blob: ca35b5153db33a1aca67dfa0fbc9853aacd1248e [file] [log] [blame]
/*
* QEMU PowerPC pSeries Logical Partition capabilities handling
*
* Copyright (c) 2017 David Gibson, Red Hat Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*/
#include "qemu/osdep.h"
#include "qemu/error-report.h"
#include "qapi/error.h"
#include "qapi/visitor.h"
#include "sysemu/hw_accel.h"
#include "exec/ram_addr.h"
#include "target/ppc/cpu.h"
#include "target/ppc/mmu-hash64.h"
#include "cpu-models.h"
#include "kvm_ppc.h"
#include "hw/ppc/spapr.h"
typedef struct sPAPRCapPossible {
int num; /* size of vals array below */
const char *help; /* help text for vals */
/*
* Note:
* - because of the way compatibility is determined vals MUST be ordered
* such that later options are a superset of all preceding options.
* - the order of vals must be preserved, that is their index is important,
* however vals may be added to the end of the list so long as the above
* point is observed
*/
const char *vals[];
} sPAPRCapPossible;
typedef struct sPAPRCapabilityInfo {
const char *name;
const char *description;
int index;
/* Getter and Setter Function Pointers */
ObjectPropertyAccessor *get;
ObjectPropertyAccessor *set;
const char *type;
/* Possible values if this is a custom string type */
sPAPRCapPossible *possible;
/* Make sure the virtual hardware can support this capability */
void (*apply)(sPAPRMachineState *spapr, uint8_t val, Error **errp);
void (*cpu_apply)(sPAPRMachineState *spapr, PowerPCCPU *cpu,
uint8_t val, Error **errp);
} sPAPRCapabilityInfo;
static void spapr_cap_get_bool(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRCapabilityInfo *cap = opaque;
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
bool value = spapr_get_cap(spapr, cap->index) == SPAPR_CAP_ON;
visit_type_bool(v, name, &value, errp);
}
static void spapr_cap_set_bool(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRCapabilityInfo *cap = opaque;
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
bool value;
Error *local_err = NULL;
visit_type_bool(v, name, &value, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
spapr->cmd_line_caps[cap->index] = true;
spapr->eff.caps[cap->index] = value ? SPAPR_CAP_ON : SPAPR_CAP_OFF;
}
static void spapr_cap_get_string(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRCapabilityInfo *cap = opaque;
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
char *val = NULL;
uint8_t value = spapr_get_cap(spapr, cap->index);
if (value >= cap->possible->num) {
error_setg(errp, "Invalid value (%d) for cap-%s", value, cap->name);
return;
}
val = g_strdup(cap->possible->vals[value]);
visit_type_str(v, name, &val, errp);
g_free(val);
}
static void spapr_cap_set_string(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRCapabilityInfo *cap = opaque;
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
Error *local_err = NULL;
uint8_t i;
char *val;
visit_type_str(v, name, &val, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (!strcmp(val, "?")) {
error_setg(errp, "%s", cap->possible->help);
goto out;
}
for (i = 0; i < cap->possible->num; i++) {
if (!strcasecmp(val, cap->possible->vals[i])) {
spapr->cmd_line_caps[cap->index] = true;
