| /* |
| * ARM v8.5-MemTag Operations |
| * |
| * Copyright (c) 2020 Linaro, Ltd. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "exec/exec-all.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/helper-proto.h" |
| |
| |
| static int choose_nonexcluded_tag(int tag, int offset, uint16_t exclude) |
| { |
| if (exclude == 0xffff) { |
| return 0; |
| } |
| if (offset == 0) { |
| while (exclude & (1 << tag)) { |
| tag = (tag + 1) & 15; |
| } |
| } else { |
| do { |
| do { |
| tag = (tag + 1) & 15; |
| } while (exclude & (1 << tag)); |
| } while (--offset > 0); |
| } |
| return tag; |
| } |
| |
| /** |
| * allocation_tag_mem: |
| * @env: the cpu environment |
| * @ptr_mmu_idx: the addressing regime to use for the virtual address |
| * @ptr: the virtual address for which to look up tag memory |
| * @ptr_access: the access to use for the virtual address |
| * @ptr_size: the number of bytes in the normal memory access |
| * @tag_access: the access to use for the tag memory |
| * @tag_size: the number of bytes in the tag memory access |
| * @ra: the return address for exception handling |
| * |
| * Our tag memory is formatted as a sequence of little-endian nibbles. |
| * That is, the byte at (addr >> (LOG2_TAG_GRANULE + 1)) contains two |
| * tags, with the tag at [3:0] for the lower addr and the tag at [7:4] |
| * for the higher addr. |
| * |
| * Here, resolve the physical address from the virtual address, and return |
| * a pointer to the corresponding tag byte. Exit with exception if the |
| * virtual address is not accessible for @ptr_access. |
| * |
| * The @ptr_size and @tag_size values may not have an obvious relation |
| * due to the alignment of @ptr, and the number of tag checks required. |
| * |
| * If there is no tag storage corresponding to @ptr, return NULL. |
| */ |
| static uint8_t *allocation_tag_mem(CPUARMState *env, int ptr_mmu_idx, |
| uint64_t ptr, MMUAccessType ptr_access, |
| int ptr_size, MMUAccessType tag_access, |
| int tag_size, uintptr_t ra) |
| { |
| /* Tag storage not implemented. */ |
| return NULL; |
| } |
| |
| uint64_t HELPER(irg)(CPUARMState *env, uint64_t rn, uint64_t rm) |
| { |
| int rtag; |
| |
| /* |
| * Our IMPDEF choice for GCR_EL1.RRND==1 is to behave as if |
| * GCR_EL1.RRND==0, always producing deterministic results. |
| */ |
| uint16_t exclude = extract32(rm | env->cp15.gcr_el1, 0, 16); |
| int start = extract32(env->cp15.rgsr_el1, 0, 4); |
| int seed = extract32(env->cp15.rgsr_el1, 8, 16); |
| int offset, i; |
| |
| /* RandomTag */ |
| for (i = offset = 0; i < 4; ++i) { |
| /* NextRandomTagBit */ |
| int top = (extract32(seed, 5, 1) ^ extract32(seed, 3, 1) ^ |
| extract32(seed, 2, 1) ^ extract32(seed, 0, 1)); |
| seed = (top << 15) | (seed >> 1); |
| offset |= top << i; |
| } |
| rtag = choose_nonexcluded_tag(start, offset, exclude); |
| env->cp15.rgsr_el1 = rtag | (seed << 8); |
| |
| return address_with_allocation_tag(rn, rtag); |
| } |
| |
| uint64_t HELPER(addsubg)(CPUARMState *env, uint64_t ptr, |
| int32_t offset, uint32_t tag_offset) |
| { |
| int start_tag = allocation_tag_from_addr(ptr); |
| uint16_t exclude = extract32(env->cp15.gcr_el1, 0, 16); |
| int rtag = choose_nonexcluded_tag(start_tag, tag_offset, exclude); |
| |
| return address_with_allocation_tag(ptr + offset, rtag); |
| } |
| |
| static int load_tag1(uint64_t ptr, uint8_t *mem) |
| { |
| int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; |
| return extract32(*mem, ofs, 4); |
| } |
| |
