blob: ff2fe154c144db89dc522c7c3671f09c32311b75 [file] [log] [blame]
/*
* CFI parallel flash with AMD command set emulation
*
* Copyright (c) 2005 Jocelyn Mayer
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
/*
* For now, this code can emulate flashes of 1, 2 or 4 bytes width.
* Supported commands/modes are:
* - flash read
* - flash write
* - flash ID read
* - sector erase
* - chip erase
* - unlock bypass command
* - CFI queries
*
* It does not support flash interleaving.
* It does not implement software data protection as found in many real chips
*/
#include "qemu/osdep.h"
#include "hw/block/block.h"
#include "hw/block/flash.h"
#include "hw/qdev-properties.h"
#include "hw/qdev-properties-system.h"
#include "qapi/error.h"
#include "qemu/error-report.h"
#include "qemu/bitmap.h"
#include "qemu/timer.h"
#include "sysemu/block-backend.h"
#include "qemu/host-utils.h"
#include "qemu/module.h"
#include "hw/sysbus.h"
#include "migration/vmstate.h"
#include "trace.h"
#define PFLASH_LAZY_ROMD_THRESHOLD 42
/*
* The size of the cfi_table indirectly depends on this and the start of the
* PRI table directly depends on it. 4 is the maximum size (and also what
* seems common) without changing the PRT table address.
*/
#define PFLASH_MAX_ERASE_REGIONS 4
/* Special write cycles for CFI queries. */
enum {
WCYCLE_CFI = 7,
WCYCLE_AUTOSELECT_CFI = 8,
};
struct PFlashCFI02 {
/*< private >*/
SysBusDevice parent_obj;
/*< public >*/
BlockBackend *blk;
uint32_t uniform_nb_blocs;
uint32_t uniform_sector_len;
uint32_t total_sectors;
uint32_t nb_blocs[PFLASH_MAX_ERASE_REGIONS];
uint32_t sector_len[PFLASH_MAX_ERASE_REGIONS];
uint32_t chip_len;
uint8_t mappings;
uint8_t width;
uint8_t be;
int wcycle; /* if 0, the flash is read normally */
int bypass;
int ro;
uint8_t cmd;
uint8_t status;
/* FIXME: implement array device properties */
uint16_t ident0;
uint16_t ident1;
uint16_t ident2;
uint16_t ident3;
uint16_t unlock_addr0;
uint16_t unlock_addr1;
uint8_t cfi_table[0x4d];
QEMUTimer timer;
/*
* The device replicates the flash memory across its memory space. Emulate
* that by having a container (.mem) filled with an array of aliases
* (.mem_mappings) pointing to the flash memory (.orig_mem).
*/
MemoryRegion mem;
MemoryRegion *mem_mappings; /* array; one per mapping */
MemoryRegion orig_mem;
bool rom_mode;
int read_counter; /* used for lazy switch-back to rom mode */
int sectors_to_erase;
uint64_t erase_time_remaining;
unsigned long *sector_erase_map;
char *name;
void *storage;
};
/*
* Toggle status bit DQ7.
*/
static inline void toggle_dq7(PFlashCFI02 *pfl)
{
pfl->status ^= 0x80;
}
/*
* Set status bit DQ7 to bit 7 of value.
*/
static inline void set_dq7(PFlashCFI02 *pfl, uint8_t value)
{
pfl->status &= 0x7F;
pfl->status |= value & 0x80;
}
/*
* Toggle status bit DQ6.
*/
static inline void toggle_dq6(PFlashCFI02 *pfl)
{
pfl->status ^= 0x40;
}
/*
* Turn on DQ3.
*/
static inline void assert_dq3(PFlashCFI02 *pfl)
{
pfl->status |= 0x08;
}
/*
* Turn off DQ3.
*/
static inline void reset_dq3(PFlashCFI02 *pfl)
{
pfl->status &= ~0x08;
}
/*
* Toggle status bit DQ2.
*/
static inline void toggle_dq2(PFlashCFI02 *pfl)
{
pfl->status ^= 0x04;
}
/*
* Set up replicated mappings of the same region.