spapr->eff.caps[cap->index] = i;
goto out;
}
}
error_setg(errp, "Invalid capability mode \"%s\" for cap-%s", val,
cap->name);
out:
g_free(val);
}
static void spapr_cap_get_pagesize(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRCapabilityInfo *cap = opaque;
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
uint8_t val = spapr_get_cap(spapr, cap->index);
uint64_t pagesize = (1ULL << val);
visit_type_size(v, name, &pagesize, errp);
}
static void spapr_cap_set_pagesize(Object *obj, Visitor *v, const char *name,
void *opaque, Error **errp)
{
sPAPRCapabilityInfo *cap = opaque;
sPAPRMachineState *spapr = SPAPR_MACHINE(obj);
uint64_t pagesize;
uint8_t val;
Error *local_err = NULL;
visit_type_size(v, name, &pagesize, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
if (!is_power_of_2(pagesize)) {
error_setg(errp, "cap-%s must be a power of 2", cap->name);
return;
}
val = ctz64(pagesize);
spapr->cmd_line_caps[cap->index] = true;
spapr->eff.caps[cap->index] = val;
}
static void cap_htm_apply(sPAPRMachineState *spapr, uint8_t val, Error **errp)
{
if (!val) {
/* TODO: We don't support disabling htm yet */
return;
}
if (tcg_enabled()) {
error_setg(errp,
"No Transactional Memory support in TCG, try cap-htm=off");
} else if (kvm_enabled() && !kvmppc_has_cap_htm()) {
error_setg(errp,
"KVM implementation does not support Transactional Memory, try cap-htm=off"
);
}
}
static void cap_vsx_apply(sPAPRMachineState *spapr, uint8_t val, Error **errp)
{
PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
CPUPPCState *env = &cpu->env;
if (!val) {
/* TODO: We don't support disabling vsx yet */
return;
}
/* Allowable CPUs in spapr_cpu_core.c should already have gotten
* rid of anything that doesn't do VMX */
g_assert(env->insns_flags & PPC_ALTIVEC);
if (!(env->insns_flags2 & PPC2_VSX)) {
error_setg(errp, "VSX support not available, try cap-vsx=off");
}
}
static void cap_dfp_apply(sPAPRMachineState *spapr, uint8_t val, Error **errp)
{
PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
CPUPPCState *env = &cpu->env;
if (!val) {
/* TODO: We don't support disabling dfp yet */
return;
}
if (!(env->insns_flags2 & PPC2_DFP)) {
error_setg(errp, "DFP support not available, try cap-dfp=off");
}
}
sPAPRCapPossible cap_cfpc_possible = {
.num = 3,
.vals = {"broken", "workaround", "fixed"},
.help = "broken - no protection, workaround - workaround available,"
" fixed - fixed in hardware",
};
static void cap_safe_cache_apply(sPAPRMachineState *spapr, uint8_t val,
Error **errp)
{
uint8_t kvm_val = kvmppc_get_cap_safe_cache();
if (tcg_enabled() && val) {
/* TODO - for now only allow broken for TCG */
error_setg(errp,
"Requested safe cache capability level not supported by tcg, try a different value for cap-cfpc");
} else if (kvm_enabled() && (val > kvm_val)) {
error_setg(errp,
"Requested safe cache capability level not supported by kvm, try cap-cfpc=%s",
cap_cfpc_possible.vals[kvm_val]);
}
}
sPAPRCapPossible cap_sbbc_possible = {
.num = 3,
.vals = {"broken", "workaround", "fixed"},
.help = "broken - no protection, workaround - workaround available,"
" fixed - fixed in hardware",
};
static void cap_safe_bounds_check_apply(sPAPRMachineState *spapr, uint8_t val,
