|  | /* | 
|  | *  HPPA memory access helper routines | 
|  | * | 
|  | *  Copyright (c) 2017 Helge Deller | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/log.h" | 
|  | #include "cpu.h" | 
|  | #include "exec/exec-all.h" | 
|  | #include "exec/page-protection.h" | 
|  | #include "exec/helper-proto.h" | 
|  | #include "hw/core/cpu.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | hwaddr hppa_abs_to_phys_pa2_w1(vaddr addr) | 
|  | { | 
|  | /* | 
|  | * Figure H-8 "62-bit Absolute Accesses when PSW W-bit is 1" describes | 
|  | * an algorithm in which a 62-bit absolute address is transformed to | 
|  | * a 64-bit physical address.  This must then be combined with that | 
|  | * pictured in Figure H-11 "Physical Address Space Mapping", in which | 
|  | * the full physical address is truncated to the N-bit physical address | 
|  | * supported by the implementation. | 
|  | * | 
|  | * Since the supported physical address space is below 54 bits, the | 
|  | * H-8 algorithm is moot and all that is left is to truncate. | 
|  | */ | 
|  | QEMU_BUILD_BUG_ON(TARGET_PHYS_ADDR_SPACE_BITS > 54); | 
|  | return sextract64(addr, 0, TARGET_PHYS_ADDR_SPACE_BITS); | 
|  | } | 
|  |  | 
|  | hwaddr hppa_abs_to_phys_pa2_w0(vaddr addr) | 
|  | { | 
|  | /* | 
|  | * See Figure H-10, "Absolute Accesses when PSW W-bit is 0", | 
|  | * combined with Figure H-11, as above. | 
|  | */ | 
|  | if (likely(extract32(addr, 28, 4) != 0xf)) { | 
|  | /* Memory address space */ | 
|  | addr = (uint32_t)addr; | 
|  | } else if (extract32(addr, 24, 4) != 0) { | 
|  | /* I/O address space */ | 
|  | addr = (int32_t)addr; | 
|  | } else { | 
|  | /* | 
|  | * PDC address space: | 
|  | * Figures H-10 and H-11 of the parisc2.0 spec do not specify | 
|  | * where to map into the 64-bit PDC address space. | 
|  | * We map with an offset which equals the 32-bit address, which | 
|  | * is what can be seen on physical machines too. | 
|  | */ | 
|  | addr = (uint32_t)addr; | 
|  | addr |= -1ull << (TARGET_PHYS_ADDR_SPACE_BITS - 4); | 
|  | } | 
|  | return addr; | 
|  | } | 
|  |  | 
|  | static HPPATLBEntry *hppa_find_tlb(CPUHPPAState *env, vaddr addr) | 
|  | { | 
|  | IntervalTreeNode *i = interval_tree_iter_first(&env->tlb_root, addr, addr); | 
|  |  | 
|  | if (i) { | 
|  | HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); | 
|  | trace_hppa_tlb_find_entry(env, ent, ent->entry_valid, | 
|  | ent->itree.start, ent->itree.last, ent->pa); | 
|  | return ent; | 
|  | } | 
|  | trace_hppa_tlb_find_entry_not_found(env, addr); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static void hppa_flush_tlb_ent(CPUHPPAState *env, HPPATLBEntry *ent, | 
|  | bool force_flush_btlb) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  | bool is_btlb; | 
|  |  | 
|  | if (!ent->entry_valid) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | trace_hppa_tlb_flush_ent(env, ent, ent->itree.start, | 
|  | ent->itree.last, ent->pa); | 
|  |  | 
|  | tlb_flush_range_by_mmuidx(cs, ent->itree.start, | 
|  | ent->itree.last - ent->itree.start + 1, | 
|  | HPPA_MMU_FLUSH_MASK, TARGET_LONG_BITS); | 
|  |  | 
|  | /* Never clear BTLBs, unless forced to do so. */ | 
|  | is_btlb = ent < &env->tlb[HPPA_BTLB_ENTRIES(env)]; | 
|  | if (is_btlb && !force_flush_btlb) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | interval_tree_remove(&ent->itree, &env->tlb_root); | 
|  | memset(ent, 0, sizeof(*ent)); | 
|  |  | 
