| /* |
| * QEMU float support |
| * |
| * The code in this source file is derived from release 2a of the SoftFloat |
| * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and |
| * some later contributions) are provided under that license, as detailed below. |
| * It has subsequently been modified by contributors to the QEMU Project, |
| * so some portions are provided under: |
| * the SoftFloat-2a license |
| * the BSD license |
| * GPL-v2-or-later |
| * |
| * Any future contributions to this file after December 1st 2014 will be |
| * taken to be licensed under the Softfloat-2a license unless specifically |
| * indicated otherwise. |
| */ |
| |
| /* |
| =============================================================================== |
| This C header file is part of the SoftFloat IEC/IEEE Floating-point |
| Arithmetic Package, Release 2a. |
| |
| Written by John R. Hauser. This work was made possible in part by the |
| International Computer Science Institute, located at Suite 600, 1947 Center |
| Street, Berkeley, California 94704. Funding was partially provided by the |
| National Science Foundation under grant MIP-9311980. The original version |
| of this code was written as part of a project to build a fixed-point vector |
| processor in collaboration with the University of California at Berkeley, |
| overseen by Profs. Nelson Morgan and John Wawrzynek. More information |
| is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ |
| arithmetic/SoftFloat.html'. |
| |
| THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort |
| has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT |
| TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO |
| PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY |
| AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. |
| |
| Derivative works are acceptable, even for commercial purposes, so long as |
| (1) they include prominent notice that the work is derivative, and (2) they |
| include prominent notice akin to these four paragraphs for those parts of |
| this code that are retained. |
| |
| =============================================================================== |
| */ |
| |
| /* BSD licensing: |
| * Copyright (c) 2006, Fabrice Bellard |
| * All rights reserved. |
| * |
| * Redistribution and use in source and binary forms, with or without |
| * modification, are permitted provided that the following conditions are met: |
| * |
| * 1. Redistributions of source code must retain the above copyright notice, |
| * this list of conditions and the following disclaimer. |
| * |
| * 2. Redistributions in binary form must reproduce the above copyright notice, |
| * this list of conditions and the following disclaimer in the documentation |
| * and/or other materials provided with the distribution. |
| * |
| * 3. Neither the name of the copyright holder nor the names of its contributors |
| * may be used to endorse or promote products derived from this software without |
| * specific prior written permission. |
| * |
| * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" |
| * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE |
| * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE |
| * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE |
| * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR |
| * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF |
| * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS |
| * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN |
| * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) |
| * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF |
| * THE POSSIBILITY OF SUCH DAMAGE. |
| */ |
| |
| /* Portions of this work are licensed under the terms of the GNU GPL, |
| * version 2 or later. See the COPYING file in the top-level directory. |
| */ |
| |
| #ifndef SOFTFLOAT_H |
| #define SOFTFLOAT_H |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE floating-point ordering relations |
| *----------------------------------------------------------------------------*/ |
| |
| typedef enum { |
| float_relation_less = -1, |
| float_relation_equal = 0, |
| float_relation_greater = 1, |
| float_relation_unordered = 2 |
| } FloatRelation; |
| |
| #include "fpu/softfloat-types.h" |
| #include "fpu/softfloat-helpers.h" |
| |
| /*---------------------------------------------------------------------------- |
| | Routine to raise any or all of the software IEC/IEEE floating-point |
| | exception flags. |
| *----------------------------------------------------------------------------*/ |
| static inline void float_raise(uint8_t flags, float_status *status) |
| { |
| status->float_exception_flags |= flags; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | If `a' is denormal and we are in flush-to-zero mode then set the |
| | input-denormal exception and return zero. Otherwise just return the value. |
| *----------------------------------------------------------------------------*/ |
| float16 float16_squash_input_denormal(float16 a, float_status *status); |
| float32 float32_squash_input_denormal(float32 a, float_status *status); |
| float64 float64_squash_input_denormal(float64 a, float_status *status); |
| bfloat16 bfloat16_squash_input_denormal(bfloat16 a, float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Options to indicate which negations to perform in float*_muladd() |
| | Using these differs from negating an input or output before calling |
| | the muladd function in that this means that a NaN doesn't have its |
| | sign bit inverted before it is propagated. |
| | We also support halving the result before rounding, as a special |
| | case to support the ARM fused-sqrt-step instruction FRSQRTS. |
| *----------------------------------------------------------------------------*/ |
| enum { |
| float_muladd_negate_c = 1, |
| float_muladd_negate_product = 2, |
| float_muladd_negate_result = 4, |
| float_muladd_halve_result = 8, |
| }; |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE integer-to-floating-point conversion routines. |
| *----------------------------------------------------------------------------*/ |
| |
| float16 int16_to_float16_scalbn(int16_t a, int, float_status *status); |
| float16 int32_to_float16_scalbn(int32_t a, int, float_status *status); |
| float16 int64_to_float16_scalbn(int64_t a, int, float_status *status); |
| float16 uint16_to_float16_scalbn(uint16_t a, int, float_status *status); |
| float16 uint32_to_float16_scalbn(uint32_t a, int, float_status *status); |
| float16 uint64_to_float16_scalbn(uint64_t a, int, float_status *status); |
| |
| float16 int8_to_float16(int8_t a, float_status *status); |
