| /* |
| * Emulation of Linux signals |
| * |
| * Copyright (c) 2003 Fabrice Bellard |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| #include "qemu/osdep.h" |
| #include "qemu.h" |
| #include "signal-common.h" |
| #include "linux-user/trace.h" |
| |
| #define __SUNOS_MAXWIN 31 |
| |
| /* This is what SunOS does, so shall I. */ |
| struct target_sigcontext { |
| abi_ulong sigc_onstack; /* state to restore */ |
| |
| abi_ulong sigc_mask; /* sigmask to restore */ |
| abi_ulong sigc_sp; /* stack pointer */ |
| abi_ulong sigc_pc; /* program counter */ |
| abi_ulong sigc_npc; /* next program counter */ |
| abi_ulong sigc_psr; /* for condition codes etc */ |
| abi_ulong sigc_g1; /* User uses these two registers */ |
| abi_ulong sigc_o0; /* within the trampoline code. */ |
| |
| /* Now comes information regarding the users window set |
| * at the time of the signal. |
| */ |
| abi_ulong sigc_oswins; /* outstanding windows */ |
| |
| /* stack ptrs for each regwin buf */ |
| char *sigc_spbuf[__SUNOS_MAXWIN]; |
| |
| /* Windows to restore after signal */ |
| struct { |
| abi_ulong locals[8]; |
| abi_ulong ins[8]; |
| } sigc_wbuf[__SUNOS_MAXWIN]; |
| }; |
| /* A Sparc stack frame */ |
| struct sparc_stackf { |
| abi_ulong locals[8]; |
| abi_ulong ins[8]; |
| /* It's simpler to treat fp and callers_pc as elements of ins[] |
| * since we never need to access them ourselves. |
| */ |
| char *structptr; |
| abi_ulong xargs[6]; |
| abi_ulong xxargs[1]; |
| }; |
| |
| typedef struct { |
| struct { |
| abi_ulong psr; |
| abi_ulong pc; |
| abi_ulong npc; |
| abi_ulong y; |
| abi_ulong u_regs[16]; /* globals and ins */ |
| } si_regs; |
| int si_mask; |
| } __siginfo_t; |
| |
| typedef struct { |
| abi_ulong si_float_regs[32]; |
| unsigned long si_fsr; |
| unsigned long si_fpqdepth; |
| struct { |
| unsigned long *insn_addr; |
| unsigned long insn; |
| } si_fpqueue [16]; |
| } qemu_siginfo_fpu_t; |
| |
| |
| struct target_signal_frame { |
| struct sparc_stackf ss; |
| __siginfo_t info; |
| abi_ulong fpu_save; |
| uint32_t insns[2] QEMU_ALIGNED(8); |
| abi_ulong extramask[TARGET_NSIG_WORDS - 1]; |
| abi_ulong extra_size; /* Should be 0 */ |
| qemu_siginfo_fpu_t fpu_state; |
| }; |
| struct target_rt_signal_frame { |
| struct sparc_stackf ss; |
| siginfo_t info; |
| abi_ulong regs[20]; |
| sigset_t mask; |
| abi_ulong fpu_save; |
| uint32_t insns[2]; |
| stack_t stack; |
| unsigned int extra_size; /* Should be 0 */ |
| qemu_siginfo_fpu_t fpu_state; |
| }; |
| |
| static inline abi_ulong get_sigframe(struct target_sigaction *sa, |
| CPUSPARCState *env, |
| unsigned long framesize) |
| { |
| abi_ulong sp = get_sp_from_cpustate(env); |
| |
| /* |
| * If we are on the alternate signal stack and would overflow it, don't. |
| * Return an always-bogus address instead so we will die with SIGSEGV. |
| */ |
| if (on_sig_stack(sp) && !likely(on_sig_stack(sp - framesize))) { |