|  | if (!is_btlb) { | 
|  | ent->unused_next = env->tlb_unused; | 
|  | env->tlb_unused = ent; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void hppa_flush_tlb_range(CPUHPPAState *env, vaddr va_b, vaddr va_e) | 
|  | { | 
|  | IntervalTreeNode *i, *n; | 
|  |  | 
|  | i = interval_tree_iter_first(&env->tlb_root, va_b, va_e); | 
|  | for (; i ; i = n) { | 
|  | HPPATLBEntry *ent = container_of(i, HPPATLBEntry, itree); | 
|  |  | 
|  | /* | 
|  | * Find the next entry now: In the normal case the current entry | 
|  | * will be removed, but in the BTLB case it will remain. | 
|  | */ | 
|  | n = interval_tree_iter_next(i, va_b, va_e); | 
|  | hppa_flush_tlb_ent(env, ent, false); | 
|  | } | 
|  | } | 
|  |  | 
|  | static HPPATLBEntry *hppa_alloc_tlb_ent(CPUHPPAState *env) | 
|  | { | 
|  | HPPATLBEntry *ent = env->tlb_unused; | 
|  |  | 
|  | if (ent == NULL) { | 
|  | uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); | 
|  | uint32_t i = env->tlb_last; | 
|  |  | 
|  | if (i < btlb_entries || i >= ARRAY_SIZE(env->tlb)) { | 
|  | i = btlb_entries; | 
|  | } | 
|  | env->tlb_last = i + 1; | 
|  |  | 
|  | ent = &env->tlb[i]; | 
|  | hppa_flush_tlb_ent(env, ent, false); | 
|  | } | 
|  |  | 
|  | env->tlb_unused = ent->unused_next; | 
|  | return ent; | 
|  | } | 
|  |  | 
|  | #define ACCESS_ID_MASK 0xffff | 
|  |  | 
|  | /* Return the set of protections allowed by a PID match. */ | 
|  | static int match_prot_id_1(uint32_t access_id, uint32_t prot_id) | 
|  | { | 
|  | if (((access_id ^ (prot_id >> 1)) & ACCESS_ID_MASK) == 0) { | 
|  | return (prot_id & 1 | 
|  | ? PAGE_EXEC | PAGE_READ | 
|  | : PAGE_EXEC | PAGE_READ | PAGE_WRITE); | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int match_prot_id32(CPUHPPAState *env, uint32_t access_id) | 
|  | { | 
|  | int r, i; | 
|  |  | 
|  | for (i = CR_PID1; i <= CR_PID4; ++i) { | 
|  | r = match_prot_id_1(access_id, env->cr[i]); | 
|  | if (r) { | 
|  | return r; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int match_prot_id64(CPUHPPAState *env, uint32_t access_id) | 
|  | { | 
|  | int r, i; | 
|  |  | 
|  | for (i = CR_PID1; i <= CR_PID4; ++i) { | 
|  | r = match_prot_id_1(access_id, env->cr[i]); | 
|  | if (r) { | 
|  | return r; | 
|  | } | 
|  | r = match_prot_id_1(access_id, env->cr[i] >> 32); | 
|  | if (r) { | 
|  | return r; | 
|  | } | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | int hppa_get_physical_address(CPUHPPAState *env, vaddr addr, int mmu_idx, | 
|  | int type, MemOp mop, hwaddr *pphys, int *pprot) | 
|  | { | 
|  | hwaddr phys; | 
|  | int prot, r_prot, w_prot, x_prot, priv; | 
|  | HPPATLBEntry *ent; | 
|  | int ret = -1; | 
|  |  | 
|  | /* Virtual translation disabled.  Map absolute to physical.  */ | 
|  | if (MMU_IDX_MMU_DISABLED(mmu_idx)) { | 
|  | switch (mmu_idx) { | 
|  | case MMU_ABS_W_IDX: | 
|  | phys = hppa_abs_to_phys_pa2_w1(addr); | 
|  | break; | 
|  | case MMU_ABS_IDX: | 
|  | if (hppa_is_pa20(env)) { | 
|  | phys = hppa_abs_to_phys_pa2_w0(addr); | 
|  | } else { | 
|  | phys = (uint32_t)addr; | 
|  | } | 
|  | break; | 
|  | default: | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | prot = PAGE_READ | PAGE_WRITE | PAGE_EXEC; | 
|  | goto egress_align; | 
|  | } | 
|  |  | 
|  | /* Find a valid tlb entry that matches the virtual address.  */ | 
|  | ent = hppa_find_tlb(env, addr); | 
|  | if (ent == NULL) { | 
|  | phys = 0; | 
|  | prot = 0; | 