Error **errp)
{
uint8_t kvm_val = kvmppc_get_cap_safe_bounds_check();
if (tcg_enabled() && val) {
/* TODO - for now only allow broken for TCG */
error_setg(errp,
"Requested safe bounds check capability level not supported by tcg, try a different value for cap-sbbc");
} else if (kvm_enabled() && (val > kvm_val)) {
error_setg(errp,
"Requested safe bounds check capability level not supported by kvm, try cap-sbbc=%s",
cap_sbbc_possible.vals[kvm_val]);
}
}
sPAPRCapPossible cap_ibs_possible = {
.num = 5,
/* Note workaround only maintained for compatibility */
.vals = {"broken", "workaround", "fixed-ibs", "fixed-ccd", "fixed-na"},
.help = "broken - no protection, workaround - count cache flush"
", fixed-ibs - indirect branch serialisation,"
" fixed-ccd - cache count disabled,"
" fixed-na - fixed in hardware (no longer applicable)",
};
static void cap_safe_indirect_branch_apply(sPAPRMachineState *spapr,
uint8_t val, Error **errp)
{
uint8_t kvm_val = kvmppc_get_cap_safe_indirect_branch();
if (tcg_enabled() && val) {
/* TODO - for now only allow broken for TCG */
error_setg(errp,
"Requested safe indirect branch capability level not supported by tcg, try a different value for cap-ibs");
} else if (kvm_enabled() && (val > kvm_val)) {
error_setg(errp,
"Requested safe indirect branch capability level not supported by kvm, try cap-ibs=%s",
cap_ibs_possible.vals[kvm_val]);
}
}
#define VALUE_DESC_TRISTATE " (broken, workaround, fixed)"
void spapr_check_pagesize(sPAPRMachineState *spapr, hwaddr pagesize,
Error **errp)
{
hwaddr maxpagesize = (1ULL << spapr->eff.caps[SPAPR_CAP_HPT_MAXPAGESIZE]);
if (!kvmppc_hpt_needs_host_contiguous_pages()) {
return;
}
if (maxpagesize > pagesize) {
error_setg(errp,
"Can't support %"HWADDR_PRIu" kiB guest pages with %"
HWADDR_PRIu" kiB host pages with this KVM implementation",
maxpagesize >> 10, pagesize >> 10);
}
}
static void cap_hpt_maxpagesize_apply(sPAPRMachineState *spapr,
uint8_t val, Error **errp)
{
if (val < 12) {
error_setg(errp, "Require at least 4kiB hpt-max-page-size");
return;
} else if (val < 16) {
warn_report("Many guests require at least 64kiB hpt-max-page-size");
}
spapr_check_pagesize(spapr, qemu_getrampagesize(), errp);
}
static bool spapr_pagesize_cb(void *opaque, uint32_t seg_pshift,
uint32_t pshift)
{
unsigned maxshift = *((unsigned *)opaque);
assert(pshift >= seg_pshift);
/* Don't allow the guest to use pages bigger than the configured
* maximum size */
if (pshift > maxshift) {
return false;
}
/* For whatever reason, KVM doesn't allow multiple pagesizes
* within a segment, *except* for the case of 16M pages in a 4k or
* 64k segment. Always exclude other cases, so that TCG and KVM
* guests see a consistent environment */
if ((pshift != seg_pshift) && (pshift != 24)) {
return false;
}
return true;
}
static void cap_hpt_maxpagesize_cpu_apply(sPAPRMachineState *spapr,
PowerPCCPU *cpu,
uint8_t val, Error **errp)
{
unsigned maxshift = val;
ppc_hash64_filter_pagesizes(cpu, spapr_pagesize_cb, &maxshift);
}
static void cap_nested_kvm_hv_apply(sPAPRMachineState *spapr,
uint8_t val, Error **errp)
{
if (!val) {
/* capability disabled by default */
return;
}
if (tcg_enabled()) {