*/
static void pflash_setup_mappings(PFlashCFI02 *pfl)
{
unsigned i;
hwaddr size = memory_region_size(&pfl->orig_mem);
memory_region_init(&pfl->mem, OBJECT(pfl), "pflash", pfl->mappings * size);
pfl->mem_mappings = g_new(MemoryRegion, pfl->mappings);
for (i = 0; i < pfl->mappings; ++i) {
memory_region_init_alias(&pfl->mem_mappings[i], OBJECT(pfl),
"pflash-alias", &pfl->orig_mem, 0, size);
memory_region_add_subregion(&pfl->mem, i * size, &pfl->mem_mappings[i]);
}
}
static void pflash_reset_state_machine(PFlashCFI02 *pfl)
{
trace_pflash_reset(pfl->name);
pfl->cmd = 0x00;
pfl->wcycle = 0;
}
static void pflash_mode_read_array(PFlashCFI02 *pfl)
{
trace_pflash_mode_read_array(pfl->name);
pflash_reset_state_machine(pfl);
pfl->rom_mode = true;
memory_region_rom_device_set_romd(&pfl->orig_mem, true);
}
static size_t pflash_regions_count(PFlashCFI02 *pfl)
{
return pfl->cfi_table[0x2c];
}
/*
* Returns the time it takes to erase the number of sectors scheduled for
* erasure based on CFI address 0x21 which is "Typical timeout per individual
* block erase 2^N ms."
*/
static uint64_t pflash_erase_time(PFlashCFI02 *pfl)
{
/*
* If there are no sectors to erase (which can happen if all of the sectors
* to be erased are protected), then erase takes 100 us. Protected sectors
* aren't supported so this should never happen.
*/
return ((1ULL << pfl->cfi_table[0x21]) * pfl->sectors_to_erase) * SCALE_US;
}
/*
* Returns true if the device is currently in erase suspend mode.
*/
static inline bool pflash_erase_suspend_mode(PFlashCFI02 *pfl)
{
return pfl->erase_time_remaining > 0;
}
static void pflash_timer(void *opaque)
{
PFlashCFI02 *pfl = opaque;
trace_pflash_timer_expired(pfl->name, pfl->cmd);
if (pfl->cmd == 0x30) {
/*
* Sector erase. If DQ3 is 0 when the timer expires, then the 50
* us erase timeout has expired so we need to start the timer for the
* sector erase algorithm. Otherwise, the erase completed and we should
* go back to read array mode.
*/
if ((pfl->status & 0x08) == 0) {
assert_dq3(pfl);
uint64_t timeout = pflash_erase_time(pfl);
timer_mod(&pfl->timer,
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
trace_pflash_erase_timeout(pfl->name, pfl->sectors_to_erase);
return;
}
trace_pflash_erase_complete(pfl->name);
bitmap_zero(pfl->sector_erase_map, pfl->total_sectors);
pfl->sectors_to_erase = 0;
reset_dq3(pfl);
}
/* Reset flash */
toggle_dq7(pfl);
if (pfl->bypass) {
pfl->wcycle = 2;
pfl->cmd = 0;
} else {
pflash_mode_read_array(pfl);
}
}
/*
* Read data from flash.
*/
static uint64_t pflash_data_read(PFlashCFI02 *pfl, hwaddr offset,
unsigned int width)
{
uint8_t *p = (uint8_t *)pfl->storage + offset;
uint64_t ret = pfl->be ? ldn_be_p(p, width) : ldn_le_p(p, width);
trace_pflash_data_read(pfl->name, offset, width, ret);
return ret;
}
typedef struct {
uint32_t len;
uint32_t num;
} SectorInfo;
/*
* offset should be a byte offset of the QEMU device and _not_ a device
* offset.
*/
static SectorInfo pflash_sector_info(PFlashCFI02 *pfl, hwaddr offset)
{
assert(offset < pfl->chip_len);
hwaddr addr = 0;
uint32_t sector_num = 0;
for (int i = 0; i < pflash_regions_count(pfl); ++i) {
uint64_t region_size = (uint64_t)pfl->nb_blocs[i] * pfl->sector_len[i];
if (addr <= offset && offset < addr + region_size) {
return (SectorInfo) {
.len = pfl->sector_len[i],
.num = sector_num + (offset - addr) / pfl->sector_len[i],
};
}
sector_num += pfl->nb_blocs[i];
addr += region_size;
}
abort();
}
/*
* Returns true if the offset refers to a flash sector that is currently being
* erased.