|  | ret = (type == PAGE_EXEC) ? EXCP_ITLB_MISS : EXCP_DTLB_MISS; | 
|  | goto egress; | 
|  | } | 
|  |  | 
|  | /* We now know the physical address.  */ | 
|  | phys = ent->pa + (addr - ent->itree.start); | 
|  |  | 
|  | /* Map TLB access_rights field to QEMU protection.  */ | 
|  | priv = MMU_IDX_TO_PRIV(mmu_idx); | 
|  | r_prot = (priv <= ent->ar_pl1) * PAGE_READ; | 
|  | w_prot = (priv <= ent->ar_pl2) * PAGE_WRITE; | 
|  | x_prot = (ent->ar_pl2 <= priv && priv <= ent->ar_pl1) * PAGE_EXEC; | 
|  | switch (ent->ar_type) { | 
|  | case 0: /* read-only: data page */ | 
|  | prot = r_prot; | 
|  | break; | 
|  | case 1: /* read/write: dynamic data page */ | 
|  | prot = r_prot | w_prot; | 
|  | break; | 
|  | case 2: /* read/execute: normal code page */ | 
|  | prot = r_prot | x_prot; | 
|  | break; | 
|  | case 3: /* read/write/execute: dynamic code page */ | 
|  | prot = r_prot | w_prot | x_prot; | 
|  | break; | 
|  | default: /* execute: promote to privilege level type & 3 */ | 
|  | prot = x_prot; | 
|  | break; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * No guest access type indicates a non-architectural access from | 
|  | * within QEMU.  Bypass checks for access, D, B, P and T bits. | 
|  | */ | 
|  | if (type == 0) { | 
|  | goto egress; | 
|  | } | 
|  |  | 
|  | if (unlikely(!(prot & type))) { | 
|  | /* Not allowed -- Inst/Data Memory Access Rights Fault. */ | 
|  | ret = (type & PAGE_EXEC) ? EXCP_IMP : EXCP_DMAR; | 
|  | goto egress; | 
|  | } | 
|  |  | 
|  | /* access_id == 0 means public page and no check is performed */ | 
|  | if (ent->access_id && MMU_IDX_TO_P(mmu_idx)) { | 
|  | int access_prot = (hppa_is_pa20(env) | 
|  | ? match_prot_id64(env, ent->access_id) | 
|  | : match_prot_id32(env, ent->access_id)); | 
|  | if (unlikely(!(type & access_prot))) { | 
|  | /* Not allowed -- Inst/Data Memory Protection Id Fault. */ | 
|  | ret = type & PAGE_EXEC ? EXCP_IMP : EXCP_DMPI; | 
|  | goto egress; | 
|  | } | 
|  | /* Otherwise exclude permissions not allowed (i.e WD). */ | 
|  | prot &= access_prot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In reverse priority order, check for conditions which raise faults. | 
|  | * Remove PROT bits that cover the condition we want to check, | 
|  | * so that the resulting PROT will force a re-check of the | 
|  | * architectural TLB entry for the next access. | 
|  | */ | 
|  | if (unlikely(ent->t)) { | 
|  | prot &= PAGE_EXEC; | 
|  | if (!(type & PAGE_EXEC)) { | 
|  | /* The T bit is set -- Page Reference Fault.  */ | 
|  | ret = EXCP_PAGE_REF; | 
|  | } | 
|  | } | 
|  | if (unlikely(!ent->d)) { | 
|  | prot &= PAGE_READ | PAGE_EXEC; | 
|  | if (type & PAGE_WRITE) { | 
|  | /* The D bit is not set -- TLB Dirty Bit Fault.  */ | 
|  | ret = EXCP_TLB_DIRTY; | 
|  | } | 
|  | } | 
|  | if (unlikely(ent->b)) { | 
|  | prot &= PAGE_READ | PAGE_EXEC; | 
|  | if (type & PAGE_WRITE) { | 
|  | /* | 
|  | * The B bit is set -- Data Memory Break Fault. | 
|  | * Except when PSW_X is set, allow this single access to succeed. | 
|  | * The write bit will be invalidated for subsequent accesses. | 
|  | */ | 
|  | if (env->psw_xb & PSW_X) { | 
|  | prot |= PAGE_WRITE_INV; | 
|  | } else { | 
|  | ret = EXCP_DMB; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | egress_align: | 
|  | if (addr & ((1u << memop_alignment_bits(mop)) - 1)) { | 
|  | ret = EXCP_UNALIGN; | 
|  | } | 
|  |  | 
|  | egress: | 
|  | *pphys = phys; | 
|  | *pprot = prot; | 