error_setg(errp,
"No Nested KVM-HV support in tcg, try cap-nested-hv=off");
} else if (kvm_enabled()) {
if (!kvmppc_has_cap_nested_kvm_hv()) {
error_setg(errp,
"KVM implementation does not support Nested KVM-HV, try cap-nested-hv=off");
} else if (kvmppc_set_cap_nested_kvm_hv(val) < 0) {
error_setg(errp,
"Error enabling cap-nested-hv with KVM, try cap-nested-hv=off");
}
}
}
static void cap_large_decr_apply(sPAPRMachineState *spapr,
uint8_t val, Error **errp)
{
PowerPCCPU *cpu = POWERPC_CPU(first_cpu);
PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cpu);
if (!val) {
return; /* Disabled by default */
}
if (tcg_enabled()) {
if (!ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0,
spapr->max_compat_pvr)) {
error_setg(errp,
"Large decrementer only supported on POWER9, try -cpu POWER9");
return;
}
} else if (kvm_enabled()) {
int kvm_nr_bits = kvmppc_get_cap_large_decr();
if (!kvm_nr_bits) {
error_setg(errp,
"No large decrementer support, try cap-large-decr=off");
} else if (pcc->lrg_decr_bits != kvm_nr_bits) {
error_setg(errp,
"KVM large decrementer size (%d) differs to model (%d), try -cap-large-decr=off",
kvm_nr_bits, pcc->lrg_decr_bits);
}
}
}
static void cap_large_decr_cpu_apply(sPAPRMachineState *spapr,
PowerPCCPU *cpu,
uint8_t val, Error **errp)
{
CPUPPCState *env = &cpu->env;
target_ulong lpcr = env->spr[SPR_LPCR];
if (kvm_enabled()) {
if (kvmppc_enable_cap_large_decr(cpu, val)) {
error_setg(errp,
"No large decrementer support, try cap-large-decr=off");
}
}
if (val) {
lpcr |= LPCR_LD;
} else {
lpcr &= ~LPCR_LD;
}
ppc_store_lpcr(cpu, lpcr);
}
sPAPRCapabilityInfo capability_table[SPAPR_CAP_NUM] = {
[SPAPR_CAP_HTM] = {
.name = "htm",
.description = "Allow Hardware Transactional Memory (HTM)",
.index = SPAPR_CAP_HTM,
.get = spapr_cap_get_bool,
.set = spapr_cap_set_bool,
.type = "bool",
.apply = cap_htm_apply,
},
[SPAPR_CAP_VSX] = {
.name = "vsx",
.description = "Allow Vector Scalar Extensions (VSX)",
.index = SPAPR_CAP_VSX,
.get = spapr_cap_get_bool,
.set = spapr_cap_set_bool,
.type = "bool",
.apply = cap_vsx_apply,
},
[SPAPR_CAP_DFP] = {
.name = "dfp",
.description = "Allow Decimal Floating Point (DFP)",
.index = SPAPR_CAP_DFP,
.get = spapr_cap_get_bool,
.set = spapr_cap_set_bool,
.type = "bool",
.apply = cap_dfp_apply,
},
[SPAPR_CAP_CFPC] = {
.name = "cfpc",
.description = "Cache Flush on Privilege Change" VALUE_DESC_TRISTATE,
.index = SPAPR_CAP_CFPC,
.get = spapr_cap_get_string,
.set = spapr_cap_set_string,
.type = "string",
.possible = &cap_cfpc_possible,
.apply = cap_safe_cache_apply,
},
[SPAPR_CAP_SBBC] = {
.name = "sbbc",
.description = "Speculation Barrier Bounds Checking" VALUE_DESC_TRISTATE,
.index = SPAPR_CAP_SBBC,
.get = spapr_cap_get_string,
.set = spapr_cap_set_string,
.type = "string",
.possible = &cap_sbbc_possible,
.apply = cap_safe_bounds_check_apply,
},
[SPAPR_CAP_IBS] = {
.name = "ibs",
.description =
"Indirect Branch Speculation (broken, workaround, fixed-ibs,"
"fixed-ccd, fixed-na)",
.index = SPAPR_CAP_IBS,
.get = spapr_cap_get_string,
.set = spapr_cap_set_string,
.type = "string",
.possible = &cap_ibs_possible,
.apply = cap_safe_indirect_branch_apply,
},
[SPAPR_CAP_HPT_MAXPAGESIZE] = {
