|  | /* | 
|  | * QEMU PowerPC pSeries Logical Partition (aka sPAPR) hardware System Emulator | 
|  | * | 
|  | * Copyright (c) 2004-2007 Fabrice Bellard | 
|  | * Copyright (c) 2007 Jocelyn Mayer | 
|  | * Copyright (c) 2010 David Gibson, IBM Corporation. | 
|  | * | 
|  | * Permission is hereby granted, free of charge, to any person obtaining a copy | 
|  | * of this software and associated documentation files (the "Software"), to deal | 
|  | * in the Software without restriction, including without limitation the rights | 
|  | * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | 
|  | * copies of the Software, and to permit persons to whom the Software is | 
|  | * furnished to do so, subject to the following conditions: | 
|  | * | 
|  | * The above copyright notice and this permission notice shall be included in | 
|  | * all copies or substantial portions of the Software. | 
|  | * | 
|  | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | 
|  | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | 
|  | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL | 
|  | * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | 
|  | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | 
|  | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN | 
|  | * THE SOFTWARE. | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/datadir.h" | 
|  | #include "qemu/memalign.h" | 
|  | #include "qemu/guest-random.h" | 
|  | #include "qapi/error.h" | 
|  | #include "qapi/qapi-events-machine.h" | 
|  | #include "qapi/qapi-events-qdev.h" | 
|  | #include "qapi/visitor.h" | 
|  | #include "sysemu/sysemu.h" | 
|  | #include "sysemu/hostmem.h" | 
|  | #include "sysemu/numa.h" | 
|  | #include "sysemu/tcg.h" | 
|  | #include "sysemu/qtest.h" | 
|  | #include "sysemu/reset.h" | 
|  | #include "sysemu/runstate.h" | 
|  | #include "qemu/log.h" | 
|  | #include "hw/fw-path-provider.h" | 
|  | #include "elf.h" | 
|  | #include "net/net.h" | 
|  | #include "sysemu/device_tree.h" | 
|  | #include "sysemu/cpus.h" | 
|  | #include "sysemu/hw_accel.h" | 
|  | #include "kvm_ppc.h" | 
|  | #include "migration/misc.h" | 
|  | #include "migration/qemu-file-types.h" | 
|  | #include "migration/global_state.h" | 
|  | #include "migration/register.h" | 
|  | #include "migration/blocker.h" | 
|  | #include "mmu-hash64.h" | 
|  | #include "mmu-book3s-v3.h" | 
|  | #include "cpu-models.h" | 
|  | #include "hw/core/cpu.h" | 
|  |  | 
|  | #include "hw/ppc/ppc.h" | 
|  | #include "hw/loader.h" | 
|  |  | 
|  | #include "hw/ppc/fdt.h" | 
|  | #include "hw/ppc/spapr.h" | 
|  | #include "hw/ppc/spapr_nested.h" | 
|  | #include "hw/ppc/spapr_vio.h" | 
|  | #include "hw/ppc/vof.h" | 
|  | #include "hw/qdev-properties.h" | 
|  | #include "hw/pci-host/spapr.h" | 
|  | #include "hw/pci/msi.h" | 
|  |  | 
|  | #include "hw/pci/pci.h" | 
|  | #include "hw/scsi/scsi.h" | 
|  | #include "hw/virtio/virtio-scsi.h" | 
|  | #include "hw/virtio/vhost-scsi-common.h" | 
|  |  | 
|  | #include "exec/ram_addr.h" | 
|  | #include "exec/confidential-guest-support.h" | 
|  | #include "hw/usb.h" | 
|  | #include "qemu/config-file.h" | 
|  | #include "qemu/error-report.h" | 
|  | #include "trace.h" | 
|  | #include "hw/nmi.h" | 
|  | #include "hw/intc/intc.h" | 
|  |  | 
|  | #include "hw/ppc/spapr_cpu_core.h" | 
|  | #include "hw/mem/memory-device.h" | 
|  | #include "hw/ppc/spapr_tpm_proxy.h" | 
|  | #include "hw/ppc/spapr_nvdimm.h" | 
|  | #include "hw/ppc/spapr_numa.h" | 
|  |  | 
|  | #include <libfdt.h> | 
|  |  | 
|  | /* SLOF memory layout: | 
|  | * | 
|  | * SLOF raw image loaded at 0, copies its romfs right below the flat | 
|  | * device-tree, then position SLOF itself 31M below that | 
|  | * | 
|  | * So we set FW_OVERHEAD to 40MB which should account for all of that | 
|  | * and more | 
|  | * | 
|  | * We load our kernel at 4M, leaving space for SLOF initial image | 
|  | */ | 
|  | #define FDT_MAX_ADDR            0x80000000 /* FDT must stay below that */ | 
|  | #define FW_MAX_SIZE             0x400000 | 
|  | #define FW_FILE_NAME            "slof.bin" | 
|  | #define FW_FILE_NAME_VOF        "vof.bin" | 
|  | #define FW_OVERHEAD             0x2800000 | 
|  | #define KERNEL_LOAD_ADDR        FW_MAX_SIZE | 
|  |  | 
|  | #define MIN_RMA_SLOF            (128 * MiB) | 
|  |  | 
|  | #define PHANDLE_INTC            0x00001111 | 
|  |  | 
|  | /* These two functions implement the VCPU id numbering: one to compute them | 
|  | * all and one to identify thread 0 of a VCORE. Any change to the first one | 
|  | * is likely to have an impact on the second one, so let's keep them close. | 
|  | */ | 
|  | static int spapr_vcpu_id(SpaprMachineState *spapr, int cpu_index) | 
|  | { | 
|  | MachineState *ms = MACHINE(spapr); | 
|  | unsigned int smp_threads = ms->smp.threads; | 
|  |  | 
|  | assert(spapr->vsmt); | 
|  | return | 
|  | (cpu_index / smp_threads) * spapr->vsmt + cpu_index % smp_threads; | 
|  | } | 
|  | static bool spapr_is_thread0_in_vcore(SpaprMachineState *spapr, | 
|  | PowerPCCPU *cpu) | 
|  | { | 
|  | assert(spapr->vsmt); | 
|  | return spapr_get_vcpu_id(cpu) % spapr->vsmt == 0; | 
|  | } | 
|  |  | 
|  | static bool pre_2_10_vmstate_dummy_icp_needed(void *opaque) | 
|  | { | 
|  | /* Dummy entries correspond to unused ICPState objects in older QEMUs, | 
|  | * and newer QEMUs don't even have them. In both cases, we don't want | 
|  | * to send anything on the wire. | 
|  | */ | 
|  | return false; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription pre_2_10_vmstate_dummy_icp = { | 
|  | /* | 
|  | * Hack ahead.  We can't have two devices with the same name and | 
|  | * instance id.  So I rename this to pass make check. | 
|  | * Real help from people who knows the hardware is needed. | 
|  | */ | 
|  | .name = "icp/server", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = pre_2_10_vmstate_dummy_icp_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UNUSED(4), /* uint32_t xirr */ | 
|  | VMSTATE_UNUSED(1), /* uint8_t pending_priority */ | 
|  | VMSTATE_UNUSED(1), /* uint8_t mfrr */ | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | /* | 