|  | trace_hppa_tlb_get_physical_address(env, ret, prot, addr, phys); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | hwaddr hppa_cpu_get_phys_page_debug(CPUState *cs, vaddr addr) | 
|  | { | 
|  | HPPACPU *cpu = HPPA_CPU(cs); | 
|  | hwaddr phys; | 
|  | int prot, excp, mmu_idx; | 
|  |  | 
|  | /* If the (data) mmu is disabled, bypass translation.  */ | 
|  | /* ??? We really ought to know if the code mmu is disabled too, | 
|  | in order to get the correct debugging dumps.  */ | 
|  | mmu_idx = (cpu->env.psw & PSW_D ? MMU_KERNEL_IDX : | 
|  | cpu->env.psw & PSW_W ? MMU_ABS_W_IDX : MMU_ABS_IDX); | 
|  |  | 
|  | excp = hppa_get_physical_address(&cpu->env, addr, mmu_idx, 0, 0, | 
|  | &phys, &prot); | 
|  |  | 
|  | /* Since we're translating for debugging, the only error that is a | 
|  | hard error is no translation at all.  Otherwise, while a real cpu | 
|  | access might not have permission, the debugger does.  */ | 
|  | return excp == EXCP_DTLB_MISS ? -1 : phys; | 
|  | } | 
|  |  | 
|  | void hppa_set_ior_and_isr(CPUHPPAState *env, vaddr addr, bool mmu_disabled) | 
|  | { | 
|  | if (env->psw & PSW_Q) { | 
|  | /* | 
|  | * For pa1.x, the offset and space never overlap, and so we | 
|  | * simply extract the high and low part of the virtual address. | 
|  | * | 
|  | * For pa2.0, the formation of these are described in section | 
|  | * "Interruption Parameter Registers", page 2-15. | 
|  | */ | 
|  | env->cr[CR_IOR] = (uint32_t)addr; | 
|  | env->cr[CR_ISR] = addr >> 32; | 
|  |  | 
|  | if (hppa_is_pa20(env)) { | 
|  | if (mmu_disabled) { | 
|  | /* | 
|  | * If data translation was disabled, the ISR contains | 
|  | * the upper portion of the abs address, zero-extended. | 
|  | */ | 
|  | env->cr[CR_ISR] &= 0x3fffffff; | 
|  | } else { | 
|  | /* | 
|  | * If data translation was enabled, the upper two bits | 
|  | * of the IOR (the b field) are equal to the two space | 
|  | * bits from the base register used to form the gva. | 
|  | */ | 
|  | uint64_t b; | 
|  |  | 
|  | b = env->unwind_breg ? env->gr[env->unwind_breg] : 0; | 
|  | b >>= (env->psw & PSW_W ? 62 : 30); | 
|  | env->cr[CR_IOR] |= b << 62; | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | G_NORETURN static void | 
|  | raise_exception_with_ior(CPUHPPAState *env, int excp, uintptr_t retaddr, | 
|  | vaddr addr, bool mmu_disabled) | 
|  | { | 
|  | CPUState *cs = env_cpu(env); | 
|  |  | 
|  | cs->exception_index = excp; | 
|  | cpu_restore_state(cs, retaddr); | 
|  | hppa_set_ior_and_isr(env, addr, mmu_disabled); | 
|  |  | 
|  | cpu_loop_exit(cs); | 
|  | } | 
|  |  | 
|  | void hppa_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr, | 
|  | vaddr addr, unsigned size, | 
|  | MMUAccessType access_type, | 
|  | int mmu_idx, MemTxAttrs attrs, | 
|  | MemTxResult response, uintptr_t retaddr) | 
|  | { | 
|  | CPUHPPAState *env = cpu_env(cs); | 
|  |  | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "HPMC at " TARGET_FMT_lx ":" TARGET_FMT_lx | 
|  | " while accessing I/O at %#08" HWADDR_PRIx "\n", | 
|  | env->iasq_f, env->iaoq_f, physaddr); | 
|  |  | 
|  | /* FIXME: Enable HPMC exceptions when firmware has clean device probing */ | 
|  | if (0) { | 
|  | raise_exception_with_ior(env, EXCP_HPMC, retaddr, addr, | 
|  | MMU_IDX_MMU_DISABLED(mmu_idx)); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool hppa_cpu_tlb_fill_align(CPUState *cs, CPUTLBEntryFull *out, vaddr addr, | 