| float16 int16_to_float16(int16_t a, float_status *status); |
| float16 int32_to_float16(int32_t a, float_status *status); |
| float16 int64_to_float16(int64_t a, float_status *status); |
| float16 uint8_to_float16(uint8_t a, float_status *status); |
| float16 uint16_to_float16(uint16_t a, float_status *status); |
| float16 uint32_to_float16(uint32_t a, float_status *status); |
| float16 uint64_to_float16(uint64_t a, float_status *status); |
| |
| float32 int16_to_float32_scalbn(int16_t, int, float_status *status); |
| float32 int32_to_float32_scalbn(int32_t, int, float_status *status); |
| float32 int64_to_float32_scalbn(int64_t, int, float_status *status); |
| float32 uint16_to_float32_scalbn(uint16_t, int, float_status *status); |
| float32 uint32_to_float32_scalbn(uint32_t, int, float_status *status); |
| float32 uint64_to_float32_scalbn(uint64_t, int, float_status *status); |
| |
| float32 int16_to_float32(int16_t, float_status *status); |
| float32 int32_to_float32(int32_t, float_status *status); |
| float32 int64_to_float32(int64_t, float_status *status); |
| float32 uint16_to_float32(uint16_t, float_status *status); |
| float32 uint32_to_float32(uint32_t, float_status *status); |
| float32 uint64_to_float32(uint64_t, float_status *status); |
| |
| float64 int16_to_float64_scalbn(int16_t, int, float_status *status); |
| float64 int32_to_float64_scalbn(int32_t, int, float_status *status); |
| float64 int64_to_float64_scalbn(int64_t, int, float_status *status); |
| float64 uint16_to_float64_scalbn(uint16_t, int, float_status *status); |
| float64 uint32_to_float64_scalbn(uint32_t, int, float_status *status); |
| float64 uint64_to_float64_scalbn(uint64_t, int, float_status *status); |
| |
| float64 int16_to_float64(int16_t, float_status *status); |
| float64 int32_to_float64(int32_t, float_status *status); |
| float64 int64_to_float64(int64_t, float_status *status); |
| float64 uint16_to_float64(uint16_t, float_status *status); |
| float64 uint32_to_float64(uint32_t, float_status *status); |
| float64 uint64_to_float64(uint64_t, float_status *status); |
| |
| floatx80 int32_to_floatx80(int32_t, float_status *status); |
| floatx80 int64_to_floatx80(int64_t, float_status *status); |
| |
| float128 int32_to_float128(int32_t, float_status *status); |
| float128 int64_to_float128(int64_t, float_status *status); |
| float128 uint64_to_float128(uint64_t, float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software half-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| |
| float16 float32_to_float16(float32, bool ieee, float_status *status); |
| float32 float16_to_float32(float16, bool ieee, float_status *status); |
| float16 float64_to_float16(float64 a, bool ieee, float_status *status); |
| float64 float16_to_float64(float16 a, bool ieee, float_status *status); |
| |
| int8_t float16_to_int8_scalbn(float16, FloatRoundMode, int, |
| float_status *status); |
| int16_t float16_to_int16_scalbn(float16, FloatRoundMode, int, float_status *); |
| int32_t float16_to_int32_scalbn(float16, FloatRoundMode, int, float_status *); |
| int64_t float16_to_int64_scalbn(float16, FloatRoundMode, int, float_status *); |
| |
| int8_t float16_to_int8(float16, float_status *status); |
| int16_t float16_to_int16(float16, float_status *status); |
| int32_t float16_to_int32(float16, float_status *status); |
| int64_t float16_to_int64(float16, float_status *status); |
| |
| int16_t float16_to_int16_round_to_zero(float16, float_status *status); |
| int32_t float16_to_int32_round_to_zero(float16, float_status *status); |
| int64_t float16_to_int64_round_to_zero(float16, float_status *status); |
| |
| uint8_t float16_to_uint8_scalbn(float16 a, FloatRoundMode, |
| int, float_status *status); |
| uint16_t float16_to_uint16_scalbn(float16 a, FloatRoundMode, |
| int, float_status *status); |
| uint32_t float16_to_uint32_scalbn(float16 a, FloatRoundMode, |
| int, float_status *status); |
| uint64_t float16_to_uint64_scalbn(float16 a, FloatRoundMode, |
| int, float_status *status); |
| |
| uint8_t float16_to_uint8(float16 a, float_status *status); |
| uint16_t float16_to_uint16(float16 a, float_status *status); |
| uint32_t float16_to_uint32(float16 a, float_status *status); |
| uint64_t float16_to_uint64(float16 a, float_status *status); |
| |
| uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status); |
| uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status); |
| uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software half-precision operations. |
| *----------------------------------------------------------------------------*/ |
| |
| float16 float16_round_to_int(float16, float_status *status); |
| float16 float16_add(float16, float16, float_status *status); |
| float16 float16_sub(float16, float16, float_status *status); |
| float16 float16_mul(float16, float16, float_status *status); |
| float16 float16_muladd(float16, float16, float16, int, float_status *status); |
| float16 float16_div(float16, float16, float_status *status); |
| float16 float16_scalbn(float16, int, float_status *status); |
| float16 float16_min(float16, float16, float_status *status); |
| float16 float16_max(float16, float16, float_status *status); |
| float16 float16_minnum(float16, float16, float_status *status); |
| float16 float16_maxnum(float16, float16, float_status *status); |
| float16 float16_minnummag(float16, float16, float_status *status); |
| float16 float16_maxnummag(float16, float16, float_status *status); |
| float16 float16_sqrt(float16, float_status *status); |
| FloatRelation float16_compare(float16, float16, float_status *status); |
| FloatRelation float16_compare_quiet(float16, float16, float_status *status); |
| |
| bool float16_is_quiet_nan(float16, float_status *status); |
| bool float16_is_signaling_nan(float16, float_status *status); |
| float16 float16_silence_nan(float16, float_status *status); |
| |
| static inline bool float16_is_any_nan(float16 a) |
| { |
| return ((float16_val(a) & ~0x8000) > 0x7c00); |
| } |
| |
| static inline bool float16_is_neg(float16 a) |
| { |
| return float16_val(a) >> 15; |
| } |
| |
| static inline bool float16_is_infinity(float16 a) |
| { |
| return (float16_val(a) & 0x7fff) == 0x7c00; |
| } |
| |
| static inline bool float16_is_zero(float16 a) |
| { |
| return (float16_val(a) & 0x7fff) == 0; |
| } |
| |
| static inline bool float16_is_zero_or_denormal(float16 a) |
| { |
| return (float16_val(a) & 0x7c00) == 0; |
| } |
| |
| static inline bool float16_is_normal(float16 a) |
| { |
| return (((float16_val(a) >> 10) + 1) & 0x1f) >= 2; |
| } |
| |
| static inline float16 float16_abs(float16 a) |