|  | * See comment in hw/intc/xics.c:icp_realize() | 
|  | * | 
|  | * You have to remove vmstate_replace_hack_for_ppc() when you remove | 
|  | * the machine types that need the following function. | 
|  | */ | 
|  | static void pre_2_10_vmstate_register_dummy_icp(int i) | 
|  | { | 
|  | vmstate_register(NULL, i, &pre_2_10_vmstate_dummy_icp, | 
|  | (void *)(uintptr_t) i); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * See comment in hw/intc/xics.c:icp_realize() | 
|  | * | 
|  | * You have to remove vmstate_replace_hack_for_ppc() when you remove | 
|  | * the machine types that need the following function. | 
|  | */ | 
|  | static void pre_2_10_vmstate_unregister_dummy_icp(int i) | 
|  | { | 
|  | /* | 
|  | * This used to be: | 
|  | * | 
|  | *    vmstate_unregister(NULL, &pre_2_10_vmstate_dummy_icp, | 
|  | *                      (void *)(uintptr_t) i); | 
|  | */ | 
|  | } | 
|  |  | 
|  | int spapr_max_server_number(SpaprMachineState *spapr) | 
|  | { | 
|  | MachineState *ms = MACHINE(spapr); | 
|  |  | 
|  | assert(spapr->vsmt); | 
|  | return DIV_ROUND_UP(ms->smp.max_cpus * spapr->vsmt, ms->smp.threads); | 
|  | } | 
|  |  | 
|  | static int spapr_fixup_cpu_smt_dt(void *fdt, int offset, PowerPCCPU *cpu, | 
|  | int smt_threads) | 
|  | { | 
|  | int i, ret = 0; | 
|  | g_autofree uint32_t *servers_prop = g_new(uint32_t, smt_threads); | 
|  | g_autofree uint32_t *gservers_prop = g_new(uint32_t, smt_threads * 2); | 
|  | int index = spapr_get_vcpu_id(cpu); | 
|  |  | 
|  | if (cpu->compat_pvr) { | 
|  | ret = fdt_setprop_cell(fdt, offset, "cpu-version", cpu->compat_pvr); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Build interrupt servers and gservers properties */ | 
|  | for (i = 0; i < smt_threads; i++) { | 
|  | servers_prop[i] = cpu_to_be32(index + i); | 
|  | /* Hack, direct the group queues back to cpu 0 */ | 
|  | gservers_prop[i*2] = cpu_to_be32(index + i); | 
|  | gservers_prop[i*2 + 1] = 0; | 
|  | } | 
|  | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-server#s", | 
|  | servers_prop, sizeof(*servers_prop) * smt_threads); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  | ret = fdt_setprop(fdt, offset, "ibm,ppc-interrupt-gserver#s", | 
|  | gservers_prop, sizeof(*gservers_prop) * smt_threads * 2); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static void spapr_dt_pa_features(SpaprMachineState *spapr, | 
|  | PowerPCCPU *cpu, | 
|  | void *fdt, int offset) | 
|  | { | 
|  | /* | 
|  | * SSO (SAO) ordering is supported on KVM and thread=single hosts, | 
|  | * but not MTTCG, so disable it. To advertise it, a cap would have | 
|  | * to be added, or support implemented for MTTCG. | 
|  | * | 
|  | * Copy/paste is not supported by TCG, so it is not advertised. KVM | 
|  | * can execute them but it has no accelerator drivers which are usable, | 
|  | * so there isn't much need for it anyway. | 
|  | */ | 
|  |  | 
|  | /* These should be kept in sync with pnv */ | 
|  | uint8_t pa_features_206[] = { 6, 0, | 
|  | 0xf6, 0x1f, 0xc7, 0x00, 0x00, 0xc0 }; | 
|  | uint8_t pa_features_207[] = { 24, 0, | 
|  | 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, | 
|  | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, | 
|  | 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, | 
|  | 0x80, 0x00, 0x80, 0x00, 0x00, 0x00 }; | 
|  | uint8_t pa_features_300[] = { 66, 0, | 
|  | /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ | 
|  | /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ | 
|  | 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ | 
|  | /* 6: DS207 */ | 
|  | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ | 
|  | /* 16: Vector */ | 
|  | 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ | 
|  | /* 18: Vec. Scalar, 20: Vec. XOR */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ | 
|  | /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ | 
|  | /* 32: LE atomic, 34: EBB + ext EBB */ | 
|  | 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ | 
|  | /* 40: Radix MMU */ | 
|  | 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ | 
|  | /* 42: PM, 44: PC RA, 46: SC vec'd */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ | 
|  | /* 48: SIMD, 50: QP BFP, 52: String */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ | 
|  | /* 54: DecFP, 56: DecI, 58: SHA */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ | 
|  | /* 60: NM atomic, 62: RNG */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ | 
|  | }; | 
|  | /* 3.1 removes SAO, HTM support */ | 
|  | uint8_t pa_features_31[] = { 74, 0, | 
|  | /* 0: MMU|FPU|SLB|RUN|DABR|NX, 1: fri[nzpm]|DABRX|SPRG3|SLB0|PP110 */ | 
|  | /* 2: VPM|DS205|PPR|DS202|DS206, 3: LSD|URG, 5: LE|CFAR|EB|LSQ */ | 
|  | 0xf6, 0x1f, 0xc7, 0xc0, 0x00, 0xf0, /* 0 - 5 */ | 
|  | /* 6: DS207 */ | 
|  | 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, /* 6 - 11 */ | 
|  | /* 16: Vector */ | 
|  | 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 12 - 17 */ | 
|  | /* 18: Vec. Scalar, 20: Vec. XOR */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 18 - 23 */ | 
|  | /* 24: Ext. Dec, 26: 64 bit ftrs, 28: PM ftrs */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 24 - 29 */ | 
|  | /* 32: LE atomic, 34: EBB + ext EBB */ | 
|  | 0x00, 0x00, 0x80, 0x00, 0xC0, 0x00, /* 30 - 35 */ | 
|  | /* 40: Radix MMU */ | 
|  | 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, /* 36 - 41 */ | 
|  | /* 42: PM, 44: PC RA, 46: SC vec'd */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 42 - 47 */ | 
|  | /* 48: SIMD, 50: QP BFP, 52: String */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 48 - 53 */ | 
|  | /* 54: DecFP, 56: DecI, 58: SHA */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x80, 0x00, /* 54 - 59 */ | 
|  | /* 60: NM atomic, 62: RNG */ | 
|  | 0x80, 0x00, 0x80, 0x00, 0x00, 0x00, /* 60 - 65 */ | 
|  | /* 68: DEXCR[SBHE|IBRTPDUS|SRAPD|NPHIE|PHIE] */ | 
|  | 0x00, 0x00, 0xce, 0x00, 0x00, 0x00, /* 66 - 71 */ | 
|  | /* 72: [P]HASHST/[P]HASHCHK */ | 
|  | 0x80, 0x00,                         /* 72 - 73 */ | 
|  | }; | 
|  | uint8_t *pa_features = NULL; | 