*/
static bool pflash_sector_is_erasing(PFlashCFI02 *pfl, hwaddr offset)
{
long sector_num = pflash_sector_info(pfl, offset).num;
return test_bit(sector_num, pfl->sector_erase_map);
}
static uint64_t pflash_read(void *opaque, hwaddr offset, unsigned int width)
{
PFlashCFI02 *pfl = opaque;
hwaddr boff;
uint64_t ret;
/* Lazy reset to ROMD mode after a certain amount of read accesses */
if (!pfl->rom_mode && pfl->wcycle == 0 &&
++pfl->read_counter > PFLASH_LAZY_ROMD_THRESHOLD) {
pflash_mode_read_array(pfl);
}
offset &= pfl->chip_len - 1;
boff = offset & 0xFF;
if (pfl->width == 2) {
boff = boff >> 1;
} else if (pfl->width == 4) {
boff = boff >> 2;
}
switch (pfl->cmd) {
default:
/* This should never happen : reset state & treat it as a read*/
trace_pflash_read_unknown_state(pfl->name, pfl->cmd);
pflash_reset_state_machine(pfl);
/* fall through to the read code */
case 0x80: /* Erase (unlock) */
/* We accept reads during second unlock sequence... */
case 0x00:
if (pflash_erase_suspend_mode(pfl) &&
pflash_sector_is_erasing(pfl, offset)) {
/* Toggle bit 2, but not 6. */
toggle_dq2(pfl);
/* Status register read */
ret = pfl->status;
trace_pflash_read_status(pfl->name, ret);
break;
}
/* Flash area read */
ret = pflash_data_read(pfl, offset, width);
break;
case 0x90: /* flash ID read */
switch (boff) {
case 0x00:
case 0x01:
ret = boff & 0x01 ? pfl->ident1 : pfl->ident0;
break;
case 0x02:
ret = 0x00; /* Pretend all sectors are unprotected */
break;
case 0x0E:
case 0x0F:
ret = boff & 0x01 ? pfl->ident3 : pfl->ident2;
if (ret != (uint8_t)-1) {
break;
}
/* Fall through to data read. */
default:
ret = pflash_data_read(pfl, offset, width);
}
trace_pflash_read_done(pfl->name, boff, ret);
break;
case 0x10: /* Chip Erase */
case 0x30: /* Sector Erase */
/* Toggle bit 2 during erase, but not program. */
toggle_dq2(pfl);
/* fall through */
case 0xA0: /* Program */
/* Toggle bit 6 */
toggle_dq6(pfl);
/* Status register read */
ret = pfl->status;
trace_pflash_read_status(pfl->name, ret);
break;
case 0x98:
/* CFI query mode */
if (boff < sizeof(pfl->cfi_table)) {
ret = pfl->cfi_table[boff];
} else {
ret = 0;
}
break;
}
trace_pflash_io_read(pfl->name, offset, width, ret, pfl->cmd, pfl->wcycle);
return ret;
}
/* update flash content on disk */
static void pflash_update(PFlashCFI02 *pfl, int offset, int size)
{
int offset_end;
int ret;
if (pfl->blk) {
offset_end = offset + size;
/* widen to sector boundaries */
offset = QEMU_ALIGN_DOWN(offset, BDRV_SECTOR_SIZE);
offset_end = QEMU_ALIGN_UP(offset_end, BDRV_SECTOR_SIZE);
ret = blk_pwrite(pfl->blk, offset, offset_end - offset,
pfl->storage + offset, 0);
if (ret < 0) {
/* TODO set error bit in status */
error_report("Could not update PFLASH: %s", strerror(-ret));
}
}
}
static void pflash_sector_erase(PFlashCFI02 *pfl, hwaddr offset)
{
SectorInfo sector_info = pflash_sector_info(pfl, offset);
uint64_t sector_len = sector_info.len;
offset &= ~(sector_len - 1);
trace_pflash_sector_erase_start(pfl->name, pfl->width * 2, offset,
pfl->width * 2, offset + sector_len - 1);
if (!pfl->ro) {
uint8_t *p = pfl->storage;
memset(p + offset, 0xff, sector_len);
pflash_update(pfl, offset, sector_len);
}
set_dq7(pfl, 0x00);
++pfl->sectors_to_erase;
set_bit(sector_info.num, pfl->sector_erase_map);
/* Set (or reset) the 50 us timer for additional erase commands. */
timer_mod(&pfl->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + 50000);
}
static void pflash_write(void *opaque, hwaddr offset, uint64_t value,
