|  | /* | 
|  | * QEMU PowerPC pSeries Logical Partition NUMA associativity handling | 
|  | * | 
|  | * Copyright IBM Corp. 2020 | 
|  | * | 
|  | * Authors: | 
|  | *  Daniel Henrique Barboza      <danielhb413@gmail.com> | 
|  | * | 
|  | * This work is licensed under the terms of the GNU GPL, version 2 or later. | 
|  | * See the COPYING file in the top-level directory. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "hw/ppc/spapr_numa.h" | 
|  | #include "hw/pci-host/spapr.h" | 
|  | #include "hw/ppc/fdt.h" | 
|  |  | 
|  | /* Moved from hw/ppc/spapr_pci_nvlink2.c */ | 
|  | #define SPAPR_GPU_NUMA_ID           (cpu_to_be32(1)) | 
|  |  | 
|  | /* | 
|  | * Retrieves max_dist_ref_points of the current NUMA affinity. | 
|  | */ | 
|  | static int get_max_dist_ref_points(SpaprMachineState *spapr) | 
|  | { | 
|  | if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { | 
|  | return FORM2_DIST_REF_POINTS; | 
|  | } | 
|  |  | 
|  | return FORM1_DIST_REF_POINTS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieves numa_assoc_size of the current NUMA affinity. | 
|  | */ | 
|  | static int get_numa_assoc_size(SpaprMachineState *spapr) | 
|  | { | 
|  | if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { | 
|  | return FORM2_NUMA_ASSOC_SIZE; | 
|  | } | 
|  |  | 
|  | return FORM1_NUMA_ASSOC_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieves vcpu_assoc_size of the current NUMA affinity. | 
|  | * | 
|  | * vcpu_assoc_size is the size of ibm,associativity array | 
|  | * for CPUs, which has an extra element (vcpu_id) in the end. | 
|  | */ | 
|  | static int get_vcpu_assoc_size(SpaprMachineState *spapr) | 
|  | { | 
|  | return get_numa_assoc_size(spapr) + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Retrieves the ibm,associativity array of NUMA node 'node_id' | 
|  | * for the current NUMA affinity. | 
|  | */ | 
|  | static const uint32_t *get_associativity(SpaprMachineState *spapr, int node_id) | 
|  | { | 
|  | if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { | 
|  | return spapr->FORM2_assoc_array[node_id]; | 
|  | } | 
|  | return spapr->FORM1_assoc_array[node_id]; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Wrapper that returns node distance from ms->numa_state->nodes | 
|  | * after handling edge cases where the distance might be absent. | 
|  | */ | 
|  | static int get_numa_distance(MachineState *ms, int src, int dst) | 
|  | { | 
|  | NodeInfo *numa_info = ms->numa_state->nodes; | 
|  | int ret = numa_info[src].distance[dst]; | 
|  |  | 
|  | if (ret != 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In case QEMU adds a default NUMA single node when the user | 
|  | * did not add any, or where the user did not supply distances, | 
|  | * the distance will be absent (zero). Return local/remote | 
|  | * distance in this case. | 
|  | */ | 
|  | if (src == dst) { | 
|  | return NUMA_DISTANCE_MIN; | 
|  | } | 
|  |  | 
|  | return NUMA_DISTANCE_DEFAULT; | 
|  | } | 
|  |  | 
|  | static bool spapr_numa_is_symmetrical(MachineState *ms) | 
|  | { | 
|  | int nb_numa_nodes = ms->numa_state->num_nodes; | 
|  | int src, dst; | 
|  |  | 
|  | for (src = 0; src < nb_numa_nodes; src++) { | 
|  | for (dst = src; dst < nb_numa_nodes; dst++) { | 
|  | if (get_numa_distance(ms, src, dst) != | 
|  | get_numa_distance(ms, dst, src)) { | 
|  | return false; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This function will translate the user distances into | 