|  | size_t pa_size; | 
|  |  | 
|  | if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_06, 0, cpu->compat_pvr)) { | 
|  | pa_features = pa_features_206; | 
|  | pa_size = sizeof(pa_features_206); | 
|  | } | 
|  | if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_2_07, 0, cpu->compat_pvr)) { | 
|  | pa_features = pa_features_207; | 
|  | pa_size = sizeof(pa_features_207); | 
|  | } | 
|  | if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, 0, cpu->compat_pvr)) { | 
|  | pa_features = pa_features_300; | 
|  | pa_size = sizeof(pa_features_300); | 
|  | } | 
|  | if (ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_10, 0, cpu->compat_pvr)) { | 
|  | pa_features = pa_features_31; | 
|  | pa_size = sizeof(pa_features_31); | 
|  | } | 
|  | if (!pa_features) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (ppc_hash64_has(cpu, PPC_HASH64_CI_LARGEPAGE)) { | 
|  | /* | 
|  | * Note: we keep CI large pages off by default because a 64K capable | 
|  | * guest provisioned with large pages might otherwise try to map a qemu | 
|  | * framebuffer (or other kind of memory mapped PCI BAR) using 64K pages | 
|  | * even if that qemu runs on a 4k host. | 
|  | * We dd this bit back here if we are confident this is not an issue | 
|  | */ | 
|  | pa_features[3] |= 0x20; | 
|  | } | 
|  | if ((spapr_get_cap(spapr, SPAPR_CAP_HTM) != 0) && pa_size > 24) { | 
|  | pa_features[24] |= 0x80;    /* Transactional memory support */ | 
|  | } | 
|  | if (spapr->cas_pre_isa3_guest && pa_size > 40) { | 
|  | /* Workaround for broken kernels that attempt (guest) radix | 
|  | * mode when they can't handle it, if they see the radix bit set | 
|  | * in pa-features. So hide it from them. */ | 
|  | pa_features[40 + 2] &= ~0x80; /* Radix MMU */ | 
|  | } | 
|  |  | 
|  | _FDT((fdt_setprop(fdt, offset, "ibm,pa-features", pa_features, pa_size))); | 
|  | } | 
|  |  | 
|  | static void spapr_dt_pi_features(SpaprMachineState *spapr, | 
|  | PowerPCCPU *cpu, | 
|  | void *fdt, int offset) | 
|  | { | 
|  | uint8_t pi_features[] = { 1, 0, | 
|  | 0x00 }; | 
|  |  | 
|  | if (kvm_enabled() && ppc_check_compat(cpu, CPU_POWERPC_LOGICAL_3_00, | 
|  | 0, cpu->compat_pvr)) { | 
|  | /* | 
|  | * POWER9 and later CPUs with KVM run in LPAR-per-thread mode where | 
|  | * all threads are essentially independent CPUs, and msgsndp does not | 
|  | * work (because it is physically-addressed) and therefore is | 
|  | * emulated by KVM, so disable it here to ensure XIVE will be used. | 
|  | * This is both KVM and CPU implementation-specific behaviour so a KVM | 
|  | * cap would be cleanest, but for now this works. If KVM ever permits | 
|  | * native msgsndp execution by guests, a cap could be added at that | 
|  | * time. | 
|  | */ | 
|  | pi_features[2] |= 0x08; /* 4: No msgsndp */ | 
|  | } | 
|  |  | 
|  | _FDT((fdt_setprop(fdt, offset, "ibm,pi-features", pi_features, | 
|  | sizeof(pi_features)))); | 
|  | } | 
|  |  | 
|  | static hwaddr spapr_node0_size(MachineState *machine) | 
|  | { | 
|  | if (machine->numa_state->num_nodes) { | 
|  | int i; | 
|  | for (i = 0; i < machine->numa_state->num_nodes; ++i) { | 
|  | if (machine->numa_state->nodes[i].node_mem) { | 
|  | return MIN(pow2floor(machine->numa_state->nodes[i].node_mem), | 
|  | machine->ram_size); | 
|  | } | 
|  | } | 
|  | } | 
|  | return machine->ram_size; | 
|  | } | 
|  |  | 
|  | static void add_str(GString *s, const gchar *s1) | 
|  | { | 
|  | g_string_append_len(s, s1, strlen(s1) + 1); | 
|  | } | 
|  |  | 
|  | static int spapr_dt_memory_node(SpaprMachineState *spapr, void *fdt, int nodeid, | 
|  | hwaddr start, hwaddr size) | 
|  | { | 
|  | char mem_name[32]; | 
|  | uint64_t mem_reg_property[2]; | 
|  | int off; | 
|  |  | 
|  | mem_reg_property[0] = cpu_to_be64(start); | 
|  | mem_reg_property[1] = cpu_to_be64(size); | 
|  |  | 
|  | sprintf(mem_name, "memory@%" HWADDR_PRIx, start); | 
|  | off = fdt_add_subnode(fdt, 0, mem_name); | 
|  | _FDT(off); | 
|  | _FDT((fdt_setprop_string(fdt, off, "device_type", "memory"))); | 
|  | _FDT((fdt_setprop(fdt, off, "reg", mem_reg_property, | 
|  | sizeof(mem_reg_property)))); | 
|  | spapr_numa_write_associativity_dt(spapr, fdt, off, nodeid); | 
|  | return off; | 
|  | } | 
|  |  | 
|  | static uint32_t spapr_pc_dimm_node(MemoryDeviceInfoList *list, ram_addr_t addr) | 
|  | { | 
|  | MemoryDeviceInfoList *info; | 
|  |  | 
|  | for (info = list; info; info = info->next) { | 
|  | MemoryDeviceInfo *value = info->value; | 
|  |  | 
|  | if (value && value->type == MEMORY_DEVICE_INFO_KIND_DIMM) { | 
|  | PCDIMMDeviceInfo *pcdimm_info = value->u.dimm.data; | 
|  |  | 
|  | if (addr >= pcdimm_info->addr && | 
|  | addr < (pcdimm_info->addr + pcdimm_info->size)) { | 
|  | return pcdimm_info->node; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | struct sPAPRDrconfCellV2 { | 
|  | uint32_t seq_lmbs; | 
|  | uint64_t base_addr; | 
|  | uint32_t drc_index; | 
|  | uint32_t aa_index; | 
|  | uint32_t flags; | 
|  | } QEMU_PACKED; | 
|  |  | 
|  | typedef struct DrconfCellQueue { | 
|  | struct sPAPRDrconfCellV2 cell; | 
|  | QSIMPLEQ_ENTRY(DrconfCellQueue) entry; | 
|  | } DrconfCellQueue; | 
|  |  | 
|  | static DrconfCellQueue * | 
|  | spapr_get_drconf_cell(uint32_t seq_lmbs, uint64_t base_addr, | 
|  | uint32_t drc_index, uint32_t aa_index, | 
|  | uint32_t flags) | 
|  | { | 
|  | DrconfCellQueue *elem; | 
|  |  | 
|  | elem = g_malloc0(sizeof(*elem)); | 
|  | elem->cell.seq_lmbs = cpu_to_be32(seq_lmbs); | 
|  | elem->cell.base_addr = cpu_to_be64(base_addr); | 
|  | elem->cell.drc_index = cpu_to_be32(drc_index); | 
|  | elem->cell.aa_index = cpu_to_be32(aa_index); | 
|  | elem->cell.flags = cpu_to_be32(flags); | 
|  |  | 
|  | return elem; | 
|  | } | 
|  |  | 
|  | static int spapr_dt_dynamic_memory_v2(SpaprMachineState *spapr, void *fdt, | 
|  | int offset, MemoryDeviceInfoList *dimms) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | uint8_t *int_buf, *cur_index; | 
|  | int ret; | 
|  | uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | 
|  | uint64_t addr, cur_addr, size; | 
