reset() callback are used. Calling
* _one() will only do a hot reset for the one in-use devices case, calling
* _multi() will do nothing if a _one() would have been sufficient.
*/
static int vfio_pci_hot_reset_one(VFIOPCIDevice *vdev)
{
return vfio_pci_hot_reset(vdev, true);
}
static int vfio_pci_hot_reset_multi(VFIODevice *vbasedev)
{
VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
return vfio_pci_hot_reset(vdev, false);
}
static void vfio_pci_compute_needs_reset(VFIODevice *vbasedev)
{
VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
if (!vbasedev->reset_works || (!vdev->has_flr && vdev->has_pm_reset)) {
vbasedev->needs_reset = true;
}
}
static VFIODeviceOps vfio_pci_ops = {
.vfio_compute_needs_reset = vfio_pci_compute_needs_reset,
.vfio_hot_reset_multi = vfio_pci_hot_reset_multi,
.vfio_eoi = vfio_eoi,
.vfio_populate_device = vfio_populate_device,
};
static int vfio_populate_device(VFIODevice *vbasedev)
{
VFIOPCIDevice *vdev = container_of(vbasedev, VFIOPCIDevice, vbasedev);
struct vfio_region_info reg_info = { .argsz = sizeof(reg_info) };
struct vfio_irq_info irq_info = { .argsz = sizeof(irq_info) };
int i, ret = -1;
/* Sanity check device */
if (!(vbasedev->flags & VFIO_DEVICE_FLAGS_PCI)) {
error_report("vfio: Um, this isn't a PCI device");
goto error;
}
if (vbasedev->num_regions < VFIO_PCI_CONFIG_REGION_INDEX + 1) {
error_report("vfio: unexpected number of io regions %u",
vbasedev->num_regions);
goto error;
}
if (vbasedev->num_irqs < VFIO_PCI_MSIX_IRQ_INDEX + 1) {
error_report("vfio: unexpected number of irqs %u", vbasedev->num_irqs);
goto error;
}
for (i = VFIO_PCI_BAR0_REGION_INDEX; i < VFIO_PCI_ROM_REGION_INDEX; i++) {
reg_info.index = i;
ret = ioctl(vbasedev->fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
if (ret) {
error_report("vfio: Error getting region %d info: %m", i);
goto error;
}
trace_vfio_populate_device_region(vbasedev->name, i,
(unsigned long)reg_info.size,
(unsigned long)reg_info.offset,
(unsigned long)reg_info.flags);
vdev->bars[i].region.vbasedev = vbasedev;
vdev->bars[i].region.flags = reg_info.flags;
vdev->bars[i].region.size = reg_info.size;
vdev->bars[i].region.fd_offset = reg_info.offset;
vdev->bars[i].region.nr = i;
QLIST_INIT(&vdev->bars[i].quirks);
}
reg_info.index = VFIO_PCI_CONFIG_REGION_INDEX;
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &reg_info);
if (ret) {
error_report("vfio: Error getting config info: %m");
goto error;
}
trace_vfio_populate_device_config(vdev->vbasedev.name,
(unsigned long)reg_info.size,
(unsigned long)reg_info.offset,
(unsigned long)reg_info.flags);
vdev->config_size = reg_info.size;
if (vdev->config_size == PCI_CONFIG_SPACE_SIZE) {
vdev->pdev.cap_present &= ~QEMU_PCI_CAP_EXPRESS;
}
vdev->config_offset = reg_info.offset;
if ((vdev->features & VFIO_FEATURE_ENABLE_VGA) &&
vbasedev->num_regions > VFIO_PCI_VGA_REGION_INDEX) {
struct vfio_region_info vga_info = {
.argsz = sizeof(vga_info),
.index = VFIO_PCI_VGA_REGION_INDEX,
};
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_REGION_INFO, &vga_info);
if (ret) {
error_report(
"vfio: Device does not support requested feature x-vga");
goto error;
}
if (!(vga_info.flags & VFIO_REGION_INFO_FLAG_READ) ||
!(vga_info.flags & VFIO_REGION_INFO_FLAG_WRITE) ||
vga_info.size < 0xbffff + 1) {
error_report("vfio: Unexpected VGA info, flags 0x%lx, size 0x%lx",
(unsigned long)vga_info.flags,
(unsigned long)vga_info.size);
goto error;
}