|  | * what the kernel understand as possible values: 10 | 
|  | * (local distance), 20, 40, 80 and 160, and return the equivalent | 
|  | * NUMA level for each. Current heuristic is: | 
|  | *  - local distance (10) returns numa_level = 0x4, meaning there is | 
|  | *    no rounding for local distance | 
|  | *  - distances between 11 and 30 inclusive -> rounded to 20, | 
|  | *    numa_level = 0x3 | 
|  | *  - distances between 31 and 60 inclusive -> rounded to 40, | 
|  | *    numa_level = 0x2 | 
|  | *  - distances between 61 and 120 inclusive -> rounded to 80, | 
|  | *    numa_level = 0x1 | 
|  | *  - everything above 120 returns numa_level = 0 to indicate that | 
|  | *    there is no match. This will be calculated as disntace = 160 | 
|  | *    by the kernel (as of v5.9) | 
|  | */ | 
|  | static uint8_t spapr_numa_get_numa_level(uint8_t distance) | 
|  | { | 
|  | if (distance == 10) { | 
|  | return 0x4; | 
|  | } else if (distance > 11 && distance <= 30) { | 
|  | return 0x3; | 
|  | } else if (distance > 31 && distance <= 60) { | 
|  | return 0x2; | 
|  | } else if (distance > 61 && distance <= 120) { | 
|  | return 0x1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spapr_numa_define_FORM1_domains(SpaprMachineState *spapr) | 
|  | { | 
|  | MachineState *ms = MACHINE(spapr); | 
|  | int nb_numa_nodes = ms->numa_state->num_nodes; | 
|  | int src, dst, i, j; | 
|  |  | 
|  | /* | 
|  | * Fill all associativity domains of non-zero NUMA nodes with | 
|  | * node_id. This is required because the default value (0) is | 
|  | * considered a match with associativity domains of node 0. | 
|  | */ | 
|  | for (i = 1; i < nb_numa_nodes; i++) { | 
|  | for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { | 
|  | spapr->FORM1_assoc_array[i][j] = cpu_to_be32(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (src = 0; src < nb_numa_nodes; src++) { | 
|  | for (dst = src; dst < nb_numa_nodes; dst++) { | 
|  | /* | 
|  | * This is how the associativity domain between A and B | 
|  | * is calculated: | 
|  | * | 
|  | * - get the distance D between them | 
|  | * - get the correspondent NUMA level 'n_level' for D | 
|  | * - all associativity arrays were initialized with their own | 
|  | * numa_ids, and we're calculating the distance in node_id | 
|  | * ascending order, starting from node id 0 (the first node | 
|  | * retrieved by numa_state). This will have a cascade effect in | 
|  | * the algorithm because the associativity domains that node 0 | 
|  | * defines will be carried over to other nodes, and node 1 | 
|  | * associativities will be carried over after taking node 0 | 
|  | * associativities into account, and so on. This happens because | 
|  | * we'll assign assoc_src as the associativity domain of dst | 
|  | * as well, for all NUMA levels beyond and including n_level. | 
|  | * | 
|  | * The PPC kernel expects the associativity domains of node 0 to | 
|  | * be always 0, and this algorithm will grant that by default. | 
|  | */ | 
|  | uint8_t distance = get_numa_distance(ms, src, dst); | 
|  | uint8_t n_level = spapr_numa_get_numa_level(distance); | 
|  | uint32_t assoc_src; | 
|  |  | 
|  | /* | 
|  | * n_level = 0 means that the distance is greater than our last | 
|  | * rounded value (120). In this case there is no NUMA level match | 
|  | * between src and dst and we can skip the remaining of the loop. | 