| { |
| /* Note that abs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float16(float16_val(a) & 0x7fff); |
| } |
| |
| static inline float16 float16_chs(float16 a) |
| { |
| /* Note that chs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float16(float16_val(a) ^ 0x8000); |
| } |
| |
| static inline float16 float16_set_sign(float16 a, int sign) |
| { |
| return make_float16((float16_val(a) & 0x7fff) | (sign << 15)); |
| } |
| |
| static inline bool float16_eq(float16 a, float16 b, float_status *s) |
| { |
| return float16_compare(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool float16_le(float16 a, float16 b, float_status *s) |
| { |
| return float16_compare(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool float16_lt(float16 a, float16 b, float_status *s) |
| { |
| return float16_compare(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool float16_unordered(float16 a, float16 b, float_status *s) |
| { |
| return float16_compare(a, b, s) == float_relation_unordered; |
| } |
| |
| static inline bool float16_eq_quiet(float16 a, float16 b, float_status *s) |
| { |
| return float16_compare_quiet(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool float16_le_quiet(float16 a, float16 b, float_status *s) |
| { |
| return float16_compare_quiet(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool float16_lt_quiet(float16 a, float16 b, float_status *s) |
| { |
| return float16_compare_quiet(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool float16_unordered_quiet(float16 a, float16 b, |
| float_status *s) |
| { |
| return float16_compare_quiet(a, b, s) == float_relation_unordered; |
| } |
| |
| #define float16_zero make_float16(0) |
| #define float16_half make_float16(0x3800) |
| #define float16_one make_float16(0x3c00) |
| #define float16_one_point_five make_float16(0x3e00) |
| #define float16_two make_float16(0x4000) |
| #define float16_three make_float16(0x4200) |
| #define float16_infinity make_float16(0x7c00) |
| |
| /*---------------------------------------------------------------------------- |
| | Software bfloat16 conversion routines. |
| *----------------------------------------------------------------------------*/ |
| |
| bfloat16 bfloat16_round_to_int(bfloat16, float_status *status); |
| bfloat16 float32_to_bfloat16(float32, float_status *status); |
| float32 bfloat16_to_float32(bfloat16, float_status *status); |
| bfloat16 float64_to_bfloat16(float64 a, float_status *status); |
| float64 bfloat16_to_float64(bfloat16 a, float_status *status); |
| |
| int16_t bfloat16_to_int16_scalbn(bfloat16, FloatRoundMode, |
| int, float_status *status); |
| int32_t bfloat16_to_int32_scalbn(bfloat16, FloatRoundMode, |
| int, float_status *status); |
| int64_t bfloat16_to_int64_scalbn(bfloat16, FloatRoundMode, |
| int, float_status *status); |
| |
| int16_t bfloat16_to_int16(bfloat16, float_status *status); |
| int32_t bfloat16_to_int32(bfloat16, float_status *status); |
| int64_t bfloat16_to_int64(bfloat16, float_status *status); |
| |
| int16_t bfloat16_to_int16_round_to_zero(bfloat16, float_status *status); |
| int32_t bfloat16_to_int32_round_to_zero(bfloat16, float_status *status); |
| int64_t bfloat16_to_int64_round_to_zero(bfloat16, float_status *status); |
| |
| uint16_t bfloat16_to_uint16_scalbn(bfloat16 a, FloatRoundMode, |
| int, float_status *status); |
| uint32_t bfloat16_to_uint32_scalbn(bfloat16 a, FloatRoundMode, |
| int, float_status *status); |
| uint64_t bfloat16_to_uint64_scalbn(bfloat16 a, FloatRoundMode, |
| int, float_status *status); |
| |
| uint16_t bfloat16_to_uint16(bfloat16 a, float_status *status); |
| uint32_t bfloat16_to_uint32(bfloat16 a, float_status *status); |
| uint64_t bfloat16_to_uint64(bfloat16 a, float_status *status); |
| |
| uint16_t bfloat16_to_uint16_round_to_zero(bfloat16 a, float_status *status); |
| uint32_t bfloat16_to_uint32_round_to_zero(bfloat16 a, float_status *status); |
| uint64_t bfloat16_to_uint64_round_to_zero(bfloat16 a, float_status *status); |
| |
| bfloat16 int16_to_bfloat16_scalbn(int16_t a, int, float_status *status); |
| bfloat16 int32_to_bfloat16_scalbn(int32_t a, int, float_status *status); |
| bfloat16 int64_to_bfloat16_scalbn(int64_t a, int, float_status *status); |
| bfloat16 uint16_to_bfloat16_scalbn(uint16_t a, int, float_status *status); |
| bfloat16 uint32_to_bfloat16_scalbn(uint32_t a, int, float_status *status); |
| bfloat16 uint64_to_bfloat16_scalbn(uint64_t a, int, float_status *status); |
| |
| bfloat16 int16_to_bfloat16(int16_t a, float_status *status); |
| bfloat16 int32_to_bfloat16(int32_t a, float_status *status); |
| bfloat16 int64_to_bfloat16(int64_t a, float_status *status); |
| bfloat16 uint16_to_bfloat16(uint16_t a, float_status *status); |
| bfloat16 uint32_to_bfloat16(uint32_t a, float_status *status); |
| bfloat16 uint64_to_bfloat16(uint64_t a, float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software bfloat16 operations. |
| *----------------------------------------------------------------------------*/ |
| |
| bfloat16 bfloat16_add(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_sub(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_mul(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_div(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_muladd(bfloat16, bfloat16, bfloat16, int, |
| float_status *status); |
| float16 bfloat16_scalbn(bfloat16, int, float_status *status); |
| bfloat16 bfloat16_min(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_max(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_minnum(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_maxnum(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_minnummag(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_maxnummag(bfloat16, bfloat16, float_status *status); |
| bfloat16 bfloat16_sqrt(bfloat16, float_status *status); |
| FloatRelation bfloat16_compare(bfloat16, bfloat16, float_status *status); |
| FloatRelation bfloat16_compare_quiet(bfloat16, bfloat16, float_status *status); |
| |
| bool bfloat16_is_quiet_nan(bfloat16, float_status *status); |
| bool bfloat16_is_signaling_nan(bfloat16, float_status *status); |
| bfloat16 bfloat16_silence_nan(bfloat16, float_status *status); |
| bfloat16 bfloat16_default_nan(float_status *status); |
| |
| static inline bool bfloat16_is_any_nan(bfloat16 a) |
| { |
| return ((a & ~0x8000) > 0x7F80); |
| } |
| |
| static inline bool bfloat16_is_neg(bfloat16 a) |
| { |
| return a >> 15; |
| } |
| |
| static inline bool bfloat16_is_infinity(bfloat16 a) |
| { |
| return (a & 0x7fff) == 0x7F80; |
| } |
| |
| static inline bool bfloat16_is_zero(bfloat16 a) |
| { |
| return (a & 0x7fff) == 0; |