| uint64_t HELPER(ldg)(CPUARMState *env, uint64_t ptr, uint64_t xt) |
| { |
| int mmu_idx = cpu_mmu_index(env, false); |
| uint8_t *mem; |
| int rtag = 0; |
| |
| /* Trap if accessing an invalid page. */ |
| mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, 1, |
| MMU_DATA_LOAD, 1, GETPC()); |
| |
| /* Load if page supports tags. */ |
| if (mem) { |
| rtag = load_tag1(ptr, mem); |
| } |
| |
| return address_with_allocation_tag(xt, rtag); |
| } |
| |
| static void check_tag_aligned(CPUARMState *env, uint64_t ptr, uintptr_t ra) |
| { |
| if (unlikely(!QEMU_IS_ALIGNED(ptr, TAG_GRANULE))) { |
| arm_cpu_do_unaligned_access(env_cpu(env), ptr, MMU_DATA_STORE, |
| cpu_mmu_index(env, false), ra); |
| g_assert_not_reached(); |
| } |
| } |
| |
| /* For use in a non-parallel context, store to the given nibble. */ |
| static void store_tag1(uint64_t ptr, uint8_t *mem, int tag) |
| { |
| int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; |
| *mem = deposit32(*mem, ofs, 4, tag); |
| } |
| |
| /* For use in a parallel context, atomically store to the given nibble. */ |
| static void store_tag1_parallel(uint64_t ptr, uint8_t *mem, int tag) |
| { |
| int ofs = extract32(ptr, LOG2_TAG_GRANULE, 1) * 4; |
| uint8_t old = atomic_read(mem); |
| |
| while (1) { |
| uint8_t new = deposit32(old, ofs, 4, tag); |
| uint8_t cmp = atomic_cmpxchg(mem, old, new); |
| if (likely(cmp == old)) { |
| return; |
| } |
| old = cmp; |
| } |
| } |
| |
| typedef void stg_store1(uint64_t, uint8_t *, int); |
| |
| static inline void do_stg(CPUARMState *env, uint64_t ptr, uint64_t xt, |
| uintptr_t ra, stg_store1 store1) |
| { |
| int mmu_idx = cpu_mmu_index(env, false); |
| uint8_t *mem; |
| |
| check_tag_aligned(env, ptr, ra); |
| |
| /* Trap if accessing an invalid page. */ |
| mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, TAG_GRANULE, |
| MMU_DATA_STORE, 1, ra); |
| |
| /* Store if page supports tags. */ |
| if (mem) { |
| store1(ptr, mem, allocation_tag_from_addr(xt)); |
| } |
| } |
| |
| void HELPER(stg)(CPUARMState *env, uint64_t ptr, uint64_t xt) |
| { |
| do_stg(env, ptr, xt, GETPC(), store_tag1); |
| } |
| |
| void HELPER(stg_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) |
| { |
| do_stg(env, ptr, xt, GETPC(), store_tag1_parallel); |
| } |
| |
| void HELPER(stg_stub)(CPUARMState *env, uint64_t ptr) |
| { |
| int mmu_idx = cpu_mmu_index(env, false); |
| uintptr_t ra = GETPC(); |
| |
| check_tag_aligned(env, ptr, ra); |
| probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); |
| } |
| |
| static inline void do_st2g(CPUARMState *env, uint64_t ptr, uint64_t xt, |
| uintptr_t ra, stg_store1 store1) |
| { |
| int mmu_idx = cpu_mmu_index(env, false); |
| int tag = allocation_tag_from_addr(xt); |
| uint8_t *mem1, *mem2; |
| |
| check_tag_aligned(env, ptr, ra); |
| |
| /* |
| * Trap if accessing an invalid page(s). |
| * This takes priority over !allocation_tag_access_enabled. |
| */ |
| if (ptr & TAG_GRANULE) { |
| /* Two stores unaligned mod TAG_GRANULE*2 -- modify two bytes. */ |
| mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, |
| TAG_GRANULE, MMU_DATA_STORE, 1, ra); |
| mem2 = allocation_tag_mem(env, mmu_idx, ptr + TAG_GRANULE, |
| MMU_DATA_STORE, TAG_GRANULE, |
| MMU_DATA_STORE, 1, ra); |
| |
| /* Store if page(s) support tags. */ |
| if (mem1) { |
| store1(TAG_GRANULE, mem1, tag); |
| } |
| if (mem2) { |
| store1(0, mem2, tag); |
| } |
| } else { |
| /* Two stores aligned mod TAG_GRANULE*2 -- modify one byte. */ |
| mem1 = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, |