|  | * | 
|  | * The Linux kernel will assume that the distance between src and | 
|  | * dst, in this case of no match, is 10 (local distance) doubled | 
|  | * for each NUMA it didn't match. We have FORM1_DIST_REF_POINTS | 
|  | * levels (4), so this gives us 10*2*2*2*2 = 160. | 
|  | * | 
|  | * This logic can be seen in the Linux kernel source code, as of | 
|  | * v5.9, in arch/powerpc/mm/numa.c, function __node_distance(). | 
|  | */ | 
|  | if (n_level == 0) { | 
|  | continue; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We must assign all assoc_src to dst, starting from n_level | 
|  | * and going up to 0x1. | 
|  | */ | 
|  | for (i = n_level; i > 0; i--) { | 
|  | assoc_src = spapr->FORM1_assoc_array[src][i]; | 
|  | spapr->FORM1_assoc_array[dst][i] = assoc_src; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | } | 
|  |  | 
|  | static void spapr_numa_FORM1_affinity_check(MachineState *machine) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * Check we don't have a memory-less/cpu-less NUMA node | 
|  | * Firmware relies on the existing memory/cpu topology to provide the | 
|  | * NUMA topology to the kernel. | 
|  | * And the linux kernel needs to know the NUMA topology at start | 
|  | * to be able to hotplug CPUs later. | 
|  | */ | 
|  | if (machine->numa_state->num_nodes) { | 
|  | for (i = 0; i < machine->numa_state->num_nodes; ++i) { | 
|  | /* check for memory-less node */ | 
|  | if (machine->numa_state->nodes[i].node_mem == 0) { | 
|  | CPUState *cs; | 
|  | int found = 0; | 
|  | /* check for cpu-less node */ | 
|  | CPU_FOREACH(cs) { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | if (cpu->node_id == i) { | 
|  | found = 1; | 
|  | break; | 
|  | } | 
|  | } | 
|  | /* memory-less and cpu-less node */ | 
|  | if (!found) { | 
|  | error_report( | 
|  | "Memory-less/cpu-less nodes are not supported with FORM1 NUMA (node %d)", i); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!spapr_numa_is_symmetrical(machine)) { | 
|  | error_report( | 
|  | "Asymmetrical NUMA topologies aren't supported in the pSeries machine using FORM1 NUMA"); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Set NUMA machine state data based on FORM1 affinity semantics. | 
|  | */ | 
|  | static void spapr_numa_FORM1_affinity_init(SpaprMachineState *spapr, | 
|  | MachineState *machine) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
|  | int nb_numa_nodes = machine->numa_state->num_nodes; | 
|  | int i, j; | 
|  |  | 
|  | /* | 
|  | * For all associativity arrays: first position is the size, | 
|  | * position FORM1_DIST_REF_POINTS is always the numa_id, | 
|  | * represented by the index 'i'. | 
|  | * | 
|  | * This will break on sparse NUMA setups, when/if QEMU starts | 
|  | * to support it, because there will be no more guarantee that | 
|  | * 'i' will be a valid node_id set by the user. | 
|  | */ | 
|  | for (i = 0; i < nb_numa_nodes; i++) { | 
|  | spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); | 
|  | spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); | 
|  | } | 
|  |  | 
|  | for (i = nb_numa_nodes; i < nb_numa_nodes; i++) { | 
|  | spapr->FORM1_assoc_array[i][0] = cpu_to_be32(FORM1_DIST_REF_POINTS); | 
|  |  | 
|  | for (j = 1; j < FORM1_DIST_REF_POINTS; j++) { | 
|  | uint32_t gpu_assoc = smc->pre_5_1_assoc_refpoints ? | 
|  | SPAPR_GPU_NUMA_ID : cpu_to_be32(i); | 