| } |
| |
| static inline bool bfloat16_is_zero_or_denormal(bfloat16 a) |
| { |
| return (a & 0x7F80) == 0; |
| } |
| |
| static inline bool bfloat16_is_normal(bfloat16 a) |
| { |
| return (((a >> 7) + 1) & 0xff) >= 2; |
| } |
| |
| static inline bfloat16 bfloat16_abs(bfloat16 a) |
| { |
| /* Note that abs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return a & 0x7fff; |
| } |
| |
| static inline bfloat16 bfloat16_chs(bfloat16 a) |
| { |
| /* Note that chs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return a ^ 0x8000; |
| } |
| |
| static inline bfloat16 bfloat16_set_sign(bfloat16 a, int sign) |
| { |
| return (a & 0x7fff) | (sign << 15); |
| } |
| |
| static inline bool bfloat16_eq(bfloat16 a, bfloat16 b, float_status *s) |
| { |
| return bfloat16_compare(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool bfloat16_le(bfloat16 a, bfloat16 b, float_status *s) |
| { |
| return bfloat16_compare(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool bfloat16_lt(bfloat16 a, bfloat16 b, float_status *s) |
| { |
| return bfloat16_compare(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool bfloat16_unordered(bfloat16 a, bfloat16 b, float_status *s) |
| { |
| return bfloat16_compare(a, b, s) == float_relation_unordered; |
| } |
| |
| static inline bool bfloat16_eq_quiet(bfloat16 a, bfloat16 b, float_status *s) |
| { |
| return bfloat16_compare_quiet(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool bfloat16_le_quiet(bfloat16 a, bfloat16 b, float_status *s) |
| { |
| return bfloat16_compare_quiet(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool bfloat16_lt_quiet(bfloat16 a, bfloat16 b, float_status *s) |
| { |
| return bfloat16_compare_quiet(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool bfloat16_unordered_quiet(bfloat16 a, bfloat16 b, |
| float_status *s) |
| { |
| return bfloat16_compare_quiet(a, b, s) == float_relation_unordered; |
| } |
| |
| #define bfloat16_zero 0 |
| #define bfloat16_half 0x3f00 |
| #define bfloat16_one 0x3f80 |
| #define bfloat16_one_point_five 0x3fc0 |
| #define bfloat16_two 0x4000 |
| #define bfloat16_three 0x4040 |
| #define bfloat16_infinity 0x7f80 |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for a default generated half-precision NaN. |
| *----------------------------------------------------------------------------*/ |
| float16 float16_default_nan(float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE single-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| |
| int16_t float32_to_int16_scalbn(float32, FloatRoundMode, int, float_status *); |
| int32_t float32_to_int32_scalbn(float32, FloatRoundMode, int, float_status *); |
| int64_t float32_to_int64_scalbn(float32, FloatRoundMode, int, float_status *); |
| |
| int16_t float32_to_int16(float32, float_status *status); |
| int32_t float32_to_int32(float32, float_status *status); |
| int64_t float32_to_int64(float32, float_status *status); |
| |
| int16_t float32_to_int16_round_to_zero(float32, float_status *status); |
| int32_t float32_to_int32_round_to_zero(float32, float_status *status); |
| int64_t float32_to_int64_round_to_zero(float32, float_status *status); |
| |
| uint16_t float32_to_uint16_scalbn(float32, FloatRoundMode, int, float_status *); |
| uint32_t float32_to_uint32_scalbn(float32, FloatRoundMode, int, float_status *); |
| uint64_t float32_to_uint64_scalbn(float32, FloatRoundMode, int, float_status *); |
| |
| uint16_t float32_to_uint16(float32, float_status *status); |
| uint32_t float32_to_uint32(float32, float_status *status); |
| uint64_t float32_to_uint64(float32, float_status *status); |
| |
| uint16_t float32_to_uint16_round_to_zero(float32, float_status *status); |
| uint32_t float32_to_uint32_round_to_zero(float32, float_status *status); |
| uint64_t float32_to_uint64_round_to_zero(float32, float_status *status); |
| |
| float64 float32_to_float64(float32, float_status *status); |
| floatx80 float32_to_floatx80(float32, float_status *status); |
| float128 float32_to_float128(float32, float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE single-precision operations. |
| *----------------------------------------------------------------------------*/ |
| float32 float32_round_to_int(float32, float_status *status); |
| float32 float32_add(float32, float32, float_status *status); |
| float32 float32_sub(float32, float32, float_status *status); |
| float32 float32_mul(float32, float32, float_status *status); |
| float32 float32_div(float32, float32, float_status *status); |
| float32 float32_rem(float32, float32, float_status *status); |
| float32 float32_muladd(float32, float32, float32, int, float_status *status); |
| float32 float32_sqrt(float32, float_status *status); |
| float32 float32_exp2(float32, float_status *status); |
| float32 float32_log2(float32, float_status *status); |
| FloatRelation float32_compare(float32, float32, float_status *status); |
| FloatRelation float32_compare_quiet(float32, float32, float_status *status); |
| float32 float32_min(float32, float32, float_status *status); |
| float32 float32_max(float32, float32, float_status *status); |
| float32 float32_minnum(float32, float32, float_status *status); |
| float32 float32_maxnum(float32, float32, float_status *status); |
| float32 float32_minnummag(float32, float32, float_status *status); |
| float32 float32_maxnummag(float32, float32, float_status *status); |
| bool float32_is_quiet_nan(float32, float_status *status); |
| bool float32_is_signaling_nan(float32, float_status *status); |
| float32 float32_silence_nan(float32, float_status *status); |
| float32 float32_scalbn(float32, int, float_status *status); |
| |
| static inline float32 float32_abs(float32 a) |
| { |
| /* Note that abs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float32(float32_val(a) & 0x7fffffff); |
| } |
| |
| static inline float32 float32_chs(float32 a) |
| { |
| /* Note that chs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float32(float32_val(a) ^ 0x80000000); |
| } |
| |
| static inline bool float32_is_infinity(float32 a) |
| { |
| return (float32_val(a) & 0x7fffffff) == 0x7f800000; |
| } |
| |
| static inline bool float32_is_neg(float32 a) |
| { |
| return float32_val(a) >> 31; |
| } |
| |
| static inline bool float32_is_zero(float32 a) |
| { |
| return (float32_val(a) & 0x7fffffff) == 0; |
| } |
| |
| static inline bool float32_is_any_nan(float32 a) |
| { |
| return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); |
| } |
| |
| static inline bool float32_is_zero_or_denormal(float32 a) |
| { |
| return (float32_val(a) & 0x7f800000) == 0; |
| } |
| |
| static inline bool float32_is_normal(float32 a) |