vdev->vga.fd_offset = vga_info.offset;
vdev->vga.fd = vdev->vbasedev.fd;
vdev->vga.region[QEMU_PCI_VGA_MEM].offset = QEMU_PCI_VGA_MEM_BASE;
vdev->vga.region[QEMU_PCI_VGA_MEM].nr = QEMU_PCI_VGA_MEM;
QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_MEM].quirks);
vdev->vga.region[QEMU_PCI_VGA_IO_LO].offset = QEMU_PCI_VGA_IO_LO_BASE;
vdev->vga.region[QEMU_PCI_VGA_IO_LO].nr = QEMU_PCI_VGA_IO_LO;
QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_LO].quirks);
vdev->vga.region[QEMU_PCI_VGA_IO_HI].offset = QEMU_PCI_VGA_IO_HI_BASE;
vdev->vga.region[QEMU_PCI_VGA_IO_HI].nr = QEMU_PCI_VGA_IO_HI;
QLIST_INIT(&vdev->vga.region[QEMU_PCI_VGA_IO_HI].quirks);
vdev->has_vga = true;
}
irq_info.index = VFIO_PCI_ERR_IRQ_INDEX;
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_GET_IRQ_INFO, &irq_info);
if (ret) {
/* This can fail for an old kernel or legacy PCI dev */
trace_vfio_populate_device_get_irq_info_failure();
ret = 0;
} else if (irq_info.count == 1) {
vdev->pci_aer = true;
} else {
error_report("vfio: %s "
"Could not enable error recovery for the device",
vbasedev->name);
}
error:
return ret;
}
static void vfio_put_device(VFIOPCIDevice *vdev)
{
g_free(vdev->vbasedev.name);
if (vdev->msix) {
object_unparent(OBJECT(&vdev->msix->mmap_mem));
g_free(vdev->msix);
vdev->msix = NULL;
}
vfio_put_base_device(&vdev->vbasedev);
}
static void vfio_err_notifier_handler(void *opaque)
{
VFIOPCIDevice *vdev = opaque;
if (!event_notifier_test_and_clear(&vdev->err_notifier)) {
return;
}
/*
* TBD. Retrieve the error details and decide what action
* needs to be taken. One of the actions could be to pass
* the error to the guest and have the guest driver recover
* from the error. This requires that PCIe capabilities be
* exposed to the guest. For now, we just terminate the
* guest to contain the error.
*/
error_report("%s(%04x:%02x:%02x.%x) Unrecoverable error detected. "
"Please collect any data possible and then kill the guest",
__func__, vdev->host.domain, vdev->host.bus,
vdev->host.slot, vdev->host.function);
vm_stop(RUN_STATE_INTERNAL_ERROR);
}
/*
* Registers error notifier for devices supporting error recovery.
* If we encounter a failure in this function, we report an error
* and continue after disabling error recovery support for the
* device.
*/
static void vfio_register_err_notifier(VFIOPCIDevice *vdev)
{
int ret;
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
if (!vdev->pci_aer) {
return;
}
if (event_notifier_init(&vdev->err_notifier, 0)) {
error_report("vfio: Unable to init event notifier for error detection");
vdev->pci_aer = false;
return;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = event_notifier_get_fd(&vdev->err_notifier);
qemu_set_fd_handler(*pfd, vfio_err_notifier_handler, NULL, vdev);
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
error_report("vfio: Failed to set up error notification");
qemu_set_fd_handler(*pfd, NULL, NULL, vdev);
event_notifier_cleanup(&vdev->err_notifier);
vdev->pci_aer = false;
}
g_free(irq_set);
}
static void vfio_unregister_err_notifier(VFIOPCIDevice *vdev)
{
int argsz;
struct vfio_irq_set *irq_set;
int32_t *pfd;
int ret;
if (!vdev->pci_aer) {
return;
}
argsz = sizeof(*irq_set) + sizeof(*pfd);
irq_set = g_malloc0(argsz);
irq_set->argsz = argsz;
irq_set->flags = VFIO_IRQ_SET_DATA_EVENTFD |
VFIO_IRQ_SET_ACTION_TRIGGER;
irq_set->index = VFIO_PCI_ERR_IRQ_INDEX;
irq_set->start = 0;
irq_set->count = 1;
pfd = (int32_t *)&irq_set->data;