|  | spapr->FORM1_assoc_array[i][j] = gpu_assoc; | 
|  | } | 
|  |  | 
|  | spapr->FORM1_assoc_array[i][FORM1_DIST_REF_POINTS] = cpu_to_be32(i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Guests pseries-5.1 and older uses zeroed associativity domains, | 
|  | * i.e. no domain definition based on NUMA distance input. | 
|  | * | 
|  | * Same thing with guests that have only one NUMA node. | 
|  | */ | 
|  | if (smc->pre_5_2_numa_associativity || | 
|  | machine->numa_state->num_nodes <= 1) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | spapr_numa_define_FORM1_domains(spapr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Init NUMA FORM2 machine state data | 
|  | */ | 
|  | static void spapr_numa_FORM2_affinity_init(SpaprMachineState *spapr) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | /* | 
|  | * For all resources but CPUs, FORM2 associativity arrays will | 
|  | * be a size 2 array with the following format: | 
|  | * | 
|  | * ibm,associativity = {1, numa_id} | 
|  | * | 
|  | * CPUs will write an additional 'vcpu_id' on top of the arrays | 
|  | * being initialized here. 'numa_id' is represented by the | 
|  | * index 'i' of the loop. | 
|  | */ | 
|  | for (i = 0; i < NUMA_NODES_MAX_NUM; i++) { | 
|  | spapr->FORM2_assoc_array[i][0] = cpu_to_be32(1); | 
|  | spapr->FORM2_assoc_array[i][1] = cpu_to_be32(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | void spapr_numa_associativity_init(SpaprMachineState *spapr, | 
|  | MachineState *machine) | 
|  | { | 
|  | spapr_numa_FORM1_affinity_init(spapr, machine); | 
|  | spapr_numa_FORM2_affinity_init(spapr); | 
|  | } | 
|  |  | 
|  | void spapr_numa_associativity_check(SpaprMachineState *spapr) | 
|  | { | 
|  | /* | 
|  | * FORM2 does not have any restrictions we need to handle | 
|  | * at CAS time, for now. | 
|  | */ | 
|  | if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | spapr_numa_FORM1_affinity_check(MACHINE(spapr)); | 
|  | } | 
|  |  | 
|  | void spapr_numa_write_associativity_dt(SpaprMachineState *spapr, void *fdt, | 
|  | int offset, int nodeid) | 
|  | { | 
|  | const uint32_t *associativity = get_associativity(spapr, nodeid); | 
|  |  | 
|  | _FDT((fdt_setprop(fdt, offset, "ibm,associativity", | 
|  | associativity, | 
|  | get_numa_assoc_size(spapr) * sizeof(uint32_t)))); | 
|  | } | 
|  |  | 
|  | static uint32_t *spapr_numa_get_vcpu_assoc(SpaprMachineState *spapr, | 
|  | PowerPCCPU *cpu) | 
|  | { | 
|  | const uint32_t *associativity = get_associativity(spapr, cpu->node_id); | 
|  | int max_distance_ref_points = get_max_dist_ref_points(spapr); | 
|  | int vcpu_assoc_size = get_vcpu_assoc_size(spapr); | 
|  | uint32_t *vcpu_assoc = g_new(uint32_t, vcpu_assoc_size); | 
|  | int index = spapr_get_vcpu_id(cpu); | 
|  |  | 
|  | /* | 
|  | * VCPUs have an extra 'cpu_id' value in ibm,associativity | 
|  | * compared to other resources. Increment the size at index | 
|  | * 0, put cpu_id last, then copy the remaining associativity | 
|  | * domains. | 
|  | */ | 
|  | vcpu_assoc[0] = cpu_to_be32(max_distance_ref_points + 1); | 
|  | vcpu_assoc[vcpu_assoc_size - 1] = cpu_to_be32(index); | 
|  | memcpy(vcpu_assoc + 1, associativity + 1, | 
|  | (vcpu_assoc_size - 2) * sizeof(uint32_t)); | 
|  |  | 
|  | return vcpu_assoc; | 
|  | } | 
|  |  | 
|  | int spapr_numa_fixup_cpu_dt(SpaprMachineState *spapr, void *fdt, | 
|  | int offset, PowerPCCPU *cpu) | 