| { |
| return (((float32_val(a) >> 23) + 1) & 0xff) >= 2; |
| } |
| |
| static inline bool float32_is_denormal(float32 a) |
| { |
| return float32_is_zero_or_denormal(a) && !float32_is_zero(a); |
| } |
| |
| static inline bool float32_is_zero_or_normal(float32 a) |
| { |
| return float32_is_normal(a) || float32_is_zero(a); |
| } |
| |
| static inline float32 float32_set_sign(float32 a, int sign) |
| { |
| return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); |
| } |
| |
| static inline bool float32_eq(float32 a, float32 b, float_status *s) |
| { |
| return float32_compare(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool float32_le(float32 a, float32 b, float_status *s) |
| { |
| return float32_compare(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool float32_lt(float32 a, float32 b, float_status *s) |
| { |
| return float32_compare(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool float32_unordered(float32 a, float32 b, float_status *s) |
| { |
| return float32_compare(a, b, s) == float_relation_unordered; |
| } |
| |
| static inline bool float32_eq_quiet(float32 a, float32 b, float_status *s) |
| { |
| return float32_compare_quiet(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool float32_le_quiet(float32 a, float32 b, float_status *s) |
| { |
| return float32_compare_quiet(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool float32_lt_quiet(float32 a, float32 b, float_status *s) |
| { |
| return float32_compare_quiet(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool float32_unordered_quiet(float32 a, float32 b, |
| float_status *s) |
| { |
| return float32_compare_quiet(a, b, s) == float_relation_unordered; |
| } |
| |
| #define float32_zero make_float32(0) |
| #define float32_half make_float32(0x3f000000) |
| #define float32_one make_float32(0x3f800000) |
| #define float32_one_point_five make_float32(0x3fc00000) |
| #define float32_two make_float32(0x40000000) |
| #define float32_three make_float32(0x40400000) |
| #define float32_infinity make_float32(0x7f800000) |
| |
| /*---------------------------------------------------------------------------- |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into a |
| | single-precision floating-point value, returning the result. After being |
| | shifted into the proper positions, the three fields are simply added |
| | together to form the result. This means that any integer portion of `zSig' |
| | will be added into the exponent. Since a properly normalized significand |
| | will have an integer portion equal to 1, the `zExp' input should be 1 less |
| | than the desired result exponent whenever `zSig' is a complete, normalized |
| | significand. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline float32 packFloat32(bool zSign, int zExp, uint32_t zSig) |
| { |
| return make_float32( |
| (((uint32_t)zSign) << 31) + (((uint32_t)zExp) << 23) + zSig); |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for a default generated single-precision NaN. |
| *----------------------------------------------------------------------------*/ |
| float32 float32_default_nan(float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE double-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| |
| int16_t float64_to_int16_scalbn(float64, FloatRoundMode, int, float_status *); |
| int32_t float64_to_int32_scalbn(float64, FloatRoundMode, int, float_status *); |
| int64_t float64_to_int64_scalbn(float64, FloatRoundMode, int, float_status *); |
| |
| int16_t float64_to_int16(float64, float_status *status); |
| int32_t float64_to_int32(float64, float_status *status); |
| int64_t float64_to_int64(float64, float_status *status); |
| |
| int16_t float64_to_int16_round_to_zero(float64, float_status *status); |
| int32_t float64_to_int32_round_to_zero(float64, float_status *status); |
| int64_t float64_to_int64_round_to_zero(float64, float_status *status); |
| |
| uint16_t float64_to_uint16_scalbn(float64, FloatRoundMode, int, float_status *); |
| uint32_t float64_to_uint32_scalbn(float64, FloatRoundMode, int, float_status *); |
| uint64_t float64_to_uint64_scalbn(float64, FloatRoundMode, int, float_status *); |
| |
| uint16_t float64_to_uint16(float64, float_status *status); |
| uint32_t float64_to_uint32(float64, float_status *status); |
| uint64_t float64_to_uint64(float64, float_status *status); |
| |
| uint16_t float64_to_uint16_round_to_zero(float64, float_status *status); |
| uint32_t float64_to_uint32_round_to_zero(float64, float_status *status); |
| uint64_t float64_to_uint64_round_to_zero(float64, float_status *status); |
| |
| float32 float64_to_float32(float64, float_status *status); |
| floatx80 float64_to_floatx80(float64, float_status *status); |
| float128 float64_to_float128(float64, float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE double-precision operations. |
| *----------------------------------------------------------------------------*/ |
| float64 float64_round_to_int(float64, float_status *status); |
| float64 float64_add(float64, float64, float_status *status); |
| float64 float64_sub(float64, float64, float_status *status); |
| float64 float64_mul(float64, float64, float_status *status); |
| float64 float64_div(float64, float64, float_status *status); |
| float64 float64_rem(float64, float64, float_status *status); |
| float64 float64_muladd(float64, float64, float64, int, float_status *status); |
| float64 float64_sqrt(float64, float_status *status); |
| float64 float64_log2(float64, float_status *status); |
| FloatRelation float64_compare(float64, float64, float_status *status); |
| FloatRelation float64_compare_quiet(float64, float64, float_status *status); |
| float64 float64_min(float64, float64, float_status *status); |
| float64 float64_max(float64, float64, float_status *status); |
| float64 float64_minnum(float64, float64, float_status *status); |
| float64 float64_maxnum(float64, float64, float_status *status); |
| float64 float64_minnummag(float64, float64, float_status *status); |
| float64 float64_maxnummag(float64, float64, float_status *status); |
| bool float64_is_quiet_nan(float64 a, float_status *status); |
| bool float64_is_signaling_nan(float64, float_status *status); |
| float64 float64_silence_nan(float64, float_status *status); |
| float64 float64_scalbn(float64, int, float_status *status); |
| |
| static inline float64 float64_abs(float64 a) |
| { |
| /* Note that abs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float64(float64_val(a) & 0x7fffffffffffffffLL); |
| } |
| |
| static inline float64 float64_chs(float64 a) |
| { |
| /* Note that chs does *not* handle NaN specially, nor does |