unsigned int width)
{
PFlashCFI02 *pfl = opaque;
hwaddr boff;
uint8_t *p;
uint8_t cmd;
trace_pflash_io_write(pfl->name, offset, width, value, pfl->wcycle);
cmd = value;
if (pfl->cmd != 0xA0) {
/* Reset does nothing during chip erase and sector erase. */
if (cmd == 0xF0 && pfl->cmd != 0x10 && pfl->cmd != 0x30) {
if (pfl->wcycle == WCYCLE_AUTOSELECT_CFI) {
/* Return to autoselect mode. */
pfl->wcycle = 3;
pfl->cmd = 0x90;
return;
}
goto reset_flash;
}
}
offset &= pfl->chip_len - 1;
boff = offset;
if (pfl->width == 2) {
boff = boff >> 1;
} else if (pfl->width == 4) {
boff = boff >> 2;
}
/* Only the least-significant 11 bits are used in most cases. */
boff &= 0x7FF;
switch (pfl->wcycle) {
case 0:
/* Set the device in I/O access mode if required */
if (pfl->rom_mode) {
pfl->rom_mode = false;
memory_region_rom_device_set_romd(&pfl->orig_mem, false);
}
pfl->read_counter = 0;
/* We're in read mode */
check_unlock0:
if (boff == 0x55 && cmd == 0x98) {
/* Enter CFI query mode */
pfl->wcycle = WCYCLE_CFI;
pfl->cmd = 0x98;
return;
}
/* Handle erase resume in erase suspend mode, otherwise reset. */
if (cmd == 0x30) { /* Erase Resume */
if (pflash_erase_suspend_mode(pfl)) {
/* Resume the erase. */
timer_mod(&pfl->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
pfl->erase_time_remaining);
pfl->erase_time_remaining = 0;
pfl->wcycle = 6;
pfl->cmd = 0x30;
set_dq7(pfl, 0x00);
assert_dq3(pfl);
return;
}
goto reset_flash;
}
/* Ignore erase suspend. */
if (cmd == 0xB0) { /* Erase Suspend */
return;
}
if (boff != pfl->unlock_addr0 || cmd != 0xAA) {
trace_pflash_unlock0_failed(pfl->name, boff,
cmd, pfl->unlock_addr0);
goto reset_flash;
}
trace_pflash_write(pfl->name, "unlock sequence started");
break;
case 1:
/* We started an unlock sequence */
check_unlock1:
if (boff != pfl->unlock_addr1 || cmd != 0x55) {
trace_pflash_unlock1_failed(pfl->name, boff, cmd);
goto reset_flash;
}
trace_pflash_write(pfl->name, "unlock sequence done");
break;
case 2:
/* We finished an unlock sequence */
if (!pfl->bypass && boff != pfl->unlock_addr0) {
trace_pflash_write_failed(pfl->name, boff, cmd);
goto reset_flash;
}
switch (cmd) {
case 0x20:
pfl->bypass = 1;
goto do_bypass;
case 0x80: /* Erase */
case 0x90: /* Autoselect */
case 0xA0: /* Program */
pfl->cmd = cmd;
trace_pflash_write_start(pfl->name, cmd);
break;
default:
trace_pflash_write_unknown(pfl->name, cmd);
goto reset_flash;
}
break;
case 3:
switch (pfl->cmd) {
case 0x80: /* Erase */
/* We need another unlock sequence */
goto check_unlock0;
case 0xA0: /* Program */
if (pflash_erase_suspend_mode(pfl) &&
pflash_sector_is_erasing(pfl, offset)) {
/* Ignore writes to erasing sectors. */
if (pfl->bypass) {
goto do_bypass;
}
goto reset_flash;
}
trace_pflash_data_write(pfl->name, offset, width, value, 0);
if (!pfl->ro) {
p = (uint8_t *)pfl->storage + offset;
if (pfl->be) {
uint64_t current = ldn_be_p(p, width);
stn_be_p(p, width, current & value);
} else {
uint64_t current = ldn_le_p(p, width);
stn_le_p(p, width, current & value);
}
pflash_update(pfl, offset, width);
}
/*
* While programming, status bit DQ7 should hold the opposite
* value from how it was programmed.
*/
set_dq7(pfl, ~value);
/* Let's pretend write is immediate */
if (pfl->bypass)
goto do_bypass;
goto reset_flash;
case 0x90: /* Autoselect */
if (pfl->bypass && cmd == 0x00) {
/* Unlock bypass reset */
goto reset_flash;
}
/*
* We can enter CFI query mode from autoselect mode, but we must
* return to autoselect mode after a reset.