|  | { | 
|  | g_autofree uint32_t *vcpu_assoc = NULL; | 
|  | int vcpu_assoc_size = get_vcpu_assoc_size(spapr); | 
|  |  | 
|  | vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, cpu); | 
|  |  | 
|  | /* Advertise NUMA via ibm,associativity */ | 
|  | return fdt_setprop(fdt, offset, "ibm,associativity", vcpu_assoc, | 
|  | vcpu_assoc_size * sizeof(uint32_t)); | 
|  | } | 
|  |  | 
|  |  | 
|  | int spapr_numa_write_assoc_lookup_arrays(SpaprMachineState *spapr, void *fdt, | 
|  | int offset) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | int max_distance_ref_points = get_max_dist_ref_points(spapr); | 
|  | int nb_numa_nodes = machine->numa_state->num_nodes; | 
|  | int nr_nodes = nb_numa_nodes ? nb_numa_nodes : 1; | 
|  | g_autofree uint32_t *int_buf = NULL; | 
|  | uint32_t *cur_index; | 
|  | int i; | 
|  |  | 
|  | /* ibm,associativity-lookup-arrays */ | 
|  | int_buf = g_new0(uint32_t, nr_nodes * max_distance_ref_points + 2); | 
|  | cur_index = int_buf; | 
|  | int_buf[0] = cpu_to_be32(nr_nodes); | 
|  | /* Number of entries per associativity list */ | 
|  | int_buf[1] = cpu_to_be32(max_distance_ref_points); | 
|  | cur_index += 2; | 
|  | for (i = 0; i < nr_nodes; i++) { | 
|  | /* | 
|  | * For the lookup-array we use the ibm,associativity array of the | 
|  | * current NUMA affinity, without the first element (size). | 
|  | */ | 
|  | const uint32_t *associativity = get_associativity(spapr, i); | 
|  | memcpy(cur_index, ++associativity, | 
|  | sizeof(uint32_t) * max_distance_ref_points); | 
|  | cur_index += max_distance_ref_points; | 
|  | } | 
|  |  | 
|  | return fdt_setprop(fdt, offset, "ibm,associativity-lookup-arrays", | 
|  | int_buf, (cur_index - int_buf) * sizeof(uint32_t)); | 
|  | } | 
|  |  | 
|  | static void spapr_numa_FORM1_write_rtas_dt(SpaprMachineState *spapr, | 
|  | void *fdt, int rtas) | 
|  | { | 
|  | MachineState *ms = MACHINE(spapr); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
|  | uint32_t refpoints[] = { | 
|  | cpu_to_be32(0x4), | 
|  | cpu_to_be32(0x3), | 
|  | cpu_to_be32(0x2), | 
|  | cpu_to_be32(0x1), | 
|  | }; | 
|  | uint32_t nr_refpoints = ARRAY_SIZE(refpoints); | 
|  | uint32_t maxdomain = ms->numa_state->num_nodes; | 
|  | uint32_t maxdomains[] = { | 
|  | cpu_to_be32(4), | 
|  | cpu_to_be32(maxdomain), | 
|  | cpu_to_be32(maxdomain), | 
|  | cpu_to_be32(maxdomain), | 
|  | cpu_to_be32(maxdomain) | 
|  | }; | 
|  |  | 
|  | if (smc->pre_5_2_numa_associativity || | 
|  | ms->numa_state->num_nodes <= 1) { | 
|  | uint32_t legacy_refpoints[] = { | 
|  | cpu_to_be32(0x4), | 
|  | cpu_to_be32(0x4), | 
|  | cpu_to_be32(0x2), | 
|  | }; | 
|  | uint32_t legacy_maxdomains[] = { | 
|  | cpu_to_be32(4), | 
|  | cpu_to_be32(0), | 
|  | cpu_to_be32(0), | 
|  | cpu_to_be32(0), | 
|  | cpu_to_be32(maxdomain ? maxdomain : 1), | 
|  | }; | 
|  |  | 
|  | G_STATIC_ASSERT(sizeof(legacy_refpoints) <= sizeof(refpoints)); | 
|  | G_STATIC_ASSERT(sizeof(legacy_maxdomains) <= sizeof(maxdomains)); | 
|  |  | 
|  | nr_refpoints = 3; | 
|  |  | 
|  | memcpy(refpoints, legacy_refpoints, sizeof(legacy_refpoints)); | 
|  | memcpy(maxdomains, legacy_maxdomains, sizeof(legacy_maxdomains)); | 
|  |  | 
|  | /* pseries-5.0 and older reference-points array is {0x4, 0x4} */ | 
|  | if (smc->pre_5_1_assoc_refpoints) { | 
|  | nr_refpoints = 2; | 
|  | } | 
|  | } | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", | 