| * it flush denormal inputs to zero. |
| */ |
| return make_float64(float64_val(a) ^ 0x8000000000000000LL); |
| } |
| |
| static inline bool float64_is_infinity(float64 a) |
| { |
| return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; |
| } |
| |
| static inline bool float64_is_neg(float64 a) |
| { |
| return float64_val(a) >> 63; |
| } |
| |
| static inline bool float64_is_zero(float64 a) |
| { |
| return (float64_val(a) & 0x7fffffffffffffffLL) == 0; |
| } |
| |
| static inline bool float64_is_any_nan(float64 a) |
| { |
| return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); |
| } |
| |
| static inline bool float64_is_zero_or_denormal(float64 a) |
| { |
| return (float64_val(a) & 0x7ff0000000000000LL) == 0; |
| } |
| |
| static inline bool float64_is_normal(float64 a) |
| { |
| return (((float64_val(a) >> 52) + 1) & 0x7ff) >= 2; |
| } |
| |
| static inline bool float64_is_denormal(float64 a) |
| { |
| return float64_is_zero_or_denormal(a) && !float64_is_zero(a); |
| } |
| |
| static inline bool float64_is_zero_or_normal(float64 a) |
| { |
| return float64_is_normal(a) || float64_is_zero(a); |
| } |
| |
| static inline float64 float64_set_sign(float64 a, int sign) |
| { |
| return make_float64((float64_val(a) & 0x7fffffffffffffffULL) |
| | ((int64_t)sign << 63)); |
| } |
| |
| static inline bool float64_eq(float64 a, float64 b, float_status *s) |
| { |
| return float64_compare(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool float64_le(float64 a, float64 b, float_status *s) |
| { |
| return float64_compare(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool float64_lt(float64 a, float64 b, float_status *s) |
| { |
| return float64_compare(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool float64_unordered(float64 a, float64 b, float_status *s) |
| { |
| return float64_compare(a, b, s) == float_relation_unordered; |
| } |
| |
| static inline bool float64_eq_quiet(float64 a, float64 b, float_status *s) |
| { |
| return float64_compare_quiet(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool float64_le_quiet(float64 a, float64 b, float_status *s) |
| { |
| return float64_compare_quiet(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool float64_lt_quiet(float64 a, float64 b, float_status *s) |
| { |
| return float64_compare_quiet(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool float64_unordered_quiet(float64 a, float64 b, |
| float_status *s) |
| { |
| return float64_compare_quiet(a, b, s) == float_relation_unordered; |
| } |
| |
| #define float64_zero make_float64(0) |
| #define float64_half make_float64(0x3fe0000000000000LL) |
| #define float64_one make_float64(0x3ff0000000000000LL) |
| #define float64_one_point_five make_float64(0x3FF8000000000000ULL) |
| #define float64_two make_float64(0x4000000000000000ULL) |
| #define float64_three make_float64(0x4008000000000000ULL) |
| #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) |
| #define float64_infinity make_float64(0x7ff0000000000000LL) |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for a default generated double-precision NaN. |
| *----------------------------------------------------------------------------*/ |
| float64 float64_default_nan(float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE extended double-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int32_t floatx80_to_int32(floatx80, float_status *status); |
| int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status); |
| int64_t floatx80_to_int64(floatx80, float_status *status); |
| int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status); |
| float32 floatx80_to_float32(floatx80, float_status *status); |
| float64 floatx80_to_float64(floatx80, float_status *status); |
| float128 floatx80_to_float128(floatx80, float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for an extended double-precision inf. |
| *----------------------------------------------------------------------------*/ |
| extern const floatx80 floatx80_infinity; |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE extended double-precision operations. |
| *----------------------------------------------------------------------------*/ |
| floatx80 floatx80_round(floatx80 a, float_status *status); |
| floatx80 floatx80_round_to_int(floatx80, float_status *status); |
| floatx80 floatx80_add(floatx80, floatx80, float_status *status); |
| floatx80 floatx80_sub(floatx80, floatx80, float_status *status); |
| floatx80 floatx80_mul(floatx80, floatx80, float_status *status); |
| floatx80 floatx80_div(floatx80, floatx80, float_status *status); |
| floatx80 floatx80_modrem(floatx80, floatx80, bool, uint64_t *, |
| float_status *status); |
| floatx80 floatx80_mod(floatx80, floatx80, float_status *status); |
| floatx80 floatx80_rem(floatx80, floatx80, float_status *status); |
| floatx80 floatx80_sqrt(floatx80, float_status *status); |
| FloatRelation floatx80_compare(floatx80, floatx80, float_status *status); |
| FloatRelation floatx80_compare_quiet(floatx80, floatx80, float_status *status); |
| int floatx80_is_quiet_nan(floatx80, float_status *status); |
| int floatx80_is_signaling_nan(floatx80, float_status *status); |
| floatx80 floatx80_silence_nan(floatx80, float_status *status); |
| floatx80 floatx80_scalbn(floatx80, int, float_status *status); |
| |
| static inline floatx80 floatx80_abs(floatx80 a) |
| { |
| a.high &= 0x7fff; |
| return a; |
| } |
| |
| static inline floatx80 floatx80_chs(floatx80 a) |
| { |
| a.high ^= 0x8000; |
| return a; |
| } |
| |
| static inline bool floatx80_is_infinity(floatx80 a) |
| { |
| #if defined(TARGET_M68K) |
| return (a.high & 0x7fff) == floatx80_infinity.high && !(a.low << 1); |
| #else |
| return (a.high & 0x7fff) == floatx80_infinity.high && |
| a.low == floatx80_infinity.low; |
| #endif |
| } |
| |
| static inline bool floatx80_is_neg(floatx80 a) |
| { |
| return a.high >> 15; |
| } |
| |
| static inline bool floatx80_is_zero(floatx80 a) |
| { |
| return (a.high & 0x7fff) == 0 && a.low == 0; |
| } |
| |
| static inline bool floatx80_is_zero_or_denormal(floatx80 a) |
| { |
| return (a.high & 0x7fff) == 0; |
| } |
| |
| static inline bool floatx80_is_any_nan(floatx80 a) |
| { |
| return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); |
| } |
| |
| static inline bool floatx80_eq(floatx80 a, floatx80 b, float_status *s) |
| { |
| return floatx80_compare(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool floatx80_le(floatx80 a, floatx80 b, float_status *s) |
| { |
| return floatx80_compare(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool floatx80_lt(floatx80 a, floatx80 b, float_status *s) |
| { |