.name = "hpt-max-page-size",
.description = "Maximum page size for Hash Page Table guests",
.index = SPAPR_CAP_HPT_MAXPAGESIZE,
.get = spapr_cap_get_pagesize,
.set = spapr_cap_set_pagesize,
.type = "int",
.apply = cap_hpt_maxpagesize_apply,
.cpu_apply = cap_hpt_maxpagesize_cpu_apply,
},
[SPAPR_CAP_NESTED_KVM_HV] = {
.name = "nested-hv",
.description = "Allow Nested KVM-HV",
.index = SPAPR_CAP_NESTED_KVM_HV,
.get = spapr_cap_get_bool,
.set = spapr_cap_set_bool,
.type = "bool",
.apply = cap_nested_kvm_hv_apply,
},
[SPAPR_CAP_LARGE_DECREMENTER] = {
.name = "large-decr",
.description = "Allow Large Decrementer",
.index = SPAPR_CAP_LARGE_DECREMENTER,
.get = spapr_cap_get_bool,
.set = spapr_cap_set_bool,
.type = "bool",
.apply = cap_large_decr_apply,
.cpu_apply = cap_large_decr_cpu_apply,
},
};
static sPAPRCapabilities default_caps_with_cpu(sPAPRMachineState *spapr,
const char *cputype)
{
sPAPRMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr);
sPAPRCapabilities caps;
caps = smc->default_caps;
if (!ppc_type_check_compat(cputype, CPU_POWERPC_LOGICAL_3_00,
0, spapr->max_compat_pvr)) {
caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF;
}
if (!ppc_type_check_compat(cputype, CPU_POWERPC_LOGICAL_2_07,
0, spapr->max_compat_pvr)) {
caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF;
caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN;
}
if (!ppc_type_check_compat(cputype, CPU_POWERPC_LOGICAL_2_06_PLUS,
0, spapr->max_compat_pvr)) {
caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN;
}
if (!ppc_type_check_compat(cputype, CPU_POWERPC_LOGICAL_2_06,
0, spapr->max_compat_pvr)) {
caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_OFF;
caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_OFF;
caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN;
}
/* This is for pseries-2.12 and older */
if (smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] == 0) {
uint8_t mps;
if (kvmppc_hpt_needs_host_contiguous_pages()) {
mps = ctz64(qemu_getrampagesize());
} else {
mps = 34; /* allow everything up to 16GiB, i.e. everything */
}
caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = mps;
}
return caps;
}
int spapr_caps_pre_load(void *opaque)
{
sPAPRMachineState *spapr = opaque;
/* Set to default so we can tell if this came in with the migration */
spapr->mig = spapr->def;
return 0;
}
int spapr_caps_pre_save(void *opaque)
{
sPAPRMachineState *spapr = opaque;
spapr->mig = spapr->eff;
return 0;
}
/* This has to be called from the top-level spapr post_load, not the
* caps specific one. Otherwise it wouldn't be called when the source
* caps are all defaults, which could still conflict with overridden
* caps on the destination */
int spapr_caps_post_migration(sPAPRMachineState *spapr)
{
int i;
bool ok = true;
sPAPRCapabilities dstcaps = spapr->eff;
sPAPRCapabilities srccaps;
srccaps = default_caps_with_cpu(spapr, MACHINE(spapr)->cpu_type);
for (i = 0; i < SPAPR_CAP_NUM; i++) {
/* If not default value then assume came in with the migration */
if (spapr->mig.caps[i] != spapr->def.caps[i]) {
srccaps.caps[i] = spapr->mig.caps[i];
}
}
for (i = 0; i < SPAPR_CAP_NUM; i++) {
sPAPRCapabilityInfo *info = &capability_table[i];