| 2 * TAG_GRANULE, MMU_DATA_STORE, 1, ra); |
| if (mem1) { |
| tag |= tag << 4; |
| atomic_set(mem1, tag); |
| } |
| } |
| } |
| |
| void HELPER(st2g)(CPUARMState *env, uint64_t ptr, uint64_t xt) |
| { |
| do_st2g(env, ptr, xt, GETPC(), store_tag1); |
| } |
| |
| void HELPER(st2g_parallel)(CPUARMState *env, uint64_t ptr, uint64_t xt) |
| { |
| do_st2g(env, ptr, xt, GETPC(), store_tag1_parallel); |
| } |
| |
| void HELPER(st2g_stub)(CPUARMState *env, uint64_t ptr) |
| { |
| int mmu_idx = cpu_mmu_index(env, false); |
| uintptr_t ra = GETPC(); |
| int in_page = -(ptr | TARGET_PAGE_MASK); |
| |
| check_tag_aligned(env, ptr, ra); |
| |
| if (likely(in_page >= 2 * TAG_GRANULE)) { |
| probe_write(env, ptr, 2 * TAG_GRANULE, mmu_idx, ra); |
| } else { |
| probe_write(env, ptr, TAG_GRANULE, mmu_idx, ra); |
| probe_write(env, ptr + TAG_GRANULE, TAG_GRANULE, mmu_idx, ra); |
| } |
| } |
| |
| #define LDGM_STGM_SIZE (4 << GMID_EL1_BS) |
| |
| uint64_t HELPER(ldgm)(CPUARMState *env, uint64_t ptr) |
| { |
| int mmu_idx = cpu_mmu_index(env, false); |
| uintptr_t ra = GETPC(); |
| void *tag_mem; |
| |
| ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE); |
| |
| /* Trap if accessing an invalid page. */ |
| tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_LOAD, |
| LDGM_STGM_SIZE, MMU_DATA_LOAD, |
| LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra); |
| |
| /* The tag is squashed to zero if the page does not support tags. */ |
| if (!tag_mem) { |
| return 0; |
| } |
| |
| QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6); |
| /* |
| * We are loading 64-bits worth of tags. The ordering of elements |
| * within the word corresponds to a 64-bit little-endian operation. |
| */ |
| return ldq_le_p(tag_mem); |
| } |
| |
| void HELPER(stgm)(CPUARMState *env, uint64_t ptr, uint64_t val) |
| { |
| int mmu_idx = cpu_mmu_index(env, false); |
| uintptr_t ra = GETPC(); |
| void *tag_mem; |
| |
| ptr = QEMU_ALIGN_DOWN(ptr, LDGM_STGM_SIZE); |
| |
| /* Trap if accessing an invalid page. */ |
| tag_mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, |
| LDGM_STGM_SIZE, MMU_DATA_LOAD, |
| LDGM_STGM_SIZE / (2 * TAG_GRANULE), ra); |
| |
| /* |
| * Tag store only happens if the page support tags, |
| * and if the OS has enabled access to the tags. |
| */ |
| if (!tag_mem) { |
| return; |
| } |
| |
| QEMU_BUILD_BUG_ON(GMID_EL1_BS != 6); |
| /* |
| * We are storing 64-bits worth of tags. The ordering of elements |
| * within the word corresponds to a 64-bit little-endian operation. |
| */ |
| stq_le_p(tag_mem, val); |
| } |
| |
| void HELPER(stzgm_tags)(CPUARMState *env, uint64_t ptr, uint64_t val) |
| { |
| uintptr_t ra = GETPC(); |
| int mmu_idx = cpu_mmu_index(env, false); |
| int log2_dcz_bytes, log2_tag_bytes; |
| intptr_t dcz_bytes, tag_bytes; |
| uint8_t *mem; |
| |
| /* |
| * In arm_cpu_realizefn, we assert that dcz > LOG2_TAG_GRANULE+1, |
| * i.e. 32 bytes, which is an unreasonably small dcz anyway, |
| * to make sure that we can access one complete tag byte here. |
| */ |
| log2_dcz_bytes = env_archcpu(env)->dcz_blocksize + 2; |
| log2_tag_bytes = log2_dcz_bytes - (LOG2_TAG_GRANULE + 1); |
| dcz_bytes = (intptr_t)1 << log2_dcz_bytes; |
| tag_bytes = (intptr_t)1 << log2_tag_bytes; |
| ptr &= -dcz_bytes; |
| |
| mem = allocation_tag_mem(env, mmu_idx, ptr, MMU_DATA_STORE, dcz_bytes, |
| MMU_DATA_STORE, tag_bytes, ra); |
| if (mem) { |
| int tag_pair = (val & 0xf) * 0x11; |
| memset(mem, tag_pair, tag_bytes); |
| } |
| } |