| return floatx80_compare(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool floatx80_unordered(floatx80 a, floatx80 b, float_status *s) |
| { |
| return floatx80_compare(a, b, s) == float_relation_unordered; |
| } |
| |
| static inline bool floatx80_eq_quiet(floatx80 a, floatx80 b, float_status *s) |
| { |
| return floatx80_compare_quiet(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool floatx80_le_quiet(floatx80 a, floatx80 b, float_status *s) |
| { |
| return floatx80_compare_quiet(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool floatx80_lt_quiet(floatx80 a, floatx80 b, float_status *s) |
| { |
| return floatx80_compare_quiet(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool floatx80_unordered_quiet(floatx80 a, floatx80 b, |
| float_status *s) |
| { |
| return floatx80_compare_quiet(a, b, s) == float_relation_unordered; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Return whether the given value is an invalid floatx80 encoding. |
| | Invalid floatx80 encodings arise when the integer bit is not set, but |
| | the exponent is not zero. The only times the integer bit is permitted to |
| | be zero is in subnormal numbers and the value zero. |
| | This includes what the Intel software developer's manual calls pseudo-NaNs, |
| | pseudo-infinities and un-normal numbers. It does not include |
| | pseudo-denormals, which must still be correctly handled as inputs even |
| | if they are never generated as outputs. |
| *----------------------------------------------------------------------------*/ |
| static inline bool floatx80_invalid_encoding(floatx80 a) |
| { |
| #if defined(TARGET_M68K) |
| /*------------------------------------------------------------------------- |
| | With m68k, the explicit integer bit can be zero in the case of: |
| | - zeros (exp == 0, mantissa == 0) |
| | - denormalized numbers (exp == 0, mantissa != 0) |
| | - unnormalized numbers (exp != 0, exp < 0x7FFF) |
| | - infinities (exp == 0x7FFF, mantissa == 0) |
| | - not-a-numbers (exp == 0x7FFF, mantissa != 0) |
| | |
| | For infinities and NaNs, the explicit integer bit can be either one or |
| | zero. |
| | |
| | The IEEE 754 standard does not define a zero integer bit. Such a number |
| | is an unnormalized number. Hardware does not directly support |
| | denormalized and unnormalized numbers, but implicitly supports them by |
| | trapping them as unimplemented data types, allowing efficient conversion |
| | in software. |
| | |
| | See "M68000 FAMILY PROGRAMMER’S REFERENCE MANUAL", |
| | "1.6 FLOATING-POINT DATA TYPES" |
| *------------------------------------------------------------------------*/ |
| return false; |
| #else |
| return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0; |
| #endif |
| } |
| |
| #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) |
| #define floatx80_zero_init make_floatx80_init(0x0000, 0x0000000000000000LL) |
| #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) |
| #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) |
| #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) |
| #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the fraction bits of the extended double-precision floating-point |
| | value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline uint64_t extractFloatx80Frac(floatx80 a) |
| { |
| return a.low; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the exponent bits of the extended double-precision floating-point |
| | value `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline int32_t extractFloatx80Exp(floatx80 a) |
| { |
| return a.high & 0x7FFF; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Returns the sign bit of the extended double-precision floating-point value |
| | `a'. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline bool extractFloatx80Sign(floatx80 a) |
| { |
| return a.high >> 15; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Packs the sign `zSign', exponent `zExp', and significand `zSig' into an |
| | extended double-precision floating-point value, returning the result. |
| *----------------------------------------------------------------------------*/ |
| |
| static inline floatx80 packFloatx80(bool zSign, int32_t zExp, uint64_t zSig) |
| { |
| floatx80 z; |
| |
| z.low = zSig; |
| z.high = (((uint16_t)zSign) << 15) + zExp; |
| return z; |
| } |
| |
| /*---------------------------------------------------------------------------- |
| | Normalizes the subnormal extended double-precision floating-point value |
| | represented by the denormalized significand `aSig'. The normalized exponent |
| | and significand are stored at the locations pointed to by `zExpPtr' and |
| | `zSigPtr', respectively. |
| *----------------------------------------------------------------------------*/ |
| |
| void normalizeFloatx80Subnormal(uint64_t aSig, int32_t *zExpPtr, |
| uint64_t *zSigPtr); |
| |
| /*---------------------------------------------------------------------------- |
| | Takes two extended double-precision floating-point values `a' and `b', one |
| | of which is a NaN, and returns the appropriate NaN result. If either `a' or |
| | `b' is a signaling NaN, the invalid exception is raised. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 propagateFloatx80NaN(floatx80 a, floatx80 b, float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent `zExp', |
| | and extended significand formed by the concatenation of `zSig0' and `zSig1', |
| | and returns the proper extended double-precision floating-point value |
| | corresponding to the abstract input. Ordinarily, the abstract value is |
| | rounded and packed into the extended double-precision format, with the |
| | inexact exception raised if the abstract input cannot be represented |
| | exactly. However, if the abstract value is too large, the overflow and |
| | inexact exceptions are raised and an infinity or maximal finite value is |
| | returned. If the abstract value is too small, the input value is rounded to |
| | a subnormal number, and the underflow and inexact exceptions are raised if |
| | the abstract input cannot be represented exactly as a subnormal extended |
| | double-precision floating-point number. |
| | If `roundingPrecision' is 32 or 64, the result is rounded to the same |
| | number of bits as single or double precision, respectively. Otherwise, the |
| | result is rounded to the full precision of the extended double-precision |
| | format. |
| | The input significand must be normalized or smaller. If the input |
| | significand is not normalized, `zExp' must be 0; in that case, the result |
| | returned is a subnormal number, and it must not require rounding. The |