*/
if (boff == 0x55 && cmd == 0x98) {
/* Enter autoselect CFI query mode */
pfl->wcycle = WCYCLE_AUTOSELECT_CFI;
pfl->cmd = 0x98;
return;
}
/* fall through */
default:
trace_pflash_write_invalid(pfl->name, pfl->cmd);
goto reset_flash;
}
case 4:
switch (pfl->cmd) {
case 0xA0: /* Program */
/* Ignore writes while flash data write is occurring */
/* As we suppose write is immediate, this should never happen */
return;
case 0x80: /* Erase */
goto check_unlock1;
default:
/* Should never happen */
trace_pflash_write_invalid_state(pfl->name, pfl->cmd, 5);
goto reset_flash;
}
break;
case 5:
if (pflash_erase_suspend_mode(pfl)) {
/* Erasing is not supported in erase suspend mode. */
goto reset_flash;
}
switch (cmd) {
case 0x10: /* Chip Erase */
if (boff != pfl->unlock_addr0) {
trace_pflash_chip_erase_invalid(pfl->name, offset);
goto reset_flash;
}
/* Chip erase */
trace_pflash_chip_erase_start(pfl->name);
if (!pfl->ro) {
memset(pfl->storage, 0xff, pfl->chip_len);
pflash_update(pfl, 0, pfl->chip_len);
}
set_dq7(pfl, 0x00);
/* Wait the time specified at CFI address 0x22. */
timer_mod(&pfl->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
(1ULL << pfl->cfi_table[0x22]) * SCALE_MS);
break;
case 0x30: /* Sector erase */
pflash_sector_erase(pfl, offset);
break;
default:
trace_pflash_write_invalid_command(pfl->name, cmd);
goto reset_flash;
}
pfl->cmd = cmd;
break;
case 6:
switch (pfl->cmd) {
case 0x10: /* Chip Erase */
/* Ignore writes during chip erase */
return;
case 0x30: /* Sector erase */
if (cmd == 0xB0) {
/*
* If erase suspend happens during the erase timeout (so DQ3 is
* 0), then the device suspends erasing immediately. Set the
* remaining time to be the total time to erase. Otherwise,
* there is a maximum amount of time it can take to enter
* suspend mode. Let's ignore that and suspend immediately and
* set the remaining time to the actual time remaining on the
* timer.
*/
if ((pfl->status & 0x08) == 0) {
pfl->erase_time_remaining = pflash_erase_time(pfl);
} else {
int64_t delta = timer_expire_time_ns(&pfl->timer) -
qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
/* Make sure we have a positive time remaining. */
pfl->erase_time_remaining = delta <= 0 ? 1 : delta;
}
reset_dq3(pfl);
timer_del(&pfl->timer);
pflash_reset_state_machine(pfl);
return;
}
/*
* If DQ3 is 0, additional sector erase commands can be
* written and anything else (other than an erase suspend) resets
* the device.
*/
if ((pfl->status & 0x08) == 0) {
if (cmd == 0x30) {
pflash_sector_erase(pfl, offset);
} else {
goto reset_flash;
}
}
/* Ignore writes during the actual erase. */
return;
default:
/* Should never happen */
trace_pflash_write_invalid_state(pfl->name, pfl->cmd, 6);
goto reset_flash;
}
break;
/* Special values for CFI queries */
case WCYCLE_CFI:
case WCYCLE_AUTOSELECT_CFI:
trace_pflash_write(pfl->name, "invalid write in CFI query mode");
goto reset_flash;
default:
/* Should never happen */
trace_pflash_write(pfl->name, "invalid write state (wc 7)");
goto reset_flash;
}
pfl->wcycle++;
return;
/* Reset flash */
reset_flash:
pfl->bypass = 0;
pflash_reset_state_machine(pfl);
return;
do_bypass:
pfl->wcycle = 2;
pfl->cmd = 0;
}
static const MemoryRegionOps pflash_cfi02_ops = {
.read = pflash_read,
.write = pflash_write,
.valid.min_access_size = 1,
.valid.max_access_size = 4,
.endianness = DEVICE_NATIVE_ENDIAN,
};
static void pflash_cfi02_fill_cfi_table(PFlashCFI02 *pfl, int nb_regions)
{
/* Hardcoded CFI table (mostly from SG29 Spansion flash) */
const uint16_t pri_ofs = 0x40;
/* Standard "QRY" string */
pfl->cfi_table[0x10] = 'Q';
pfl->cfi_table[0x11] = 'R';
pfl->cfi_table[0x12] = 'Y';
/* Command set (AMD/Fujitsu) */
pfl->cfi_table[0x13] = 0x02;