|  | refpoints, nr_refpoints * sizeof(refpoints[0]))); | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", | 
|  | maxdomains, sizeof(maxdomains))); | 
|  | } | 
|  |  | 
|  | static void spapr_numa_FORM2_write_rtas_tables(SpaprMachineState *spapr, | 
|  | void *fdt, int rtas) | 
|  | { | 
|  | MachineState *ms = MACHINE(spapr); | 
|  | int nb_numa_nodes = ms->numa_state->num_nodes; | 
|  | int distance_table_entries = nb_numa_nodes * nb_numa_nodes; | 
|  | g_autofree uint32_t *lookup_index_table = NULL; | 
|  | g_autofree uint8_t *distance_table = NULL; | 
|  | int src, dst, i, distance_table_size; | 
|  |  | 
|  | /* | 
|  | * ibm,numa-lookup-index-table: array with length and a | 
|  | * list of NUMA ids present in the guest. | 
|  | */ | 
|  | lookup_index_table = g_new0(uint32_t, nb_numa_nodes + 1); | 
|  | lookup_index_table[0] = cpu_to_be32(nb_numa_nodes); | 
|  |  | 
|  | for (i = 0; i < nb_numa_nodes; i++) { | 
|  | lookup_index_table[i + 1] = cpu_to_be32(i); | 
|  | } | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,numa-lookup-index-table", | 
|  | lookup_index_table, | 
|  | (nb_numa_nodes + 1) * sizeof(uint32_t))); | 
|  |  | 
|  | /* | 
|  | * ibm,numa-distance-table: contains all node distances. First | 
|  | * element is the size of the table as uint32, followed up | 
|  | * by all the uint8 distances from the first NUMA node, then all | 
|  | * distances from the second NUMA node and so on. | 
|  | * | 
|  | * ibm,numa-lookup-index-table is used by guest to navigate this | 
|  | * array because NUMA ids can be sparse (node 0 is the first, | 
|  | * node 8 is the second ...). | 
|  | */ | 
|  | distance_table_size = distance_table_entries * sizeof(uint8_t) + | 
|  | sizeof(uint32_t); | 
|  | distance_table = g_new0(uint8_t, distance_table_size); | 
|  | stl_be_p(distance_table, distance_table_entries); | 
|  |  | 
|  | /* Skip the uint32_t array length at the start */ | 
|  | i = sizeof(uint32_t); | 
|  |  | 
|  | for (src = 0; src < nb_numa_nodes; src++) { | 
|  | for (dst = 0; dst < nb_numa_nodes; dst++) { | 
|  | distance_table[i++] = get_numa_distance(ms, src, dst); | 
|  | } | 
|  | } | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,numa-distance-table", | 
|  | distance_table, distance_table_size)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This helper could be compressed in a single function with | 
|  | * FORM1 logic since we're setting the same DT values, with the | 
|  | * difference being a call to spapr_numa_FORM2_write_rtas_tables() | 
|  | * in the end. The separation was made to avoid clogging FORM1 code | 
|  | * which already has to deal with compat modes from previous | 
|  | * QEMU machine types. | 
|  | */ | 
|  | static void spapr_numa_FORM2_write_rtas_dt(SpaprMachineState *spapr, | 
|  | void *fdt, int rtas) | 
|  | { | 
|  | MachineState *ms = MACHINE(spapr); | 
|  |  | 
|  | /* | 
|  | * In FORM2, ibm,associativity-reference-points will point to | 
|  | * the element in the ibm,associativity array that contains the | 
|  | * primary domain index (for FORM2, the first element). | 
|  | * | 
|  | * This value (in our case, the numa-id) is then used as an index | 
|  | * to retrieve all other attributes of the node (distance, | 
|  | * bandwidth, latency) via ibm,numa-lookup-index-table and other | 
|  | * ibm,numa-*-table properties. | 
|  | */ | 
|  | uint32_t refpoints[] = { cpu_to_be32(1) }; | 