| return -1; |
| } |
| |
| /* This is the X/Open sanctioned signal stack switching. */ |
| sp = target_sigsp(sp, sa) - framesize; |
| |
| /* Always align the stack frame. This handles two cases. First, |
| * sigaltstack need not be mindful of platform specific stack |
| * alignment. Second, if we took this signal because the stack |
| * is not aligned properly, we'd like to take the signal cleanly |
| * and report that. |
| */ |
| sp &= ~15UL; |
| |
| return sp; |
| } |
| |
| static int |
| setup___siginfo(__siginfo_t *si, CPUSPARCState *env, abi_ulong mask) |
| { |
| int err = 0, i; |
| |
| __put_user(env->psr, &si->si_regs.psr); |
| __put_user(env->pc, &si->si_regs.pc); |
| __put_user(env->npc, &si->si_regs.npc); |
| __put_user(env->y, &si->si_regs.y); |
| for (i=0; i < 8; i++) { |
| __put_user(env->gregs[i], &si->si_regs.u_regs[i]); |
| } |
| for (i=0; i < 8; i++) { |
| __put_user(env->regwptr[WREG_O0 + i], &si->si_regs.u_regs[i + 8]); |
| } |
| __put_user(mask, &si->si_mask); |
| return err; |
| } |
| |
| #define NF_ALIGNEDSZ (((sizeof(struct target_signal_frame) + 7) & (~7))) |
| |
| void setup_frame(int sig, struct target_sigaction *ka, |
| target_sigset_t *set, CPUSPARCState *env) |
| { |
| abi_ulong sf_addr; |
| struct target_signal_frame *sf; |
| int sigframe_size, err, i; |
| |
| /* 1. Make sure everything is clean */ |
| //synchronize_user_stack(); |
| |
| sigframe_size = NF_ALIGNEDSZ; |
| sf_addr = get_sigframe(ka, env, sigframe_size); |
| trace_user_setup_frame(env, sf_addr); |
| |
| sf = lock_user(VERIFY_WRITE, sf_addr, |
| sizeof(struct target_signal_frame), 0); |
| if (!sf) { |
| goto sigsegv; |
| } |
| #if 0 |
| if (invalid_frame_pointer(sf, sigframe_size)) |
| goto sigill_and_return; |
| #endif |
| /* 2. Save the current process state */ |
| err = setup___siginfo(&sf->info, env, set->sig[0]); |
| __put_user(0, &sf->extra_size); |
| |
| //save_fpu_state(regs, &sf->fpu_state); |
| //__put_user(&sf->fpu_state, &sf->fpu_save); |
| |
| __put_user(set->sig[0], &sf->info.si_mask); |
| for (i = 0; i < TARGET_NSIG_WORDS - 1; i++) { |
| __put_user(set->sig[i + 1], &sf->extramask[i]); |
| } |
| |
| for (i = 0; i < 8; i++) { |
| __put_user(env->regwptr[i + WREG_L0], &sf->ss.locals[i]); |
| } |
| for (i = 0; i < 8; i++) { |
| __put_user(env->regwptr[i + WREG_I0], &sf->ss.ins[i]); |
| } |
| if (err) |
| goto sigsegv; |
| |
| /* 3. signal handler back-trampoline and parameters */ |
| env->regwptr[WREG_SP] = sf_addr; |
| env->regwptr[WREG_O0] = sig; |
| env->regwptr[WREG_O1] = sf_addr + |
| offsetof(struct target_signal_frame, info); |
| env->regwptr[WREG_O2] = sf_addr + |
| offsetof(struct target_signal_frame, info); |
| |
| /* 4. signal handler */ |
| env->pc = ka->_sa_handler; |
| env->npc = (env->pc + 4); |
| /* 5. return to kernel instructions */ |
| if (ka->ka_restorer) { |
| env->regwptr[WREG_O7] = ka->ka_restorer; |
| } else { |