pfl->cfi_table[0x14] = 0x00;
/* Primary extended table address */
pfl->cfi_table[0x15] = pri_ofs;
pfl->cfi_table[0x16] = pri_ofs >> 8;
/* Alternate command set (none) */
pfl->cfi_table[0x17] = 0x00;
pfl->cfi_table[0x18] = 0x00;
/* Alternate extended table (none) */
pfl->cfi_table[0x19] = 0x00;
pfl->cfi_table[0x1A] = 0x00;
/* Vcc min */
pfl->cfi_table[0x1B] = 0x27;
/* Vcc max */
pfl->cfi_table[0x1C] = 0x36;
/* Vpp min (no Vpp pin) */
pfl->cfi_table[0x1D] = 0x00;
/* Vpp max (no Vpp pin) */
pfl->cfi_table[0x1E] = 0x00;
/* Timeout per single byte/word write (128 ms) */
pfl->cfi_table[0x1F] = 0x07;
/* Timeout for min size buffer write (NA) */
pfl->cfi_table[0x20] = 0x00;
/* Typical timeout for block erase (512 ms) */
pfl->cfi_table[0x21] = 0x09;
/* Typical timeout for full chip erase (4096 ms) */
pfl->cfi_table[0x22] = 0x0C;
/* Reserved */
pfl->cfi_table[0x23] = 0x01;
/* Max timeout for buffer write (NA) */
pfl->cfi_table[0x24] = 0x00;
/* Max timeout for block erase */
pfl->cfi_table[0x25] = 0x0A;
/* Max timeout for chip erase */
pfl->cfi_table[0x26] = 0x0D;
/* Device size */
pfl->cfi_table[0x27] = ctz32(pfl->chip_len);
/* Flash device interface (8 & 16 bits) */
pfl->cfi_table[0x28] = 0x02;
pfl->cfi_table[0x29] = 0x00;
/* Max number of bytes in multi-bytes write */
/*
* XXX: disable buffered write as it's not supported
* pfl->cfi_table[0x2A] = 0x05;
*/
pfl->cfi_table[0x2A] = 0x00;
pfl->cfi_table[0x2B] = 0x00;
/* Number of erase block regions */
pfl->cfi_table[0x2c] = nb_regions;
/* Erase block regions */
for (int i = 0; i < nb_regions; ++i) {
uint32_t sector_len_per_device = pfl->sector_len[i];
pfl->cfi_table[0x2d + 4 * i] = pfl->nb_blocs[i] - 1;
pfl->cfi_table[0x2e + 4 * i] = (pfl->nb_blocs[i] - 1) >> 8;
pfl->cfi_table[0x2f + 4 * i] = sector_len_per_device >> 8;
pfl->cfi_table[0x30 + 4 * i] = sector_len_per_device >> 16;
}
assert(0x2c + 4 * nb_regions < pri_ofs);
/* Extended */
pfl->cfi_table[0x00 + pri_ofs] = 'P';
pfl->cfi_table[0x01 + pri_ofs] = 'R';
pfl->cfi_table[0x02 + pri_ofs] = 'I';
/* Extended version 1.0 */
pfl->cfi_table[0x03 + pri_ofs] = '1';
pfl->cfi_table[0x04 + pri_ofs] = '0';
/* Address sensitive unlock required. */
pfl->cfi_table[0x05 + pri_ofs] = 0x00;
/* Erase suspend to read/write. */
pfl->cfi_table[0x06 + pri_ofs] = 0x02;
/* Sector protect not supported. */
pfl->cfi_table[0x07 + pri_ofs] = 0x00;
/* Temporary sector unprotect not supported. */
pfl->cfi_table[0x08 + pri_ofs] = 0x00;
/* Sector protect/unprotect scheme. */
pfl->cfi_table[0x09 + pri_ofs] = 0x00;
/* Simultaneous operation not supported. */
pfl->cfi_table[0x0a + pri_ofs] = 0x00;
/* Burst mode not supported. */
pfl->cfi_table[0x0b + pri_ofs] = 0x00;
/* Page mode not supported. */
pfl->cfi_table[0x0c + pri_ofs] = 0x00;
assert(0x0c + pri_ofs < ARRAY_SIZE(pfl->cfi_table));
}
static void pflash_cfi02_realize(DeviceState *dev, Error **errp)
{
ERRP_GUARD();
PFlashCFI02 *pfl = PFLASH_CFI02(dev);
int ret;
if (pfl->uniform_sector_len == 0 && pfl->sector_len[0] == 0) {
error_setg(errp, "attribute \"sector-length\" not specified or zero.");
return;
}
if (pfl->uniform_nb_blocs == 0 && pfl->nb_blocs[0] == 0) {
error_setg(errp, "attribute \"num-blocks\" not specified or zero.");
return;
}
if (pfl->name == NULL) {
error_setg(errp, "attribute \"name\" not specified.");
return;
}
int nb_regions;
pfl->chip_len = 0;
pfl->total_sectors = 0;
for (nb_regions = 0; nb_regions < PFLASH_MAX_ERASE_REGIONS; ++nb_regions) {
if (pfl->nb_blocs[nb_regions] == 0) {
break;
}
pfl->total_sectors += pfl->nb_blocs[nb_regions];
uint64_t sector_len_per_device = pfl->sector_len[nb_regions];
/*
* The size of each flash sector must be a power of 2 and it must be
* aligned at the same power of 2.