|  | MMUAccessType type, int mmu_idx, | 
|  | MemOp memop, int size, bool probe, uintptr_t ra) | 
|  | { | 
|  | CPUHPPAState *env = cpu_env(cs); | 
|  | int prot, excp, a_prot; | 
|  | hwaddr phys; | 
|  |  | 
|  | switch (type) { | 
|  | case MMU_INST_FETCH: | 
|  | a_prot = PAGE_EXEC; | 
|  | break; | 
|  | case MMU_DATA_STORE: | 
|  | a_prot = PAGE_WRITE; | 
|  | break; | 
|  | default: | 
|  | a_prot = PAGE_READ; | 
|  | break; | 
|  | } | 
|  |  | 
|  | excp = hppa_get_physical_address(env, addr, mmu_idx, a_prot, memop, | 
|  | &phys, &prot); | 
|  | if (unlikely(excp >= 0)) { | 
|  | if (probe) { | 
|  | return false; | 
|  | } | 
|  | trace_hppa_tlb_fill_excp(env, addr, size, type, mmu_idx); | 
|  |  | 
|  | /* Failure.  Raise the indicated exception.  */ | 
|  | raise_exception_with_ior(env, excp, ra, addr, | 
|  | MMU_IDX_MMU_DISABLED(mmu_idx)); | 
|  | } | 
|  |  | 
|  | trace_hppa_tlb_fill_success(env, addr & TARGET_PAGE_MASK, | 
|  | phys & TARGET_PAGE_MASK, size, type, mmu_idx); | 
|  |  | 
|  | /* | 
|  | * Success!  Store the translation into the QEMU TLB. | 
|  | * Note that we always install a single-page entry, because that | 
|  | * is what works best with softmmu -- anything else will trigger | 
|  | * the large page protection mask.  We do not require this, | 
|  | * because we record the large page here in the hppa tlb. | 
|  | */ | 
|  | memset(out, 0, sizeof(*out)); | 
|  | out->phys_addr = phys; | 
|  | out->prot = prot; | 
|  | out->attrs = MEMTXATTRS_UNSPECIFIED; | 
|  | out->lg_page_size = TARGET_PAGE_BITS; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* Insert (Insn/Data) TLB Address.  Note this is PA 1.1 only.  */ | 
|  | void HELPER(itlba_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) | 
|  | { | 
|  | HPPATLBEntry *ent; | 
|  |  | 
|  | /* Zap any old entries covering ADDR. */ | 
|  | addr &= TARGET_PAGE_MASK; | 
|  | hppa_flush_tlb_range(env, addr, addr + TARGET_PAGE_SIZE - 1); | 
|  |  | 
|  | ent = env->tlb_partial; | 
|  | if (ent == NULL) { | 
|  | ent = hppa_alloc_tlb_ent(env); | 
|  | env->tlb_partial = ent; | 
|  | } | 
|  |  | 
|  | /* Note that ent->entry_valid == 0 already.  */ | 
|  | ent->itree.start = addr; | 
|  | ent->itree.last = addr + TARGET_PAGE_SIZE - 1; | 
|  | ent->pa = extract32(reg, 5, 20) << TARGET_PAGE_BITS; | 
|  | trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); | 
|  | } | 
|  |  | 
|  | static void set_access_bits_pa11(CPUHPPAState *env, HPPATLBEntry *ent, | 
|  | target_ulong reg) | 
|  | { | 
|  | ent->access_id = extract32(reg, 1, 18); | 
|  | ent->u = extract32(reg, 19, 1); | 
|  | ent->ar_pl2 = extract32(reg, 20, 2); | 
|  | ent->ar_pl1 = extract32(reg, 22, 2); | 
|  | ent->ar_type = extract32(reg, 24, 3); | 
|  | ent->b = extract32(reg, 27, 1); | 
|  | ent->d = extract32(reg, 28, 1); | 
|  | ent->t = extract32(reg, 29, 1); | 
|  | ent->entry_valid = 1; | 
|  |  | 
|  | interval_tree_insert(&ent->itree, &env->tlb_root); | 
|  | trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, ent->ar_pl2, | 
|  | ent->ar_pl1, ent->ar_type, ent->b, ent->d, ent->t); | 
|  | } | 
|  |  | 
|  | /* Insert (Insn/Data) TLB Protection.  Note this is PA 1.1 only.  */ | 
|  | void HELPER(itlbp_pa11)(CPUHPPAState *env, target_ulong addr, target_ulong reg) | 
|  | { | 
|  | HPPATLBEntry *ent = env->tlb_partial; | 
|  |  | 
|  | if (ent) { | 
|  | env->tlb_partial = NULL; | 
|  | if (ent->itree.start <= addr && addr <= ent->itree.last) { | 