| uint32_t val32; |
| |
| env->regwptr[WREG_O7] = sf_addr + |
| offsetof(struct target_signal_frame, insns) - 2 * 4; |
| |
| /* mov __NR_sigreturn, %g1 */ |
| val32 = 0x821020d8; |
| __put_user(val32, &sf->insns[0]); |
| |
| /* t 0x10 */ |
| val32 = 0x91d02010; |
| __put_user(val32, &sf->insns[1]); |
| } |
| unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); |
| return; |
| #if 0 |
| sigill_and_return: |
| force_sig(TARGET_SIGILL); |
| #endif |
| sigsegv: |
| unlock_user(sf, sf_addr, sizeof(struct target_signal_frame)); |
| force_sigsegv(sig); |
| } |
| |
| void setup_rt_frame(int sig, struct target_sigaction *ka, |
| target_siginfo_t *info, |
| target_sigset_t *set, CPUSPARCState *env) |
| { |
| qemu_log_mask(LOG_UNIMP, "setup_rt_frame: not implemented\n"); |
| } |
| |
| long do_sigreturn(CPUSPARCState *env) |
| { |
| abi_ulong sf_addr; |
| struct target_signal_frame *sf; |
| uint32_t up_psr, pc, npc; |
| target_sigset_t set; |
| sigset_t host_set; |
| int i; |
| |
| sf_addr = env->regwptr[WREG_SP]; |
| trace_user_do_sigreturn(env, sf_addr); |
| if (!lock_user_struct(VERIFY_READ, sf, sf_addr, 1)) { |
| goto segv_and_exit; |
| } |
| |
| /* 1. Make sure we are not getting garbage from the user */ |
| |
| if (sf_addr & 3) |
| goto segv_and_exit; |
| |
| __get_user(pc, &sf->info.si_regs.pc); |
| __get_user(npc, &sf->info.si_regs.npc); |
| |
| if ((pc | npc) & 3) { |
| goto segv_and_exit; |
| } |
| |
| /* 2. Restore the state */ |
| __get_user(up_psr, &sf->info.si_regs.psr); |
| |
| /* User can only change condition codes and FPU enabling in %psr. */ |
| env->psr = (up_psr & (PSR_ICC /* | PSR_EF */)) |
| | (env->psr & ~(PSR_ICC /* | PSR_EF */)); |
| |
| env->pc = pc; |
| env->npc = npc; |
| __get_user(env->y, &sf->info.si_regs.y); |
| for (i=0; i < 8; i++) { |
| __get_user(env->gregs[i], &sf->info.si_regs.u_regs[i]); |
| } |
| for (i=0; i < 8; i++) { |
| __get_user(env->regwptr[i + WREG_O0], &sf->info.si_regs.u_regs[i + 8]); |
| } |
| |
| /* FIXME: implement FPU save/restore: |
| * __get_user(fpu_save, &sf->fpu_save); |
| * if (fpu_save) { |
| * if (restore_fpu_state(env, fpu_save)) { |
| * goto segv_and_exit; |
| * } |
| * } |
| */ |
| |
| /* This is pretty much atomic, no amount locking would prevent |
| * the races which exist anyways. |
| */ |
| __get_user(set.sig[0], &sf->info.si_mask); |
| for(i = 1; i < TARGET_NSIG_WORDS; i++) { |
| __get_user(set.sig[i], &sf->extramask[i - 1]); |
| } |
| |
| target_to_host_sigset_internal(&host_set, &set); |
| set_sigmask(&host_set); |
| |
| unlock_user_struct(sf, sf_addr, 0); |
| return -TARGET_QEMU_ESIGRETURN; |
| |
| segv_and_exit: |
| unlock_user_struct(sf, sf_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| return -TARGET_QEMU_ESIGRETURN; |
| } |
| |
| long do_rt_sigreturn(CPUSPARCState *env) |
| { |
| trace_user_do_rt_sigreturn(env, 0); |
| qemu_log_mask(LOG_UNIMP, "do_rt_sigreturn: not implemented\n"); |