|  |  | 
|  | uint32_t maxdomain = ms->numa_state->num_nodes; | 
|  | uint32_t maxdomains[] = { cpu_to_be32(1), cpu_to_be32(maxdomain) }; | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,associativity-reference-points", | 
|  | refpoints, sizeof(refpoints))); | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,max-associativity-domains", | 
|  | maxdomains, sizeof(maxdomains))); | 
|  |  | 
|  | spapr_numa_FORM2_write_rtas_tables(spapr, fdt, rtas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Helper that writes ibm,associativity-reference-points and | 
|  | * max-associativity-domains in the RTAS pointed by @rtas | 
|  | * in the DT @fdt. | 
|  | */ | 
|  | void spapr_numa_write_rtas_dt(SpaprMachineState *spapr, void *fdt, int rtas) | 
|  | { | 
|  | if (spapr_ovec_test(spapr->ov5_cas, OV5_FORM2_AFFINITY)) { | 
|  | spapr_numa_FORM2_write_rtas_dt(spapr, fdt, rtas); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spapr_numa_FORM1_write_rtas_dt(spapr, fdt, rtas); | 
|  | } | 
|  |  | 
|  | static target_ulong h_home_node_associativity(PowerPCCPU *cpu, | 
|  | SpaprMachineState *spapr, | 
|  | target_ulong opcode, | 
|  | target_ulong *args) | 
|  | { | 
|  | g_autofree uint32_t *vcpu_assoc = NULL; | 
|  | target_ulong flags = args[0]; | 
|  | target_ulong procno = args[1]; | 
|  | PowerPCCPU *tcpu; | 
|  | int idx, assoc_idx; | 
|  | int vcpu_assoc_size = get_vcpu_assoc_size(spapr); | 
|  |  | 
|  | /* only support procno from H_REGISTER_VPA */ | 
|  | if (flags != 0x1) { | 
|  | return H_FUNCTION; | 
|  | } | 
|  |  | 
|  | tcpu = spapr_find_cpu(procno); | 
|  | if (tcpu == NULL) { | 
|  | return H_P2; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Given that we want to be flexible with the sizes and indexes, | 
|  | * we must consider that there is a hard limit of how many | 
|  | * associativities domain we can fit in R4 up to R9, which would be | 
|  | * 12 associativity domains for vcpus. Assert and bail if that's | 
|  | * not the case. | 
|  | */ | 
|  | g_assert((vcpu_assoc_size - 1) <= 12); | 
|  |  | 
|  | vcpu_assoc = spapr_numa_get_vcpu_assoc(spapr, tcpu); | 
|  | /* assoc_idx starts at 1 to skip associativity size */ | 
|  | assoc_idx = 1; | 
|  |  | 
|  | #define ASSOCIATIVITY(a, b) (((uint64_t)(a) << 32) | \ | 
|  | ((uint64_t)(b) & 0xffffffff)) | 
|  |  | 
|  | for (idx = 0; idx < 6; idx++) { | 
|  | int32_t a, b; | 
|  |  | 
|  | /* | 
|  | * vcpu_assoc[] will contain the associativity domains for tcpu, | 
|  | * including tcpu->node_id and procno, meaning that we don't | 
|  | * need to use these variables here. | 
|  | * | 
|  | * We'll read 2 values at a time to fill up the ASSOCIATIVITY() | 
|  | * macro. The ternary will fill the remaining registers with -1 | 
|  | * after we went through vcpu_assoc[]. | 
|  | */ | 
|  | a = assoc_idx < vcpu_assoc_size ? | 
|  | be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; | 
|  | b = assoc_idx < vcpu_assoc_size ? | 
|  | be32_to_cpu(vcpu_assoc[assoc_idx++]) : -1; | 
|  |  | 
|  | args[idx] = ASSOCIATIVITY(a, b); | 
|  | } | 
|  | #undef ASSOCIATIVITY | 
|  |  | 
|  | return H_SUCCESS; | 
|  | } | 
|  |  | 
|  | static void spapr_numa_register_types(void) | 
|  | { | 
|  | /* Virtual Processor Home Node */ | 
|  | spapr_register_hypercall(H_HOME_NODE_ASSOCIATIVITY, | 
|  | h_home_node_associativity); | 
|  | } | 
|  |  | 
|  | type_init(spapr_numa_register_types) |