|  | uint32_t nr_boot_lmbs = (machine->device_memory->base / lmb_size); | 
|  | uint64_t mem_end = machine->device_memory->base + | 
|  | memory_region_size(&machine->device_memory->mr); | 
|  | uint32_t node, buf_len, nr_entries = 0; | 
|  | SpaprDrc *drc; | 
|  | DrconfCellQueue *elem, *next; | 
|  | MemoryDeviceInfoList *info; | 
|  | QSIMPLEQ_HEAD(, DrconfCellQueue) drconf_queue | 
|  | = QSIMPLEQ_HEAD_INITIALIZER(drconf_queue); | 
|  |  | 
|  | /* Entry to cover RAM and the gap area */ | 
|  | elem = spapr_get_drconf_cell(nr_boot_lmbs, 0, 0, -1, | 
|  | SPAPR_LMB_FLAGS_RESERVED | | 
|  | SPAPR_LMB_FLAGS_DRC_INVALID); | 
|  | QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); | 
|  | nr_entries++; | 
|  |  | 
|  | cur_addr = machine->device_memory->base; | 
|  | for (info = dimms; info; info = info->next) { | 
|  | PCDIMMDeviceInfo *di = info->value->u.dimm.data; | 
|  |  | 
|  | addr = di->addr; | 
|  | size = di->size; | 
|  | node = di->node; | 
|  |  | 
|  | /* | 
|  | * The NVDIMM area is hotpluggable after the NVDIMM is unplugged. The | 
|  | * area is marked hotpluggable in the next iteration for the bigger | 
|  | * chunk including the NVDIMM occupied area. | 
|  | */ | 
|  | if (info->value->type == MEMORY_DEVICE_INFO_KIND_NVDIMM) | 
|  | continue; | 
|  |  | 
|  | /* Entry for hot-pluggable area */ | 
|  | if (cur_addr < addr) { | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); | 
|  | g_assert(drc); | 
|  | elem = spapr_get_drconf_cell((addr - cur_addr) / lmb_size, | 
|  | cur_addr, spapr_drc_index(drc), -1, 0); | 
|  | QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); | 
|  | nr_entries++; | 
|  | } | 
|  |  | 
|  | /* Entry for DIMM */ | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, addr / lmb_size); | 
|  | g_assert(drc); | 
|  | elem = spapr_get_drconf_cell(size / lmb_size, addr, | 
|  | spapr_drc_index(drc), node, | 
|  | (SPAPR_LMB_FLAGS_ASSIGNED | | 
|  | SPAPR_LMB_FLAGS_HOTREMOVABLE)); | 
|  | QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); | 
|  | nr_entries++; | 
|  | cur_addr = addr + size; | 
|  | } | 
|  |  | 
|  | /* Entry for remaining hotpluggable area */ | 
|  | if (cur_addr < mem_end) { | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, cur_addr / lmb_size); | 
|  | g_assert(drc); | 
|  | elem = spapr_get_drconf_cell((mem_end - cur_addr) / lmb_size, | 
|  | cur_addr, spapr_drc_index(drc), -1, 0); | 
|  | QSIMPLEQ_INSERT_TAIL(&drconf_queue, elem, entry); | 
|  | nr_entries++; | 
|  | } | 
|  |  | 
|  | buf_len = nr_entries * sizeof(struct sPAPRDrconfCellV2) + sizeof(uint32_t); | 
|  | int_buf = cur_index = g_malloc0(buf_len); | 
|  | *(uint32_t *)int_buf = cpu_to_be32(nr_entries); | 
|  | cur_index += sizeof(nr_entries); | 
|  |  | 
|  | QSIMPLEQ_FOREACH_SAFE(elem, &drconf_queue, entry, next) { | 
|  | memcpy(cur_index, &elem->cell, sizeof(elem->cell)); | 
|  | cur_index += sizeof(elem->cell); | 
|  | QSIMPLEQ_REMOVE(&drconf_queue, elem, DrconfCellQueue, entry); | 
|  | g_free(elem); | 
|  | } | 
|  |  | 
|  | ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory-v2", int_buf, buf_len); | 
|  | g_free(int_buf); | 
|  | if (ret < 0) { | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spapr_dt_dynamic_memory(SpaprMachineState *spapr, void *fdt, | 
|  | int offset, MemoryDeviceInfoList *dimms) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | int i, ret; | 
|  | uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | 
|  | uint32_t device_lmb_start = machine->device_memory->base / lmb_size; | 
|  | uint32_t nr_lmbs = (machine->device_memory->base + | 
|  | memory_region_size(&machine->device_memory->mr)) / | 
|  | lmb_size; | 
|  | uint32_t *int_buf, *cur_index, buf_len; | 
|  |  | 
|  | /* | 
|  | * Allocate enough buffer size to fit in ibm,dynamic-memory | 
|  | */ | 
|  | buf_len = (nr_lmbs * SPAPR_DR_LMB_LIST_ENTRY_SIZE + 1) * sizeof(uint32_t); | 
|  | cur_index = int_buf = g_malloc0(buf_len); | 
|  | int_buf[0] = cpu_to_be32(nr_lmbs); | 
|  | cur_index++; | 
|  | for (i = 0; i < nr_lmbs; i++) { | 
|  | uint64_t addr = i * lmb_size; | 
|  | uint32_t *dynamic_memory = cur_index; | 
|  |  | 
|  | if (i >= device_lmb_start) { | 
|  | SpaprDrc *drc; | 
|  |  | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, i); | 
|  | g_assert(drc); | 
|  |  | 
|  | dynamic_memory[0] = cpu_to_be32(addr >> 32); | 
|  | dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); | 
|  | dynamic_memory[2] = cpu_to_be32(spapr_drc_index(drc)); | 
|  | dynamic_memory[3] = cpu_to_be32(0); /* reserved */ | 
|  | dynamic_memory[4] = cpu_to_be32(spapr_pc_dimm_node(dimms, addr)); | 
|  | if (memory_region_present(get_system_memory(), addr)) { | 
|  | dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_ASSIGNED); | 
|  | } else { | 
|  | dynamic_memory[5] = cpu_to_be32(0); | 
|  | } | 
|  | } else { | 
|  | /* | 
|  | * LMB information for RMA, boot time RAM and gap b/n RAM and | 
|  | * device memory region -- all these are marked as reserved | 
|  | * and as having no valid DRC. | 
|  | */ | 
|  | dynamic_memory[0] = cpu_to_be32(addr >> 32); | 
|  | dynamic_memory[1] = cpu_to_be32(addr & 0xffffffff); | 
|  | dynamic_memory[2] = cpu_to_be32(0); | 
|  | dynamic_memory[3] = cpu_to_be32(0); /* reserved */ | 
|  | dynamic_memory[4] = cpu_to_be32(-1); | 
|  | dynamic_memory[5] = cpu_to_be32(SPAPR_LMB_FLAGS_RESERVED | | 
|  | SPAPR_LMB_FLAGS_DRC_INVALID); | 
|  | } | 
|  |  | 
|  | cur_index += SPAPR_DR_LMB_LIST_ENTRY_SIZE; | 
|  | } | 
|  | ret = fdt_setprop(fdt, offset, "ibm,dynamic-memory", int_buf, buf_len); | 
|  | g_free(int_buf); | 
|  | if (ret < 0) { | 
|  | return -1; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Adds ibm,dynamic-reconfiguration-memory node. | 
|  | * Refer to docs/specs/ppc-spapr-hotplug.txt for the documentation | 
|  | * of this device tree node. | 
|  | */ | 
|  | static int spapr_dt_dynamic_reconfiguration_memory(SpaprMachineState *spapr, | 
|  | void *fdt) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | int ret, offset; | 
|  | uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | 
|  | uint32_t prop_lmb_size[] = {cpu_to_be32(lmb_size >> 32), | 