| return -TARGET_ENOSYS; |
| } |
| |
| #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32) |
| #define SPARC_MC_TSTATE 0 |
| #define SPARC_MC_PC 1 |
| #define SPARC_MC_NPC 2 |
| #define SPARC_MC_Y 3 |
| #define SPARC_MC_G1 4 |
| #define SPARC_MC_G2 5 |
| #define SPARC_MC_G3 6 |
| #define SPARC_MC_G4 7 |
| #define SPARC_MC_G5 8 |
| #define SPARC_MC_G6 9 |
| #define SPARC_MC_G7 10 |
| #define SPARC_MC_O0 11 |
| #define SPARC_MC_O1 12 |
| #define SPARC_MC_O2 13 |
| #define SPARC_MC_O3 14 |
| #define SPARC_MC_O4 15 |
| #define SPARC_MC_O5 16 |
| #define SPARC_MC_O6 17 |
| #define SPARC_MC_O7 18 |
| #define SPARC_MC_NGREG 19 |
| |
| typedef abi_ulong target_mc_greg_t; |
| typedef target_mc_greg_t target_mc_gregset_t[SPARC_MC_NGREG]; |
| |
| struct target_mc_fq { |
| abi_ulong *mcfq_addr; |
| uint32_t mcfq_insn; |
| }; |
| |
| struct target_mc_fpu { |
| union { |
| uint32_t sregs[32]; |
| uint64_t dregs[32]; |
| //uint128_t qregs[16]; |
| } mcfpu_fregs; |
| abi_ulong mcfpu_fsr; |
| abi_ulong mcfpu_fprs; |
| abi_ulong mcfpu_gsr; |
| struct target_mc_fq *mcfpu_fq; |
| unsigned char mcfpu_qcnt; |
| unsigned char mcfpu_qentsz; |
| unsigned char mcfpu_enab; |
| }; |
| typedef struct target_mc_fpu target_mc_fpu_t; |
| |
| typedef struct { |
| target_mc_gregset_t mc_gregs; |
| target_mc_greg_t mc_fp; |
| target_mc_greg_t mc_i7; |
| target_mc_fpu_t mc_fpregs; |
| } target_mcontext_t; |
| |
| struct target_ucontext { |
| struct target_ucontext *tuc_link; |
| abi_ulong tuc_flags; |
| target_sigset_t tuc_sigmask; |
| target_mcontext_t tuc_mcontext; |
| }; |
| |
| /* A V9 register window */ |
| struct target_reg_window { |
| abi_ulong locals[8]; |
| abi_ulong ins[8]; |
| }; |
| |
| #define TARGET_STACK_BIAS 2047 |
| |
| /* {set, get}context() needed for 64-bit SparcLinux userland. */ |
| void sparc64_set_context(CPUSPARCState *env) |
| { |
| abi_ulong ucp_addr; |
| struct target_ucontext *ucp; |
| target_mc_gregset_t *grp; |
| abi_ulong pc, npc, tstate; |
| abi_ulong fp, i7, w_addr; |
| unsigned int i; |
| |
| ucp_addr = env->regwptr[WREG_O0]; |
| if (!lock_user_struct(VERIFY_READ, ucp, ucp_addr, 1)) { |
| goto do_sigsegv; |
| } |
| grp = &ucp->tuc_mcontext.mc_gregs; |
| __get_user(pc, &((*grp)[SPARC_MC_PC])); |
| __get_user(npc, &((*grp)[SPARC_MC_NPC])); |
| if ((pc | npc) & 3) { |
| goto do_sigsegv; |
| } |
| if (env->regwptr[WREG_O1]) { |
| target_sigset_t target_set; |
| sigset_t set; |
| |
| if (TARGET_NSIG_WORDS == 1) { |
| __get_user(target_set.sig[0], &ucp->tuc_sigmask.sig[0]); |
| } else { |
| abi_ulong *src, *dst; |
| src = ucp->tuc_sigmask.sig; |
| dst = target_set.sig; |
| for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { |
| __get_user(*dst, src); |
| } |
| } |
| target_to_host_sigset_internal(&set, &target_set); |
| set_sigmask(&set); |
| } |
| env->pc = pc; |
| env->npc = npc; |
| __get_user(env->y, &((*grp)[SPARC_MC_Y])); |