|  | set_access_bits_pa11(env, ent, reg); | 
|  | return; | 
|  | } | 
|  | } | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "ITLBP not following ITLBA\n"); | 
|  | } | 
|  |  | 
|  | static void itlbt_pa20(CPUHPPAState *env, target_ulong r1, | 
|  | target_ulong r2, vaddr va_b) | 
|  | { | 
|  | HPPATLBEntry *ent; | 
|  | vaddr va_e; | 
|  | uint64_t va_size; | 
|  | int mask_shift; | 
|  |  | 
|  | mask_shift = 2 * (r1 & 0xf); | 
|  | va_size = (uint64_t)TARGET_PAGE_SIZE << mask_shift; | 
|  | va_b &= -va_size; | 
|  | va_e = va_b + va_size - 1; | 
|  |  | 
|  | hppa_flush_tlb_range(env, va_b, va_e); | 
|  | ent = hppa_alloc_tlb_ent(env); | 
|  |  | 
|  | ent->itree.start = va_b; | 
|  | ent->itree.last = va_e; | 
|  |  | 
|  | /* Extract all 52 bits present in the page table entry. */ | 
|  | ent->pa = r1 << (TARGET_PAGE_BITS - 5); | 
|  | /* Align per the page size. */ | 
|  | ent->pa &= TARGET_PAGE_MASK << mask_shift; | 
|  | /* Ignore the bits beyond physical address space. */ | 
|  | ent->pa = sextract64(ent->pa, 0, TARGET_PHYS_ADDR_SPACE_BITS); | 
|  |  | 
|  | ent->t = extract64(r2, 61, 1); | 
|  | ent->d = extract64(r2, 60, 1); | 
|  | ent->b = extract64(r2, 59, 1); | 
|  | ent->ar_type = extract64(r2, 56, 3); | 
|  | ent->ar_pl1 = extract64(r2, 54, 2); | 
|  | ent->ar_pl2 = extract64(r2, 52, 2); | 
|  | ent->u = extract64(r2, 51, 1); | 
|  | /* o = bit 50 */ | 
|  | /* p = bit 49 */ | 
|  | ent->access_id = extract64(r2, 1, 31); | 
|  | ent->entry_valid = 1; | 
|  |  | 
|  | interval_tree_insert(&ent->itree, &env->tlb_root); | 
|  | trace_hppa_tlb_itlba(env, ent, ent->itree.start, ent->itree.last, ent->pa); | 
|  | trace_hppa_tlb_itlbp(env, ent, ent->access_id, ent->u, | 
|  | ent->ar_pl2, ent->ar_pl1, ent->ar_type, | 
|  | ent->b, ent->d, ent->t); | 
|  | } | 
|  |  | 
|  | void HELPER(idtlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) | 
|  | { | 
|  | vaddr va_b = deposit64(env->cr[CR_IOR], 32, 32, env->cr[CR_ISR]); | 
|  | itlbt_pa20(env, r1, r2, va_b); | 
|  | } | 
|  |  | 
|  | void HELPER(iitlbt_pa20)(CPUHPPAState *env, target_ulong r1, target_ulong r2) | 
|  | { | 
|  | vaddr va_b = deposit64(env->cr[CR_IIAOQ], 32, 32, env->cr[CR_IIASQ]); | 
|  | itlbt_pa20(env, r1, r2, va_b); | 
|  | } | 
|  |  | 
|  | /* Purge (Insn/Data) TLB. */ | 
|  | static void ptlb_work(CPUState *cpu, run_on_cpu_data data) | 
|  | { | 
|  | vaddr start = data.target_ptr; | 
|  | vaddr end; | 
|  |  | 
|  | /* | 
|  | * PA2.0 allows a range of pages encoded into GR[b], which we have | 
|  | * copied into the bottom bits of the otherwise page-aligned address. | 
|  | * PA1.x will always provide zero here, for a single page flush. | 
|  | */ | 
|  | end = start & 0xf; | 
|  | start &= TARGET_PAGE_MASK; | 
|  | end = (vaddr)TARGET_PAGE_SIZE << (2 * end); | 
|  | end = start + end - 1; | 
|  |  | 
|  | hppa_flush_tlb_range(cpu_env(cpu), start, end); | 
|  | } | 
|  |  | 
|  | /* This is local to the current cpu. */ | 
|  | void HELPER(ptlb_l)(CPUHPPAState *env, target_ulong addr) | 
|  | { | 
|  | trace_hppa_tlb_ptlb_local(env); | 
|  | ptlb_work(env_cpu(env), RUN_ON_CPU_TARGET_PTR(addr)); | 
|  | } | 
|  |  | 
|  | /* This is synchronous across all processors.  */ | 
|  | void HELPER(ptlb)(CPUHPPAState *env, target_ulong addr) | 
|  | { | 
|  | CPUState *src = env_cpu(env); | 
|  | CPUState *cpu; | 
|  | bool wait = false; | 
|  |  | 
|  | trace_hppa_tlb_ptlb(env); | 