*pfd = -1;
ret = ioctl(vdev->vbasedev.fd, VFIO_DEVICE_SET_IRQS, irq_set);
if (ret) {
error_report("vfio: Failed to de-assign error fd: %m");
}
g_free(irq_set);
qemu_set_fd_handler(event_notifier_get_fd(&vdev->err_notifier),
NULL, NULL, vdev);
event_notifier_cleanup(&vdev->err_notifier);
}
static int vfio_initfn(PCIDevice *pdev)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
VFIODevice *vbasedev_iter;
VFIOGroup *group;
char path[PATH_MAX], iommu_group_path[PATH_MAX], *group_name;
ssize_t len;
struct stat st;
int groupid;
int ret;
/* Check that the host device exists */
snprintf(path, sizeof(path),
"/sys/bus/pci/devices/%04x:%02x:%02x.%01x/",
vdev->host.domain, vdev->host.bus, vdev->host.slot,
vdev->host.function);
if (stat(path, &st) < 0) {
error_report("vfio: error: no such host device: %s", path);
return -errno;
}
vdev->vbasedev.ops = &vfio_pci_ops;
vdev->vbasedev.type = VFIO_DEVICE_TYPE_PCI;
vdev->vbasedev.name = g_strdup_printf("%04x:%02x:%02x.%01x",
vdev->host.domain, vdev->host.bus,
vdev->host.slot, vdev->host.function);
strncat(path, "iommu_group", sizeof(path) - strlen(path) - 1);
len = readlink(path, iommu_group_path, sizeof(path));
if (len <= 0 || len >= sizeof(path)) {
error_report("vfio: error no iommu_group for device");
return len < 0 ? -errno : ENAMETOOLONG;
}
iommu_group_path[len] = 0;
group_name = basename(iommu_group_path);
if (sscanf(group_name, "%d", &groupid) != 1) {
error_report("vfio: error reading %s: %m", path);
return -errno;
}
trace_vfio_initfn(vdev->vbasedev.name, groupid);
group = vfio_get_group(groupid, pci_device_iommu_address_space(pdev));
if (!group) {
error_report("vfio: failed to get group %d", groupid);
return -ENOENT;
}
snprintf(path, sizeof(path), "%04x:%02x:%02x.%01x",
vdev->host.domain, vdev->host.bus, vdev->host.slot,
vdev->host.function);
QLIST_FOREACH(vbasedev_iter, &group->device_list, next) {
if (strcmp(vbasedev_iter->name, vdev->vbasedev.name) == 0) {
error_report("vfio: error: device %s is already attached", path);
vfio_put_group(group);
return -EBUSY;
}
}
ret = vfio_get_device(group, path, &vdev->vbasedev);
if (ret) {
error_report("vfio: failed to get device %s", path);
vfio_put_group(group);
return ret;
}
/* Get a copy of config space */
ret = pread(vdev->vbasedev.fd, vdev->pdev.config,
MIN(pci_config_size(&vdev->pdev), vdev->config_size),
vdev->config_offset);
if (ret < (int)MIN(pci_config_size(&vdev->pdev), vdev->config_size)) {
ret = ret < 0 ? -errno : -EFAULT;
error_report("vfio: Failed to read device config space");
goto out_put;
}
/* vfio emulates a lot for us, but some bits need extra love */
vdev->emulated_config_bits = g_malloc0(vdev->config_size);
/* QEMU can choose to expose the ROM or not */
memset(vdev->emulated_config_bits + PCI_ROM_ADDRESS, 0xff, 4);
/* QEMU can change multi-function devices to single function, or reverse */
vdev->emulated_config_bits[PCI_HEADER_TYPE] =
PCI_HEADER_TYPE_MULTI_FUNCTION;
/* Restore or clear multifunction, this is always controlled by QEMU */
if (vdev->pdev.cap_present & QEMU_PCI_CAP_MULTIFUNCTION) {
vdev->pdev.config[PCI_HEADER_TYPE] |= PCI_HEADER_TYPE_MULTI_FUNCTION;
} else {
vdev->pdev.config[PCI_HEADER_TYPE] &= ~PCI_HEADER_TYPE_MULTI_FUNCTION;
}
/*
* Clear host resource mapping info. If we choose not to register a
* BAR, such as might be the case with the option ROM, we can get
* confusing, unwritable, residual addresses from the host here.