| __get_user(tstate, &((*grp)[SPARC_MC_TSTATE])); |
| env->asi = (tstate >> 24) & 0xff; |
| cpu_put_ccr(env, tstate >> 32); |
| cpu_put_cwp64(env, tstate & 0x1f); |
| __get_user(env->gregs[1], (&(*grp)[SPARC_MC_G1])); |
| __get_user(env->gregs[2], (&(*grp)[SPARC_MC_G2])); |
| __get_user(env->gregs[3], (&(*grp)[SPARC_MC_G3])); |
| __get_user(env->gregs[4], (&(*grp)[SPARC_MC_G4])); |
| __get_user(env->gregs[5], (&(*grp)[SPARC_MC_G5])); |
| __get_user(env->gregs[6], (&(*grp)[SPARC_MC_G6])); |
| __get_user(env->gregs[7], (&(*grp)[SPARC_MC_G7])); |
| __get_user(env->regwptr[WREG_O0], (&(*grp)[SPARC_MC_O0])); |
| __get_user(env->regwptr[WREG_O1], (&(*grp)[SPARC_MC_O1])); |
| __get_user(env->regwptr[WREG_O2], (&(*grp)[SPARC_MC_O2])); |
| __get_user(env->regwptr[WREG_O3], (&(*grp)[SPARC_MC_O3])); |
| __get_user(env->regwptr[WREG_O4], (&(*grp)[SPARC_MC_O4])); |
| __get_user(env->regwptr[WREG_O5], (&(*grp)[SPARC_MC_O5])); |
| __get_user(env->regwptr[WREG_O6], (&(*grp)[SPARC_MC_O6])); |
| __get_user(env->regwptr[WREG_O7], (&(*grp)[SPARC_MC_O7])); |
| |
| __get_user(fp, &(ucp->tuc_mcontext.mc_fp)); |
| __get_user(i7, &(ucp->tuc_mcontext.mc_i7)); |
| |
| w_addr = TARGET_STACK_BIAS + env->regwptr[WREG_O6]; |
| if (put_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), |
| abi_ulong) != 0) { |
| goto do_sigsegv; |
| } |
| if (put_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), |
| abi_ulong) != 0) { |
| goto do_sigsegv; |
| } |
| /* FIXME this does not match how the kernel handles the FPU in |
| * its sparc64_set_context implementation. In particular the FPU |
| * is only restored if fenab is non-zero in: |
| * __get_user(fenab, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_enab)); |
| */ |
| __get_user(env->fprs, &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fprs)); |
| { |
| uint32_t *src = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; |
| for (i = 0; i < 64; i++, src++) { |
| if (i & 1) { |
| __get_user(env->fpr[i/2].l.lower, src); |
| } else { |
| __get_user(env->fpr[i/2].l.upper, src); |
| } |
| } |
| } |
| __get_user(env->fsr, |
| &(ucp->tuc_mcontext.mc_fpregs.mcfpu_fsr)); |
| __get_user(env->gsr, |
| &(ucp->tuc_mcontext.mc_fpregs.mcfpu_gsr)); |
| unlock_user_struct(ucp, ucp_addr, 0); |
| return; |
| do_sigsegv: |
| unlock_user_struct(ucp, ucp_addr, 0); |
| force_sig(TARGET_SIGSEGV); |
| } |
| |
| void sparc64_get_context(CPUSPARCState *env) |
| { |
| abi_ulong ucp_addr; |
| struct target_ucontext *ucp; |
| target_mc_gregset_t *grp; |
| target_mcontext_t *mcp; |
| abi_ulong fp, i7, w_addr; |
| int err; |
| unsigned int i; |
| target_sigset_t target_set; |
| sigset_t set; |
| |
| ucp_addr = env->regwptr[WREG_O0]; |
| if (!lock_user_struct(VERIFY_WRITE, ucp, ucp_addr, 0)) { |
| goto do_sigsegv; |
| } |
| |
| mcp = &ucp->tuc_mcontext; |
| grp = &mcp->mc_gregs; |
| |
| /* Skip over the trap instruction, first. */ |