|  | cpu_to_be32(lmb_size & 0xffffffff)}; | 
|  | MemoryDeviceInfoList *dimms = NULL; | 
|  |  | 
|  | /* Don't create the node if there is no device memory. */ | 
|  | if (!machine->device_memory) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | offset = fdt_add_subnode(fdt, 0, "ibm,dynamic-reconfiguration-memory"); | 
|  |  | 
|  | ret = fdt_setprop(fdt, offset, "ibm,lmb-size", prop_lmb_size, | 
|  | sizeof(prop_lmb_size)); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = fdt_setprop_cell(fdt, offset, "ibm,memory-flags-mask", 0xff); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = fdt_setprop_cell(fdt, offset, "ibm,memory-preservation-time", 0x0); | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | /* ibm,dynamic-memory or ibm,dynamic-memory-v2 */ | 
|  | dimms = qmp_memory_device_list(); | 
|  | if (spapr_ovec_test(spapr->ov5_cas, OV5_DRMEM_V2)) { | 
|  | ret = spapr_dt_dynamic_memory_v2(spapr, fdt, offset, dimms); | 
|  | } else { | 
|  | ret = spapr_dt_dynamic_memory(spapr, fdt, offset, dimms); | 
|  | } | 
|  | qapi_free_MemoryDeviceInfoList(dimms); | 
|  |  | 
|  | if (ret < 0) { | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | ret = spapr_numa_write_assoc_lookup_arrays(spapr, fdt, offset); | 
|  |  | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | static int spapr_dt_memory(SpaprMachineState *spapr, void *fdt) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
|  | hwaddr mem_start, node_size; | 
|  | int i, nb_nodes = machine->numa_state->num_nodes; | 
|  | NodeInfo *nodes = machine->numa_state->nodes; | 
|  |  | 
|  | for (i = 0, mem_start = 0; i < nb_nodes; ++i) { | 
|  | if (!nodes[i].node_mem) { | 
|  | continue; | 
|  | } | 
|  | if (mem_start >= machine->ram_size) { | 
|  | node_size = 0; | 
|  | } else { | 
|  | node_size = nodes[i].node_mem; | 
|  | if (node_size > machine->ram_size - mem_start) { | 
|  | node_size = machine->ram_size - mem_start; | 
|  | } | 
|  | } | 
|  | if (!mem_start) { | 
|  | /* spapr_machine_init() checks for rma_size <= node0_size | 
|  | * already */ | 
|  | spapr_dt_memory_node(spapr, fdt, i, 0, spapr->rma_size); | 
|  | mem_start += spapr->rma_size; | 
|  | node_size -= spapr->rma_size; | 
|  | } | 
|  | for ( ; node_size; ) { | 
|  | hwaddr sizetmp = pow2floor(node_size); | 
|  |  | 
|  | /* mem_start != 0 here */ | 
|  | if (ctzl(mem_start) < ctzl(sizetmp)) { | 
|  | sizetmp = 1ULL << ctzl(mem_start); | 
|  | } | 
|  |  | 
|  | spapr_dt_memory_node(spapr, fdt, i, mem_start, sizetmp); | 
|  | node_size -= sizetmp; | 
|  | mem_start += sizetmp; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Generate ibm,dynamic-reconfiguration-memory node if required */ | 
|  | if (spapr_ovec_test(spapr->ov5_cas, OV5_DRCONF_MEMORY)) { | 
|  | int ret; | 
|  |  | 
|  | g_assert(smc->dr_lmb_enabled); | 
|  | ret = spapr_dt_dynamic_reconfiguration_memory(spapr, fdt); | 
|  | if (ret) { | 
|  | return ret; | 
|  | } | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spapr_dt_cpu(CPUState *cs, void *fdt, int offset, | 
|  | SpaprMachineState *spapr) | 
|  | { | 
|  | MachineState *ms = MACHINE(spapr); | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | PowerPCCPUClass *pcc = POWERPC_CPU_GET_CLASS(cs); | 
|  | int index = spapr_get_vcpu_id(cpu); | 
|  | uint32_t segs[] = {cpu_to_be32(28), cpu_to_be32(40), | 
|  | 0xffffffff, 0xffffffff}; | 
|  | uint32_t tbfreq = kvm_enabled() ? kvmppc_get_tbfreq() | 
|  | : SPAPR_TIMEBASE_FREQ; | 
|  | uint32_t cpufreq = kvm_enabled() ? kvmppc_get_clockfreq() : 1000000000; | 
|  | uint32_t page_sizes_prop[64]; | 
|  | size_t page_sizes_prop_size; | 
|  | unsigned int smp_threads = ms->smp.threads; | 
|  | uint32_t vcpus_per_socket = smp_threads * ms->smp.cores; | 
|  | uint32_t pft_size_prop[] = {0, cpu_to_be32(spapr->htab_shift)}; | 
|  | int compat_smt = MIN(smp_threads, ppc_compat_max_vthreads(cpu)); | 
|  | SpaprDrc *drc; | 
|  | int drc_index; | 
|  | uint32_t radix_AP_encodings[PPC_PAGE_SIZES_MAX_SZ]; | 
|  | int i; | 
|  |  | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, index); | 
|  | if (drc) { | 
|  | drc_index = spapr_drc_index(drc); | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "ibm,my-drc-index", drc_index))); | 
|  | } | 
|  |  | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "reg", index))); | 
|  | _FDT((fdt_setprop_string(fdt, offset, "device_type", "cpu"))); | 
|  |  | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "cpu-version", env->spr[SPR_PVR]))); | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "d-cache-block-size", | 
|  | env->dcache_line_size))); | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "d-cache-line-size", | 
|  | env->dcache_line_size))); | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "i-cache-block-size", | 
|  | env->icache_line_size))); | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "i-cache-line-size", | 
|  | env->icache_line_size))); | 
|  |  | 
|  | if (pcc->l1_dcache_size) { | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "d-cache-size", | 
|  | pcc->l1_dcache_size))); | 
|  | } else { | 
|  | warn_report("Unknown L1 dcache size for cpu"); | 
|  | } | 
|  | if (pcc->l1_icache_size) { | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "i-cache-size", | 
|  | pcc->l1_icache_size))); | 
|  | } else { | 
|  | warn_report("Unknown L1 icache size for cpu"); | 
|  | } | 
|  |  | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "timebase-frequency", tbfreq))); | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "clock-frequency", cpufreq))); | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "slb-size", cpu->hash64_opts->slb_size))); | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "ibm,slb-size", cpu->hash64_opts->slb_size))); | 
|  | _FDT((fdt_setprop_string(fdt, offset, "status", "okay"))); | 
|  | _FDT((fdt_setprop(fdt, offset, "64-bit", NULL, 0))); | 
|  |  | 
|  | if (ppc_has_spr(cpu, SPR_PURR)) { | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "ibm,purr", 1))); | 
|  | } | 
|  | if (ppc_has_spr(cpu, SPR_PURR)) { | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "ibm,spurr", 1))); | 