*/
memset(&vdev->pdev.config[PCI_BASE_ADDRESS_0], 0, 24);
memset(&vdev->pdev.config[PCI_ROM_ADDRESS], 0, 4);
vfio_pci_size_rom(vdev);
ret = vfio_early_setup_msix(vdev);
if (ret) {
goto out_put;
}
vfio_map_bars(vdev);
ret = vfio_add_capabilities(vdev);
if (ret) {
goto out_teardown;
}
/* QEMU emulates all of MSI & MSIX */
if (pdev->cap_present & QEMU_PCI_CAP_MSIX) {
memset(vdev->emulated_config_bits + pdev->msix_cap, 0xff,
MSIX_CAP_LENGTH);
}
if (pdev->cap_present & QEMU_PCI_CAP_MSI) {
memset(vdev->emulated_config_bits + pdev->msi_cap, 0xff,
vdev->msi_cap_size);
}
if (vfio_pci_read_config(&vdev->pdev, PCI_INTERRUPT_PIN, 1)) {
vdev->intx.mmap_timer = timer_new_ms(QEMU_CLOCK_VIRTUAL,
vfio_intx_mmap_enable, vdev);
pci_device_set_intx_routing_notifier(&vdev->pdev, vfio_update_irq);
ret = vfio_enable_intx(vdev);
if (ret) {
goto out_teardown;
}
}
vfio_register_err_notifier(vdev);
return 0;
out_teardown:
pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
vfio_teardown_msi(vdev);
vfio_unmap_bars(vdev);
out_put:
g_free(vdev->emulated_config_bits);
vfio_put_device(vdev);
vfio_put_group(group);
return ret;
}
static void vfio_exitfn(PCIDevice *pdev)
{
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
VFIOGroup *group = vdev->vbasedev.group;
vfio_unregister_err_notifier(vdev);
pci_device_set_intx_routing_notifier(&vdev->pdev, NULL);
vfio_disable_interrupts(vdev);
if (vdev->intx.mmap_timer) {
timer_free(vdev->intx.mmap_timer);
}
vfio_teardown_msi(vdev);
vfio_unmap_bars(vdev);
g_free(vdev->emulated_config_bits);
g_free(vdev->rom);
vfio_put_device(vdev);
vfio_put_group(group);
}
static void vfio_pci_reset(DeviceState *dev)
{
PCIDevice *pdev = DO_UPCAST(PCIDevice, qdev, dev);
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, pdev);
trace_vfio_pci_reset(vdev->vbasedev.name);
vfio_pci_pre_reset(vdev);
if (vdev->vbasedev.reset_works &&
(vdev->has_flr || !vdev->has_pm_reset) &&
!ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
trace_vfio_pci_reset_flr(vdev->vbasedev.name);
goto post_reset;
}
/* See if we can do our own bus reset */
if (!vfio_pci_hot_reset_one(vdev)) {
goto post_reset;
}
/* If nothing else works and the device supports PM reset, use it */
if (vdev->vbasedev.reset_works && vdev->has_pm_reset &&
!ioctl(vdev->vbasedev.fd, VFIO_DEVICE_RESET)) {
trace_vfio_pci_reset_pm(vdev->vbasedev.name);
goto post_reset;
}
post_reset:
vfio_pci_post_reset(vdev);
}
static void vfio_instance_init(Object *obj)
{
PCIDevice *pci_dev = PCI_DEVICE(obj);
VFIOPCIDevice *vdev = DO_UPCAST(VFIOPCIDevice, pdev, PCI_DEVICE(obj));
device_add_bootindex_property(obj, &vdev->bootindex,
"bootindex", NULL,
&pci_dev->qdev, NULL);
}
static Property vfio_pci_dev_properties[] = {
DEFINE_PROP_PCI_HOST_DEVADDR("host", VFIOPCIDevice, host),
DEFINE_PROP_UINT32("x-intx-mmap-timeout-ms", VFIOPCIDevice,
intx.mmap_timeout, 1100),
DEFINE_PROP_BIT("x-vga", VFIOPCIDevice, features,
VFIO_FEATURE_ENABLE_VGA_BIT, false),
DEFINE_PROP_INT32("bootindex", VFIOPCIDevice, bootindex, -1),
/*
* TODO - support passed fds... is this necessary?
* DEFINE_PROP_STRING("vfiofd", VFIOPCIDevice, vfiofd_name),
* DEFINE_PROP_STRING("vfiogroupfd, VFIOPCIDevice, vfiogroupfd_name),
*/
DEFINE_PROP_END_OF_LIST(),
};
static const VMStateDescription vfio_pci_vmstate = {
.name = "vfio-pci",
.unmigratable = 1,
};
static void vfio_pci_dev_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
PCIDeviceClass *pdc = PCI_DEVICE_CLASS(klass);
dc->reset = vfio_pci_reset;
dc->props = vfio_pci_dev_properties;
dc->vmsd = &vfio_pci_vmstate;
dc->desc = "VFIO-based PCI device assignment";
set_bit(DEVICE_CATEGORY_MISC, dc->categories);
pdc->init = vfio_initfn;
pdc->exit = vfio_exitfn;
pdc->config_read = vfio_pci_read_config;
pdc->config_write = vfio_pci_write_config;
pdc->is_express = 1; /* We might be */
}
static const TypeInfo vfio_pci_dev_info = {
.name = "vfio-pci",
.parent = TYPE_PCI_DEVICE,
.instance_size = sizeof(VFIOPCIDevice),
.class_init = vfio_pci_dev_class_init,
.instance_init = vfio_instance_init,
};
static void register_vfio_pci_dev_type(void)
{
type_register_static(&vfio_pci_dev_info);
}
type_init(register_vfio_pci_dev_type)