*/
if (sector_len_per_device & 0xff ||
sector_len_per_device >= (1 << 24) ||
!is_power_of_2(sector_len_per_device))
{
error_setg(errp, "unsupported configuration: "
"sector length[%d] per device = %" PRIx64 ".",
nb_regions, sector_len_per_device);
return;
}
if (pfl->chip_len & (sector_len_per_device - 1)) {
error_setg(errp, "unsupported configuration: "
"flash region %d not correctly aligned.",
nb_regions);
return;
}
pfl->chip_len += (uint64_t)pfl->sector_len[nb_regions] *
pfl->nb_blocs[nb_regions];
}
uint64_t uniform_len = (uint64_t)pfl->uniform_nb_blocs *
pfl->uniform_sector_len;
if (nb_regions == 0) {
nb_regions = 1;
pfl->nb_blocs[0] = pfl->uniform_nb_blocs;
pfl->sector_len[0] = pfl->uniform_sector_len;
pfl->chip_len = uniform_len;
pfl->total_sectors = pfl->uniform_nb_blocs;
} else if (uniform_len != 0 && uniform_len != pfl->chip_len) {
error_setg(errp, "\"num-blocks\"*\"sector-length\" "
"different from \"num-blocks0\"*\'sector-length0\" + ... + "
"\"num-blocks3\"*\"sector-length3\"");
return;
}
if (!is_power_of_2(pfl->chip_len)) {
error_setg(errp, "Device size must be a power of two.");
return;
}
memory_region_init_rom_device(&pfl->orig_mem, OBJECT(pfl),
&pflash_cfi02_ops, pfl, pfl->name,
pfl->chip_len, errp);
if (*errp) {
return;
}
pfl->storage = memory_region_get_ram_ptr(&pfl->orig_mem);
if (pfl->blk) {
uint64_t perm;
pfl->ro = !blk_supports_write_perm(pfl->blk);
perm = BLK_PERM_CONSISTENT_READ | (pfl->ro ? 0 : BLK_PERM_WRITE);
ret = blk_set_perm(pfl->blk, perm, BLK_PERM_ALL, errp);
if (ret < 0) {
return;
}
} else {
pfl->ro = 0;
}
if (pfl->blk) {
if (!blk_check_size_and_read_all(pfl->blk, pfl->storage,
pfl->chip_len, errp)) {
vmstate_unregister_ram(&pfl->orig_mem, DEVICE(pfl));
return;
}
}
/* Only 11 bits are used in the comparison. */
pfl->unlock_addr0 &= 0x7FF;
pfl->unlock_addr1 &= 0x7FF;
/* Allocate memory for a bitmap for sectors being erased. */
pfl->sector_erase_map = bitmap_new(pfl->total_sectors);
pfl->rom_mode = true;
if (pfl->mappings > 1) {
pflash_setup_mappings(pfl);
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->mem);
} else {
sysbus_init_mmio(SYS_BUS_DEVICE(dev), &pfl->orig_mem);
}
timer_init_ns(&pfl->timer, QEMU_CLOCK_VIRTUAL, pflash_timer, pfl);
pfl->status = 0;
pflash_cfi02_fill_cfi_table(pfl, nb_regions);
}
static void pflash_cfi02_reset(DeviceState *dev)
{
PFlashCFI02 *pfl = PFLASH_CFI02(dev);
pflash_reset_state_machine(pfl);
}
static Property pflash_cfi02_properties[] = {
DEFINE_PROP_DRIVE("drive", PFlashCFI02, blk),
DEFINE_PROP_UINT32("num-blocks", PFlashCFI02, uniform_nb_blocs, 0),
DEFINE_PROP_UINT32("sector-length", PFlashCFI02, uniform_sector_len, 0),
DEFINE_PROP_UINT32("num-blocks0", PFlashCFI02, nb_blocs[0], 0),
DEFINE_PROP_UINT32("sector-length0", PFlashCFI02, sector_len[0], 0),
DEFINE_PROP_UINT32("num-blocks1", PFlashCFI02, nb_blocs[1], 0),