|  | } | 
|  |  | 
|  | if (ppc_hash64_has(cpu, PPC_HASH64_1TSEG)) { | 
|  | _FDT((fdt_setprop(fdt, offset, "ibm,processor-segment-sizes", | 
|  | segs, sizeof(segs)))); | 
|  | } | 
|  |  | 
|  | /* Advertise VSX (vector extensions) if available | 
|  | *   1               == VMX / Altivec available | 
|  | *   2               == VSX available | 
|  | * | 
|  | * Only CPUs for which we create core types in spapr_cpu_core.c | 
|  | * are possible, and all of those have VMX */ | 
|  | if (env->insns_flags & PPC_ALTIVEC) { | 
|  | if (spapr_get_cap(spapr, SPAPR_CAP_VSX) != 0) { | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 2))); | 
|  | } else { | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "ibm,vmx", 1))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Advertise DFP (Decimal Floating Point) if available | 
|  | *   0 / no property == no DFP | 
|  | *   1               == DFP available */ | 
|  | if (spapr_get_cap(spapr, SPAPR_CAP_DFP) != 0) { | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "ibm,dfp", 1))); | 
|  | } | 
|  |  | 
|  | page_sizes_prop_size = ppc_create_page_sizes_prop(cpu, page_sizes_prop, | 
|  | sizeof(page_sizes_prop)); | 
|  | if (page_sizes_prop_size) { | 
|  | _FDT((fdt_setprop(fdt, offset, "ibm,segment-page-sizes", | 
|  | page_sizes_prop, page_sizes_prop_size))); | 
|  | } | 
|  |  | 
|  | spapr_dt_pa_features(spapr, cpu, fdt, offset); | 
|  |  | 
|  | spapr_dt_pi_features(spapr, cpu, fdt, offset); | 
|  |  | 
|  | _FDT((fdt_setprop_cell(fdt, offset, "ibm,chip-id", | 
|  | cs->cpu_index / vcpus_per_socket))); | 
|  |  | 
|  | _FDT((fdt_setprop(fdt, offset, "ibm,pft-size", | 
|  | pft_size_prop, sizeof(pft_size_prop)))); | 
|  |  | 
|  | if (ms->numa_state->num_nodes > 1) { | 
|  | _FDT(spapr_numa_fixup_cpu_dt(spapr, fdt, offset, cpu)); | 
|  | } | 
|  |  | 
|  | _FDT(spapr_fixup_cpu_smt_dt(fdt, offset, cpu, compat_smt)); | 
|  |  | 
|  | if (pcc->radix_page_info) { | 
|  | for (i = 0; i < pcc->radix_page_info->count; i++) { | 
|  | radix_AP_encodings[i] = | 
|  | cpu_to_be32(pcc->radix_page_info->entries[i]); | 
|  | } | 
|  | _FDT((fdt_setprop(fdt, offset, "ibm,processor-radix-AP-encodings", | 
|  | radix_AP_encodings, | 
|  | pcc->radix_page_info->count * | 
|  | sizeof(radix_AP_encodings[0])))); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We set this property to let the guest know that it can use the large | 
|  | * decrementer and its width in bits. | 
|  | */ | 
|  | if (spapr_get_cap(spapr, SPAPR_CAP_LARGE_DECREMENTER) != SPAPR_CAP_OFF) | 
|  | _FDT((fdt_setprop_u32(fdt, offset, "ibm,dec-bits", | 
|  | pcc->lrg_decr_bits))); | 
|  | } | 
|  |  | 
|  | static void spapr_dt_one_cpu(void *fdt, SpaprMachineState *spapr, CPUState *cs, | 
|  | int cpus_offset) | 
|  | { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | int index = spapr_get_vcpu_id(cpu); | 
|  | DeviceClass *dc = DEVICE_GET_CLASS(cs); | 
|  | g_autofree char *nodename = NULL; | 
|  | int offset; | 
|  |  | 
|  | if (!spapr_is_thread0_in_vcore(spapr, cpu)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | nodename = g_strdup_printf("%s@%x", dc->fw_name, index); | 
|  | offset = fdt_add_subnode(fdt, cpus_offset, nodename); | 
|  | _FDT(offset); | 
|  | spapr_dt_cpu(cs, fdt, offset, spapr); | 
|  | } | 
|  |  | 
|  |  | 
|  | static void spapr_dt_cpus(void *fdt, SpaprMachineState *spapr) | 
|  | { | 
|  | CPUState **rev; | 
|  | CPUState *cs; | 
|  | int n_cpus; | 
|  | int cpus_offset; | 
|  | int i; | 
|  |  | 
|  | cpus_offset = fdt_add_subnode(fdt, 0, "cpus"); | 
|  | _FDT(cpus_offset); | 
|  | _FDT((fdt_setprop_cell(fdt, cpus_offset, "#address-cells", 0x1))); | 
|  | _FDT((fdt_setprop_cell(fdt, cpus_offset, "#size-cells", 0x0))); | 
|  |  | 
|  | /* | 
|  | * We walk the CPUs in reverse order to ensure that CPU DT nodes | 
|  | * created by fdt_add_subnode() end up in the right order in FDT | 
|  | * for the guest kernel the enumerate the CPUs correctly. | 
|  | * | 
|  | * The CPU list cannot be traversed in reverse order, so we need | 
|  | * to do extra work. | 
|  | */ | 
|  | n_cpus = 0; | 
|  | rev = NULL; | 
|  | CPU_FOREACH(cs) { | 
|  | rev = g_renew(CPUState *, rev, n_cpus + 1); | 
|  | rev[n_cpus++] = cs; | 
|  | } | 
|  |  | 
|  | for (i = n_cpus - 1; i >= 0; i--) { | 
|  | spapr_dt_one_cpu(fdt, spapr, rev[i], cpus_offset); | 
|  | } | 
|  |  | 
|  | g_free(rev); | 
|  | } | 
|  |  | 
|  | static int spapr_dt_rng(void *fdt) | 
|  | { | 
|  | int node; | 
|  | int ret; | 
|  |  | 
|  | node = qemu_fdt_add_subnode(fdt, "/ibm,platform-facilities"); | 
|  | if (node <= 0) { | 
|  | return -1; | 
|  | } | 
|  | ret = fdt_setprop_string(fdt, node, "device_type", | 
|  | "ibm,platform-facilities"); | 
|  | ret |= fdt_setprop_cell(fdt, node, "#address-cells", 0x1); | 
|  | ret |= fdt_setprop_cell(fdt, node, "#size-cells", 0x0); | 
|  |  | 
|  | node = fdt_add_subnode(fdt, node, "ibm,random-v1"); | 
|  | if (node <= 0) { | 
|  | return -1; | 
|  | } | 
|  | ret |= fdt_setprop_string(fdt, node, "compatible", "ibm,random"); | 
|  |  | 
|  | return ret ? -1 : 0; | 
|  | } | 
|  |  | 
|  | static void spapr_dt_rtas(SpaprMachineState *spapr, void *fdt) | 
|  | { | 
|  | MachineState *ms = MACHINE(spapr); | 
|  | int rtas; | 
|  | GString *hypertas = g_string_sized_new(256); | 
|  | GString *qemu_hypertas = g_string_sized_new(256); | 
|  | uint32_t lrdr_capacity[] = { | 
|  | 0, | 
|  | 0, | 
|  | cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE >> 32), | 
|  | cpu_to_be32(SPAPR_MEMORY_BLOCK_SIZE & 0xffffffff), | 
|  | cpu_to_be32(ms->smp.max_cpus / ms->smp.threads), | 
|  | }; | 
|  |  | 
|  | /* Do we have device memory? */ | 
|  | if (MACHINE(spapr)->device_memory) { | 
|  | uint64_t max_device_addr = MACHINE(spapr)->device_memory->base + | 
|  | memory_region_size(&MACHINE(spapr)->device_memory->mr); | 
|  |  | 
|  | lrdr_capacity[0] = cpu_to_be32(max_device_addr >> 32); | 
|  | lrdr_capacity[1] = cpu_to_be32(max_device_addr & 0xffffffff); | 
|  | } | 
|  |  | 
|  | _FDT(rtas = fdt_add_subnode(fdt, 0, "rtas")); | 
|  |  | 
|  | /* hypertas */ | 