| env->pc = env->npc; |
| env->npc += 4; |
| |
| /* If we're only reading the signal mask then do_sigprocmask() |
| * is guaranteed not to fail, which is important because we don't |
| * have any way to signal a failure or restart this operation since |
| * this is not a normal syscall. |
| */ |
| err = do_sigprocmask(0, NULL, &set); |
| assert(err == 0); |
| host_to_target_sigset_internal(&target_set, &set); |
| if (TARGET_NSIG_WORDS == 1) { |
| __put_user(target_set.sig[0], |
| (abi_ulong *)&ucp->tuc_sigmask); |
| } else { |
| abi_ulong *src, *dst; |
| src = target_set.sig; |
| dst = ucp->tuc_sigmask.sig; |
| for (i = 0; i < TARGET_NSIG_WORDS; i++, dst++, src++) { |
| __put_user(*src, dst); |
| } |
| if (err) |
| goto do_sigsegv; |
| } |
| |
| /* XXX: tstate must be saved properly */ |
| // __put_user(env->tstate, &((*grp)[SPARC_MC_TSTATE])); |
| __put_user(env->pc, &((*grp)[SPARC_MC_PC])); |
| __put_user(env->npc, &((*grp)[SPARC_MC_NPC])); |
| __put_user(env->y, &((*grp)[SPARC_MC_Y])); |
| __put_user(env->gregs[1], &((*grp)[SPARC_MC_G1])); |
| __put_user(env->gregs[2], &((*grp)[SPARC_MC_G2])); |
| __put_user(env->gregs[3], &((*grp)[SPARC_MC_G3])); |
| __put_user(env->gregs[4], &((*grp)[SPARC_MC_G4])); |
| __put_user(env->gregs[5], &((*grp)[SPARC_MC_G5])); |
| __put_user(env->gregs[6], &((*grp)[SPARC_MC_G6])); |
| __put_user(env->gregs[7], &((*grp)[SPARC_MC_G7])); |
| __put_user(env->regwptr[WREG_O0], &((*grp)[SPARC_MC_O0])); |
| __put_user(env->regwptr[WREG_O1], &((*grp)[SPARC_MC_O1])); |
| __put_user(env->regwptr[WREG_O2], &((*grp)[SPARC_MC_O2])); |
| __put_user(env->regwptr[WREG_O3], &((*grp)[SPARC_MC_O3])); |
| __put_user(env->regwptr[WREG_O4], &((*grp)[SPARC_MC_O4])); |
| __put_user(env->regwptr[WREG_O5], &((*grp)[SPARC_MC_O5])); |
| __put_user(env->regwptr[WREG_O6], &((*grp)[SPARC_MC_O6])); |
| __put_user(env->regwptr[WREG_O7], &((*grp)[SPARC_MC_O7])); |
| |
| w_addr = TARGET_STACK_BIAS + env->regwptr[WREG_O6]; |
| fp = i7 = 0; |
| if (get_user(fp, w_addr + offsetof(struct target_reg_window, ins[6]), |
| abi_ulong) != 0) { |
| goto do_sigsegv; |
| } |
| if (get_user(i7, w_addr + offsetof(struct target_reg_window, ins[7]), |
| abi_ulong) != 0) { |
| goto do_sigsegv; |
| } |
| __put_user(fp, &(mcp->mc_fp)); |
| __put_user(i7, &(mcp->mc_i7)); |
| |
| { |
| uint32_t *dst = ucp->tuc_mcontext.mc_fpregs.mcfpu_fregs.sregs; |
| for (i = 0; i < 64; i++, dst++) { |
| if (i & 1) { |
| __put_user(env->fpr[i/2].l.lower, dst); |
| } else { |
| __put_user(env->fpr[i/2].l.upper, dst); |
| } |
| } |
| } |
| __put_user(env->fsr, &(mcp->mc_fpregs.mcfpu_fsr)); |
| __put_user(env->gsr, &(mcp->mc_fpregs.mcfpu_gsr)); |
| __put_user(env->fprs, &(mcp->mc_fpregs.mcfpu_fprs)); |
| |
| if (err) |
| goto do_sigsegv; |
| unlock_user_struct(ucp, ucp_addr, 1); |
| return; |
| do_sigsegv: |
| unlock_user_struct(ucp, ucp_addr, 1); |
| force_sig(TARGET_SIGSEGV); |
| } |
| #endif |