| | handling of underflow and overflow follows the IEC/IEEE Standard for Binary |
| | Floating-Point Arithmetic. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 roundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, bool zSign, |
| int32_t zExp, uint64_t zSig0, uint64_t zSig1, |
| float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Takes an abstract floating-point value having sign `zSign', exponent |
| | `zExp', and significand formed by the concatenation of `zSig0' and `zSig1', |
| | and returns the proper extended double-precision floating-point value |
| | corresponding to the abstract input. This routine is just like |
| | `roundAndPackFloatx80' except that the input significand does not have to be |
| | normalized. |
| *----------------------------------------------------------------------------*/ |
| |
| floatx80 normalizeRoundAndPackFloatx80(FloatX80RoundPrec roundingPrecision, |
| bool zSign, int32_t zExp, |
| uint64_t zSig0, uint64_t zSig1, |
| float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for a default generated extended double-precision NaN. |
| *----------------------------------------------------------------------------*/ |
| floatx80 floatx80_default_nan(float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE quadruple-precision conversion routines. |
| *----------------------------------------------------------------------------*/ |
| int32_t float128_to_int32(float128, float_status *status); |
| int32_t float128_to_int32_round_to_zero(float128, float_status *status); |
| int64_t float128_to_int64(float128, float_status *status); |
| int64_t float128_to_int64_round_to_zero(float128, float_status *status); |
| uint64_t float128_to_uint64(float128, float_status *status); |
| uint64_t float128_to_uint64_round_to_zero(float128, float_status *status); |
| uint32_t float128_to_uint32(float128, float_status *status); |
| uint32_t float128_to_uint32_round_to_zero(float128, float_status *status); |
| float32 float128_to_float32(float128, float_status *status); |
| float64 float128_to_float64(float128, float_status *status); |
| floatx80 float128_to_floatx80(float128, float_status *status); |
| |
| /*---------------------------------------------------------------------------- |
| | Software IEC/IEEE quadruple-precision operations. |
| *----------------------------------------------------------------------------*/ |
| float128 float128_round_to_int(float128, float_status *status); |
| float128 float128_add(float128, float128, float_status *status); |
| float128 float128_sub(float128, float128, float_status *status); |
| float128 float128_mul(float128, float128, float_status *status); |
| float128 float128_muladd(float128, float128, float128, int, |
| float_status *status); |
| float128 float128_div(float128, float128, float_status *status); |
| float128 float128_rem(float128, float128, float_status *status); |
| float128 float128_sqrt(float128, float_status *status); |
| FloatRelation float128_compare(float128, float128, float_status *status); |
| FloatRelation float128_compare_quiet(float128, float128, float_status *status); |
| float128 float128_min(float128, float128, float_status *status); |
| float128 float128_max(float128, float128, float_status *status); |
| float128 float128_minnum(float128, float128, float_status *status); |
| float128 float128_maxnum(float128, float128, float_status *status); |
| float128 float128_minnummag(float128, float128, float_status *status); |
| float128 float128_maxnummag(float128, float128, float_status *status); |
| bool float128_is_quiet_nan(float128, float_status *status); |
| bool float128_is_signaling_nan(float128, float_status *status); |
| float128 float128_silence_nan(float128, float_status *status); |
| float128 float128_scalbn(float128, int, float_status *status); |
| |
| static inline float128 float128_abs(float128 a) |
| { |
| a.high &= 0x7fffffffffffffffLL; |
| return a; |
| } |
| |
| static inline float128 float128_chs(float128 a) |
| { |
| a.high ^= 0x8000000000000000LL; |
| return a; |
| } |
| |
| static inline bool float128_is_infinity(float128 a) |
| { |
| return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; |
| } |
| |
| static inline bool float128_is_neg(float128 a) |
| { |
| return a.high >> 63; |
| } |
| |
| static inline bool float128_is_zero(float128 a) |
| { |
| return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; |
| } |
| |
| static inline bool float128_is_zero_or_denormal(float128 a) |
| { |
| return (a.high & 0x7fff000000000000LL) == 0; |
| } |
| |
| static inline bool float128_is_normal(float128 a) |
| { |
| return (((a.high >> 48) + 1) & 0x7fff) >= 2; |
| } |
| |
| static inline bool float128_is_denormal(float128 a) |
| { |
| return float128_is_zero_or_denormal(a) && !float128_is_zero(a); |
| } |
| |
| static inline bool float128_is_any_nan(float128 a) |
| { |
| return ((a.high >> 48) & 0x7fff) == 0x7fff && |
| ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); |
| } |
| |
| static inline bool float128_eq(float128 a, float128 b, float_status *s) |
| { |
| return float128_compare(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool float128_le(float128 a, float128 b, float_status *s) |
| { |
| return float128_compare(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool float128_lt(float128 a, float128 b, float_status *s) |
| { |
| return float128_compare(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool float128_unordered(float128 a, float128 b, float_status *s) |
| { |
| return float128_compare(a, b, s) == float_relation_unordered; |
| } |
| |
| static inline bool float128_eq_quiet(float128 a, float128 b, float_status *s) |
| { |
| return float128_compare_quiet(a, b, s) == float_relation_equal; |
| } |
| |
| static inline bool float128_le_quiet(float128 a, float128 b, float_status *s) |
| { |
| return float128_compare_quiet(a, b, s) <= float_relation_equal; |
| } |
| |
| static inline bool float128_lt_quiet(float128 a, float128 b, float_status *s) |
| { |
| return float128_compare_quiet(a, b, s) < float_relation_equal; |
| } |
| |
| static inline bool float128_unordered_quiet(float128 a, float128 b, |
| float_status *s) |
| { |
| return float128_compare_quiet(a, b, s) == float_relation_unordered; |
| } |
| |
| #define float128_zero make_float128(0, 0) |
| |
| /*---------------------------------------------------------------------------- |
| | The pattern for a default generated quadruple-precision NaN. |
| *----------------------------------------------------------------------------*/ |
| float128 float128_default_nan(float_status *status); |
| |
| #endif /* SOFTFLOAT_H */ |