if (srccaps.caps[i] > dstcaps.caps[i]) {
error_report("cap-%s higher level (%d) in incoming stream than on destination (%d)",
info->name, srccaps.caps[i], dstcaps.caps[i]);
ok = false;
}
if (srccaps.caps[i] < dstcaps.caps[i]) {
warn_report("cap-%s lower level (%d) in incoming stream than on destination (%d)",
info->name, srccaps.caps[i], dstcaps.caps[i]);
}
}
return ok ? 0 : -EINVAL;
}
/* Used to generate the migration field and needed function for a spapr cap */
#define SPAPR_CAP_MIG_STATE(sname, cap) \
static bool spapr_cap_##sname##_needed(void *opaque) \
{ \
sPAPRMachineState *spapr = opaque; \
\
return spapr->cmd_line_caps[cap] && \
(spapr->eff.caps[cap] != \
spapr->def.caps[cap]); \
} \
\
const VMStateDescription vmstate_spapr_cap_##sname = { \
.name = "spapr/cap/" #sname, \
.version_id = 1, \
.minimum_version_id = 1, \
.needed = spapr_cap_##sname##_needed, \
.fields = (VMStateField[]) { \
VMSTATE_UINT8(mig.caps[cap], \
sPAPRMachineState), \
VMSTATE_END_OF_LIST() \
}, \
}
SPAPR_CAP_MIG_STATE(htm, SPAPR_CAP_HTM);
SPAPR_CAP_MIG_STATE(vsx, SPAPR_CAP_VSX);
SPAPR_CAP_MIG_STATE(dfp, SPAPR_CAP_DFP);
SPAPR_CAP_MIG_STATE(cfpc, SPAPR_CAP_CFPC);
SPAPR_CAP_MIG_STATE(sbbc, SPAPR_CAP_SBBC);
SPAPR_CAP_MIG_STATE(ibs, SPAPR_CAP_IBS);
SPAPR_CAP_MIG_STATE(nested_kvm_hv, SPAPR_CAP_NESTED_KVM_HV);
SPAPR_CAP_MIG_STATE(large_decr, SPAPR_CAP_LARGE_DECREMENTER);
void spapr_caps_init(sPAPRMachineState *spapr)
{
sPAPRCapabilities default_caps;
int i;
/* Compute the actual set of caps we should run with */
default_caps = default_caps_with_cpu(spapr, MACHINE(spapr)->cpu_type);
for (i = 0; i < SPAPR_CAP_NUM; i++) {
/* Store the defaults */
spapr->def.caps[i] = default_caps.caps[i];
/* If not set on the command line then apply the default value */
if (!spapr->cmd_line_caps[i]) {
spapr->eff.caps[i] = default_caps.caps[i];
}
}
}
void spapr_caps_apply(sPAPRMachineState *spapr)
{
int i;
for (i = 0; i < SPAPR_CAP_NUM; i++) {
sPAPRCapabilityInfo *info = &capability_table[i];
/*
* If the apply function can't set the desired level and thinks it's
* fatal, it should cause that.
*/
info->apply(spapr, spapr->eff.caps[i], &error_fatal);
}
}
void spapr_caps_cpu_apply(sPAPRMachineState *spapr, PowerPCCPU *cpu)
{
int i;
for (i = 0; i < SPAPR_CAP_NUM; i++) {
sPAPRCapabilityInfo *info = &capability_table[i];
/*
* If the apply function can't set the desired level and thinks it's
* fatal, it should cause that.
*/
if (info->cpu_apply) {
info->cpu_apply(spapr, cpu, spapr->eff.caps[i], &error_fatal);
}
}
}
void spapr_caps_add_properties(sPAPRMachineClass *smc, Error **errp)
{
Error *local_err = NULL;
ObjectClass *klass = OBJECT_CLASS(smc);
int i;
for (i = 0; i < ARRAY_SIZE(capability_table); i++) {
sPAPRCapabilityInfo *cap = &capability_table[i];
const char *name = g_strdup_printf("cap-%s", cap->name);
char *desc;
object_class_property_add(klass, name, cap->type,
cap->get, cap->set,
NULL, cap, &local_err);
if (local_err) {
error_propagate(errp, local_err);
return;
}
desc = g_strdup_printf("%s", cap->description);
object_class_property_set_description(klass, name, desc, &local_err);
g_free(desc);
if (local_err) {
error_propagate(errp, local_err);
return;
}
}
}