|  | run_on_cpu_data data = RUN_ON_CPU_TARGET_PTR(addr); | 
|  |  | 
|  | CPU_FOREACH(cpu) { | 
|  | if (cpu != src) { | 
|  | async_run_on_cpu(cpu, ptlb_work, data); | 
|  | wait = true; | 
|  | } | 
|  | } | 
|  | if (wait) { | 
|  | async_safe_run_on_cpu(src, ptlb_work, data); | 
|  | } else { | 
|  | ptlb_work(src, data); | 
|  | } | 
|  | } | 
|  |  | 
|  | void hppa_ptlbe(CPUHPPAState *env) | 
|  | { | 
|  | uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); | 
|  | uint32_t i; | 
|  |  | 
|  | /* Zap the (non-btlb) tlb entries themselves. */ | 
|  | memset(&env->tlb[btlb_entries], 0, | 
|  | sizeof(env->tlb) - btlb_entries * sizeof(env->tlb[0])); | 
|  | env->tlb_last = btlb_entries; | 
|  | env->tlb_partial = NULL; | 
|  |  | 
|  | /* Put them all onto the unused list. */ | 
|  | env->tlb_unused = &env->tlb[btlb_entries]; | 
|  | for (i = btlb_entries; i < ARRAY_SIZE(env->tlb) - 1; ++i) { | 
|  | env->tlb[i].unused_next = &env->tlb[i + 1]; | 
|  | } | 
|  |  | 
|  | /* Re-initialize the interval tree with only the btlb entries. */ | 
|  | memset(&env->tlb_root, 0, sizeof(env->tlb_root)); | 
|  | for (i = 0; i < btlb_entries; ++i) { | 
|  | if (env->tlb[i].entry_valid) { | 
|  | interval_tree_insert(&env->tlb[i].itree, &env->tlb_root); | 
|  | } | 
|  | } | 
|  |  | 
|  | tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_MASK); | 
|  | } | 
|  |  | 
|  | /* Purge (Insn/Data) TLB entry.  This affects an implementation-defined | 
|  | number of pages/entries (we choose all), and is local to the cpu.  */ | 
|  | void HELPER(ptlbe)(CPUHPPAState *env) | 
|  | { | 
|  | trace_hppa_tlb_ptlbe(env); | 
|  | qemu_log_mask(CPU_LOG_MMU, "FLUSH ALL TLB ENTRIES\n"); | 
|  | hppa_ptlbe(env); | 
|  | } | 
|  |  | 
|  | void cpu_hppa_change_prot_id(CPUHPPAState *env) | 
|  | { | 
|  | tlb_flush_by_mmuidx(env_cpu(env), HPPA_MMU_FLUSH_P_MASK); | 
|  | } | 
|  |  | 
|  | void HELPER(change_prot_id)(CPUHPPAState *env) | 
|  | { | 
|  | cpu_hppa_change_prot_id(env); | 
|  | } | 
|  |  | 
|  | target_ulong HELPER(lpa)(CPUHPPAState *env, target_ulong addr) | 
|  | { | 
|  | hwaddr phys; | 
|  | int prot, excp; | 
|  |  | 
|  | excp = hppa_get_physical_address(env, addr, MMU_KERNEL_IDX, 0, 0, | 
|  | &phys, &prot); | 
|  | if (excp >= 0) { | 
|  | if (excp == EXCP_DTLB_MISS) { | 
|  | excp = EXCP_NA_DTLB_MISS; | 
|  | } | 
|  | trace_hppa_tlb_lpa_failed(env, addr); | 
|  | raise_exception_with_ior(env, excp, GETPC(), addr, false); | 
|  | } | 
|  | trace_hppa_tlb_lpa_success(env, addr, phys); | 
|  | return phys; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * diag_btlb() emulates the PDC PDC_BLOCK_TLB firmware call to | 
|  | * allow operating systems to modify the Block TLB (BTLB) entries. | 
|  | * For implementation details see page 1-13 in | 
|  | * https://parisc.wiki.kernel.org/images-parisc/e/ef/Pdc11-v0.96-Ch1-procs.pdf | 
|  | */ | 
|  | void HELPER(diag_btlb)(CPUHPPAState *env) | 
|  | { | 
|  | unsigned int phys_page, len, slot; | 
|  | int mmu_idx = cpu_mmu_index(env_cpu(env), 0); | 
|  | uintptr_t ra = GETPC(); | 
|  | HPPATLBEntry *btlb; | 
|  | uint64_t virt_page; | 
|  | uint32_t *vaddr; | 
|  | uint32_t btlb_entries = HPPA_BTLB_ENTRIES(env); | 
|  |  | 
|  | /* BTLBs are not supported on 64-bit CPUs */ | 
|  | if (btlb_entries == 0) { | 
|  | env->gr[28] = -1; /* nonexistent procedure */ | 
|  | return; | 
|  | } | 
|  |  | 
|  | env->gr[28] = 0; /* PDC_OK */ | 