|  | add_str(hypertas, "hcall-pft"); | 
|  | add_str(hypertas, "hcall-term"); | 
|  | add_str(hypertas, "hcall-dabr"); | 
|  | add_str(hypertas, "hcall-interrupt"); | 
|  | add_str(hypertas, "hcall-tce"); | 
|  | add_str(hypertas, "hcall-vio"); | 
|  | add_str(hypertas, "hcall-splpar"); | 
|  | add_str(hypertas, "hcall-join"); | 
|  | add_str(hypertas, "hcall-bulk"); | 
|  | add_str(hypertas, "hcall-set-mode"); | 
|  | add_str(hypertas, "hcall-sprg0"); | 
|  | add_str(hypertas, "hcall-copy"); | 
|  | add_str(hypertas, "hcall-debug"); | 
|  | add_str(hypertas, "hcall-vphn"); | 
|  | if (spapr_get_cap(spapr, SPAPR_CAP_RPT_INVALIDATE) == SPAPR_CAP_ON) { | 
|  | add_str(hypertas, "hcall-rpt-invalidate"); | 
|  | } | 
|  |  | 
|  | add_str(qemu_hypertas, "hcall-memop1"); | 
|  |  | 
|  | if (!kvm_enabled() || kvmppc_spapr_use_multitce()) { | 
|  | add_str(hypertas, "hcall-multi-tce"); | 
|  | } | 
|  |  | 
|  | if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { | 
|  | add_str(hypertas, "hcall-hpt-resize"); | 
|  | } | 
|  |  | 
|  | add_str(hypertas, "hcall-watchdog"); | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,hypertas-functions", | 
|  | hypertas->str, hypertas->len)); | 
|  | g_string_free(hypertas, TRUE); | 
|  | _FDT(fdt_setprop(fdt, rtas, "qemu,hypertas-functions", | 
|  | qemu_hypertas->str, qemu_hypertas->len)); | 
|  | g_string_free(qemu_hypertas, TRUE); | 
|  |  | 
|  | spapr_numa_write_rtas_dt(spapr, fdt, rtas); | 
|  |  | 
|  | /* | 
|  | * FWNMI reserves RTAS_ERROR_LOG_MAX for the machine check error log, | 
|  | * and 16 bytes per CPU for system reset error log plus an extra 8 bytes. | 
|  | * | 
|  | * The system reset requirements are driven by existing Linux and PowerVM | 
|  | * implementation which (contrary to PAPR) saves r3 in the error log | 
|  | * structure like machine check, so Linux expects to find the saved r3 | 
|  | * value at the address in r3 upon FWNMI-enabled sreset interrupt (and | 
|  | * does not look at the error value). | 
|  | * | 
|  | * System reset interrupts are not subject to interlock like machine | 
|  | * check, so this memory area could be corrupted if the sreset is | 
|  | * interrupted by a machine check (or vice versa) if it was shared. To | 
|  | * prevent this, system reset uses per-CPU areas for the sreset save | 
|  | * area. A system reset that interrupts a system reset handler could | 
|  | * still overwrite this area, but Linux doesn't try to recover in that | 
|  | * case anyway. | 
|  | * | 
|  | * The extra 8 bytes is required because Linux's FWNMI error log check | 
|  | * is off-by-one. | 
|  | * | 
|  | * RTAS_MIN_SIZE is required for the RTAS blob itself. | 
|  | */ | 
|  | _FDT(fdt_setprop_cell(fdt, rtas, "rtas-size", RTAS_MIN_SIZE + | 
|  | RTAS_ERROR_LOG_MAX + | 
|  | ms->smp.max_cpus * sizeof(uint64_t) * 2 + | 
|  | sizeof(uint64_t))); | 
|  | _FDT(fdt_setprop_cell(fdt, rtas, "rtas-error-log-max", | 
|  | RTAS_ERROR_LOG_MAX)); | 
|  | _FDT(fdt_setprop_cell(fdt, rtas, "rtas-event-scan-rate", | 
|  | RTAS_EVENT_SCAN_RATE)); | 
|  |  | 
|  | g_assert(msi_nonbroken); | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,change-msix-capable", NULL, 0)); | 
|  |  | 
|  | /* | 
|  | * According to PAPR, rtas ibm,os-term does not guarantee a return | 
|  | * back to the guest cpu. | 
|  | * | 
|  | * While an additional ibm,extended-os-term property indicates | 
|  | * that rtas call return will always occur. Set this property. | 
|  | */ | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,extended-os-term", NULL, 0)); | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, rtas, "ibm,lrdr-capacity", | 
|  | lrdr_capacity, sizeof(lrdr_capacity))); | 
|  |  | 
|  | spapr_dt_rtas_tokens(fdt, rtas); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Prepare ibm,arch-vec-5-platform-support, which indicates the MMU | 
|  | * and the XIVE features that the guest may request and thus the valid | 
|  | * values for bytes 23..26 of option vector 5: | 
|  | */ | 
|  | static void spapr_dt_ov5_platform_support(SpaprMachineState *spapr, void *fdt, | 
|  | int chosen) | 
|  | { | 
|  | PowerPCCPU *first_ppc_cpu = POWERPC_CPU(first_cpu); | 
|  |  | 
|  | char val[2 * 4] = { | 
|  | 23, 0x00, /* XICS / XIVE mode */ | 
|  | 24, 0x00, /* Hash/Radix, filled in below. */ | 
|  | 25, 0x00, /* Hash options: Segment Tables == no, GTSE == no. */ | 
|  | 26, 0x40, /* Radix options: GTSE == yes. */ | 
|  | }; | 
|  |  | 
|  | if (spapr->irq->xics && spapr->irq->xive) { | 
|  | val[1] = SPAPR_OV5_XIVE_BOTH; | 
|  | } else if (spapr->irq->xive) { | 
|  | val[1] = SPAPR_OV5_XIVE_EXPLOIT; | 
|  | } else { | 
|  | assert(spapr->irq->xics); | 
|  | val[1] = SPAPR_OV5_XIVE_LEGACY; | 
|  | } | 
|  |  | 
|  | if (!ppc_check_compat(first_ppc_cpu, CPU_POWERPC_LOGICAL_3_00, 0, | 
|  | first_ppc_cpu->compat_pvr)) { | 
|  | /* | 
|  | * If we're in a pre POWER9 compat mode then the guest should | 
|  | * do hash and use the legacy interrupt mode | 
|  | */ | 
|  | val[1] = SPAPR_OV5_XIVE_LEGACY; /* XICS */ | 
|  | val[3] = 0x00; /* Hash */ | 
|  | spapr_check_mmu_mode(false); | 
|  | } else if (kvm_enabled()) { | 
|  | if (kvmppc_has_cap_mmu_radix() && kvmppc_has_cap_mmu_hash_v3()) { | 
|  | val[3] = 0x80; /* OV5_MMU_BOTH */ | 
|  | } else if (kvmppc_has_cap_mmu_radix()) { | 
|  | val[3] = 0x40; /* OV5_MMU_RADIX_300 */ | 
|  | } else { | 
|  | val[3] = 0x00; /* Hash */ | 
|  | } | 
|  | } else { | 
|  | /* V3 MMU supports both hash and radix in tcg (with dynamic switching) */ | 
|  | val[3] = 0xC0; | 
|  | } | 
|  | _FDT(fdt_setprop(fdt, chosen, "ibm,arch-vec-5-platform-support", | 
|  | val, sizeof(val))); | 
|  | } | 
|  |  | 
|  | static void spapr_dt_chosen(SpaprMachineState *spapr, void *fdt, bool reset) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | 
|  | int chosen; | 
|  |  | 
|  | _FDT(chosen = fdt_add_subnode(fdt, 0, "chosen")); | 
|  |  | 
|  | if (reset) { | 
|  | const char *boot_device = spapr->boot_device; | 
|  | g_autofree char *stdout_path = spapr_vio_stdout_path(spapr->vio_bus); | 
|  | size_t cb = 0; | 
|  | g_autofree char *bootlist = get_boot_devices_list(&cb); | 