DEFINE_PROP_UINT32("sector-length1", PFlashCFI02, sector_len[1], 0),
DEFINE_PROP_UINT32("num-blocks2", PFlashCFI02, nb_blocs[2], 0),
DEFINE_PROP_UINT32("sector-length2", PFlashCFI02, sector_len[2], 0),
DEFINE_PROP_UINT32("num-blocks3", PFlashCFI02, nb_blocs[3], 0),
DEFINE_PROP_UINT32("sector-length3", PFlashCFI02, sector_len[3], 0),
DEFINE_PROP_UINT8("width", PFlashCFI02, width, 0),
DEFINE_PROP_UINT8("mappings", PFlashCFI02, mappings, 0),
DEFINE_PROP_UINT8("big-endian", PFlashCFI02, be, 0),
DEFINE_PROP_UINT16("id0", PFlashCFI02, ident0, 0),
DEFINE_PROP_UINT16("id1", PFlashCFI02, ident1, 0),
DEFINE_PROP_UINT16("id2", PFlashCFI02, ident2, 0),
DEFINE_PROP_UINT16("id3", PFlashCFI02, ident3, 0),
DEFINE_PROP_UINT16("unlock-addr0", PFlashCFI02, unlock_addr0, 0),
DEFINE_PROP_UINT16("unlock-addr1", PFlashCFI02, unlock_addr1, 0),
DEFINE_PROP_STRING("name", PFlashCFI02, name),
DEFINE_PROP_END_OF_LIST(),
};
static void pflash_cfi02_unrealize(DeviceState *dev)
{
PFlashCFI02 *pfl = PFLASH_CFI02(dev);
timer_del(&pfl->timer);
g_free(pfl->sector_erase_map);
}
static void pflash_cfi02_class_init(ObjectClass *klass, void *data)
{
DeviceClass *dc = DEVICE_CLASS(klass);
dc->realize = pflash_cfi02_realize;
dc->reset = pflash_cfi02_reset;
dc->unrealize = pflash_cfi02_unrealize;
device_class_set_props(dc, pflash_cfi02_properties);
set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
}
static const TypeInfo pflash_cfi02_info = {
.name = TYPE_PFLASH_CFI02,
.parent = TYPE_SYS_BUS_DEVICE,
.instance_size = sizeof(PFlashCFI02),
.class_init = pflash_cfi02_class_init,
};
static void pflash_cfi02_register_types(void)
{
type_register_static(&pflash_cfi02_info);
}
type_init(pflash_cfi02_register_types)
PFlashCFI02 *pflash_cfi02_register(hwaddr base,
const char *name,
hwaddr size,
BlockBackend *blk,
uint32_t sector_len,
int nb_mappings, int width,
uint16_t id0, uint16_t id1,
uint16_t id2, uint16_t id3,
uint16_t unlock_addr0,
uint16_t unlock_addr1,
int be)
{
DeviceState *dev = qdev_new(TYPE_PFLASH_CFI02);
if (blk) {
qdev_prop_set_drive(dev, "drive", blk);
}
assert(QEMU_IS_ALIGNED(size, sector_len));
qdev_prop_set_uint32(dev, "num-blocks", size / sector_len);
qdev_prop_set_uint32(dev, "sector-length", sector_len);
qdev_prop_set_uint8(dev, "width", width);
qdev_prop_set_uint8(dev, "mappings", nb_mappings);
qdev_prop_set_uint8(dev, "big-endian", !!be);
qdev_prop_set_uint16(dev, "id0", id0);
qdev_prop_set_uint16(dev, "id1", id1);
qdev_prop_set_uint16(dev, "id2", id2);
qdev_prop_set_uint16(dev, "id3", id3);
qdev_prop_set_uint16(dev, "unlock-addr0", unlock_addr0);
qdev_prop_set_uint16(dev, "unlock-addr1", unlock_addr1);
qdev_prop_set_string(dev, "name", name);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_mmio_map(SYS_BUS_DEVICE(dev), 0, base);
return PFLASH_CFI02(dev);
}