|  |  | 
|  | switch (env->gr[25]) { | 
|  | case 0: | 
|  | /* return BTLB parameters */ | 
|  | qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INFO\n"); | 
|  | vaddr = probe_access(env, env->gr[24], 4 * sizeof(uint32_t), | 
|  | MMU_DATA_STORE, mmu_idx, ra); | 
|  | if (vaddr == NULL) { | 
|  | env->gr[28] = -10; /* invalid argument */ | 
|  | } else { | 
|  | vaddr[0] = cpu_to_be32(1); | 
|  | vaddr[1] = cpu_to_be32(16 * 1024); | 
|  | vaddr[2] = cpu_to_be32(PA10_BTLB_FIXED); | 
|  | vaddr[3] = cpu_to_be32(PA10_BTLB_VARIABLE); | 
|  | } | 
|  | break; | 
|  | case 1: | 
|  | /* insert BTLB entry */ | 
|  | virt_page = env->gr[24];        /* upper 32 bits */ | 
|  | virt_page <<= 32; | 
|  | virt_page |= env->gr[23];       /* lower 32 bits */ | 
|  | phys_page = env->gr[22]; | 
|  | len = env->gr[21]; | 
|  | slot = env->gr[19]; | 
|  | qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_INSERT " | 
|  | "0x%08llx-0x%08llx: vpage 0x%llx for phys page 0x%04x len %d " | 
|  | "into slot %d\n", | 
|  | (long long) virt_page << TARGET_PAGE_BITS, | 
|  | (long long) (virt_page + len) << TARGET_PAGE_BITS, | 
|  | (long long) virt_page, phys_page, len, slot); | 
|  | if (slot < btlb_entries) { | 
|  | btlb = &env->tlb[slot]; | 
|  |  | 
|  | /* Force flush of possibly existing BTLB entry. */ | 
|  | hppa_flush_tlb_ent(env, btlb, true); | 
|  |  | 
|  | /* Create new BTLB entry */ | 
|  | btlb->itree.start = virt_page << TARGET_PAGE_BITS; | 
|  | btlb->itree.last = btlb->itree.start + len * TARGET_PAGE_SIZE - 1; | 
|  | btlb->pa = phys_page << TARGET_PAGE_BITS; | 
|  | set_access_bits_pa11(env, btlb, env->gr[20]); | 
|  | btlb->t = 0; | 
|  | btlb->d = 1; | 
|  | } else { | 
|  | env->gr[28] = -10; /* invalid argument */ | 
|  | } | 
|  | break; | 
|  | case 2: | 
|  | /* Purge BTLB entry */ | 
|  | slot = env->gr[22]; | 
|  | qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE slot %d\n", | 
|  | slot); | 
|  | if (slot < btlb_entries) { | 
|  | btlb = &env->tlb[slot]; | 
|  | hppa_flush_tlb_ent(env, btlb, true); | 
|  | } else { | 
|  | env->gr[28] = -10; /* invalid argument */ | 
|  | } | 
|  | break; | 
|  | case 3: | 
|  | /* Purge all BTLB entries */ | 
|  | qemu_log_mask(CPU_LOG_MMU, "PDC_BLOCK_TLB: PDC_BTLB_PURGE_ALL\n"); | 
|  | for (slot = 0; slot < btlb_entries; slot++) { | 
|  | btlb = &env->tlb[slot]; | 
|  | hppa_flush_tlb_ent(env, btlb, true); | 
|  | } | 
|  | break; | 
|  | default: | 
|  | env->gr[28] = -2; /* nonexistent option */ | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | uint64_t HELPER(b_gate_priv)(CPUHPPAState *env, uint64_t iaoq_f) | 
|  | { | 
|  | uint64_t gva = hppa_form_gva(env, env->iasq_f, iaoq_f); | 
|  | HPPATLBEntry *ent = hppa_find_tlb(env, gva); | 
|  |  | 
|  | if (ent == NULL) { | 
|  | raise_exception_with_ior(env, EXCP_ITLB_MISS, GETPC(), gva, false); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * There should be no need to check page permissions, as that will | 
|  | * already have been done by tb_lookup via get_page_addr_code. | 
|  | * All we need at this point is to check the ar_type. | 
|  | * | 
|  | * No change for non-gateway pages or for priv decrease. | 
|  | */ | 
|  | if (ent->ar_type & 4) { | 
|  | int old_priv = iaoq_f & 3; | 
|  | int new_priv = ent->ar_type & 3; | 
|  |  | 
|  | if (new_priv < old_priv) { | 
|  | iaoq_f = (iaoq_f & -4) | new_priv; | 
|  | } | 
|  | } | 
|  | return iaoq_f; | 
|  | } |