|  |  | 
|  | if (machine->kernel_cmdline && machine->kernel_cmdline[0]) { | 
|  | _FDT(fdt_setprop_string(fdt, chosen, "bootargs", | 
|  | machine->kernel_cmdline)); | 
|  | } | 
|  |  | 
|  | if (spapr->initrd_size) { | 
|  | _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-start", | 
|  | spapr->initrd_base)); | 
|  | _FDT(fdt_setprop_cell(fdt, chosen, "linux,initrd-end", | 
|  | spapr->initrd_base + spapr->initrd_size)); | 
|  | } | 
|  |  | 
|  | if (spapr->kernel_size) { | 
|  | uint64_t kprop[2] = { cpu_to_be64(spapr->kernel_addr), | 
|  | cpu_to_be64(spapr->kernel_size) }; | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel", | 
|  | &kprop, sizeof(kprop))); | 
|  | if (spapr->kernel_le) { | 
|  | _FDT(fdt_setprop(fdt, chosen, "qemu,boot-kernel-le", NULL, 0)); | 
|  | } | 
|  | } | 
|  | if (machine->boot_config.has_menu && machine->boot_config.menu) { | 
|  | _FDT((fdt_setprop_cell(fdt, chosen, "qemu,boot-menu", true))); | 
|  | } | 
|  | _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-width", graphic_width)); | 
|  | _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-height", graphic_height)); | 
|  | _FDT(fdt_setprop_cell(fdt, chosen, "qemu,graphic-depth", graphic_depth)); | 
|  |  | 
|  | if (cb && bootlist) { | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cb; i++) { | 
|  | if (bootlist[i] == '\n') { | 
|  | bootlist[i] = ' '; | 
|  | } | 
|  | } | 
|  | _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-list", bootlist)); | 
|  | } | 
|  |  | 
|  | if (boot_device && strlen(boot_device)) { | 
|  | _FDT(fdt_setprop_string(fdt, chosen, "qemu,boot-device", boot_device)); | 
|  | } | 
|  |  | 
|  | if (spapr->want_stdout_path && stdout_path) { | 
|  | /* | 
|  | * "linux,stdout-path" and "stdout" properties are | 
|  | * deprecated by linux kernel. New platforms should only | 
|  | * use the "stdout-path" property. Set the new property | 
|  | * and continue using older property to remain compatible | 
|  | * with the existing firmware. | 
|  | */ | 
|  | _FDT(fdt_setprop_string(fdt, chosen, "linux,stdout-path", stdout_path)); | 
|  | _FDT(fdt_setprop_string(fdt, chosen, "stdout-path", stdout_path)); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * We can deal with BAR reallocation just fine, advertise it | 
|  | * to the guest | 
|  | */ | 
|  | if (smc->linux_pci_probe) { | 
|  | _FDT(fdt_setprop_cell(fdt, chosen, "linux,pci-probe-only", 0)); | 
|  | } | 
|  |  | 
|  | spapr_dt_ov5_platform_support(spapr, fdt, chosen); | 
|  | } | 
|  |  | 
|  | _FDT(fdt_setprop(fdt, chosen, "rng-seed", spapr->fdt_rng_seed, 32)); | 
|  |  | 
|  | _FDT(spapr_dt_ovec(fdt, chosen, spapr->ov5_cas, "ibm,architecture-vec-5")); | 
|  | } | 
|  |  | 
|  | static void spapr_dt_hypervisor(SpaprMachineState *spapr, void *fdt) | 
|  | { | 
|  | /* The /hypervisor node isn't in PAPR - this is a hack to allow PR | 
|  | * KVM to work under pHyp with some guest co-operation */ | 
|  | int hypervisor; | 
|  | uint8_t hypercall[16]; | 
|  |  | 
|  | _FDT(hypervisor = fdt_add_subnode(fdt, 0, "hypervisor")); | 
|  | /* indicate KVM hypercall interface */ | 
|  | _FDT(fdt_setprop_string(fdt, hypervisor, "compatible", "linux,kvm")); | 
|  | if (kvmppc_has_cap_fixup_hcalls()) { | 
|  | /* | 
|  | * Older KVM versions with older guest kernels were broken | 
|  | * with the magic page, don't allow the guest to map it. | 
|  | */ | 
|  | if (!kvmppc_get_hypercall(cpu_env(first_cpu), hypercall, | 
|  | sizeof(hypercall))) { | 
|  | _FDT(fdt_setprop(fdt, hypervisor, "hcall-instructions", | 
|  | hypercall, sizeof(hypercall))); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void *spapr_build_fdt(SpaprMachineState *spapr, bool reset, size_t space) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(machine); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | 
|  | uint32_t root_drc_type_mask = 0; | 
|  | int ret; | 
|  | void *fdt; | 
|  | SpaprPhbState *phb; | 
|  | char *buf; | 
|  |  | 
|  | fdt = g_malloc0(space); | 
|  | _FDT((fdt_create_empty_tree(fdt, space))); | 
|  |  | 
|  | /* Root node */ | 
|  | _FDT(fdt_setprop_string(fdt, 0, "device_type", "chrp")); | 
|  | _FDT(fdt_setprop_string(fdt, 0, "model", "IBM pSeries (emulated by qemu)")); | 
|  | _FDT(fdt_setprop_string(fdt, 0, "compatible", "qemu,pseries")); | 
|  |  | 
|  | /* Guest UUID & Name*/ | 
|  | buf = qemu_uuid_unparse_strdup(&qemu_uuid); | 
|  | _FDT(fdt_setprop_string(fdt, 0, "vm,uuid", buf)); | 
|  | if (qemu_uuid_set) { | 
|  | _FDT(fdt_setprop_string(fdt, 0, "system-id", buf)); | 
|  | } | 
|  | g_free(buf); | 
|  |  | 
|  | if (qemu_get_vm_name()) { | 
|  | _FDT(fdt_setprop_string(fdt, 0, "ibm,partition-name", | 
|  | qemu_get_vm_name())); | 
|  | } | 
|  |  | 
|  | /* Host Model & Serial Number */ | 
|  | if (spapr->host_model) { | 
|  | _FDT(fdt_setprop_string(fdt, 0, "host-model", spapr->host_model)); | 
|  | } else if (smc->broken_host_serial_model && kvmppc_get_host_model(&buf)) { | 
|  | _FDT(fdt_setprop_string(fdt, 0, "host-model", buf)); | 
|  | g_free(buf); | 
|  | } | 
|  |  | 
|  | if (spapr->host_serial) { | 
|  | _FDT(fdt_setprop_string(fdt, 0, "host-serial", spapr->host_serial)); | 
|  | } else if (smc->broken_host_serial_model && kvmppc_get_host_serial(&buf)) { | 
|  | _FDT(fdt_setprop_string(fdt, 0, "host-serial", buf)); | 
|  | g_free(buf); | 
|  | } | 
|  |  | 
|  | _FDT(fdt_setprop_cell(fdt, 0, "#address-cells", 2)); | 
|  | _FDT(fdt_setprop_cell(fdt, 0, "#size-cells", 2)); | 
|  |  | 
|  | /* /interrupt controller */ | 
|  | spapr_irq_dt(spapr, spapr_max_server_number(spapr), fdt, PHANDLE_INTC); | 
|  |  | 
|  | ret = spapr_dt_memory(spapr, fdt); | 
|  | if (ret < 0) { | 
|  | error_report("couldn't setup memory nodes in fdt"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* /vdevice */ | 
|  | spapr_dt_vdevice(spapr->vio_bus, fdt); | 
|  |  | 
|  | if (object_resolve_path_type("", TYPE_SPAPR_RNG, NULL)) { | 
|  | ret = spapr_dt_rng(fdt); | 
|  | if (ret < 0) { | 
|  | error_report("could not set up rng device in the fdt"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | QLIST_FOREACH(phb, &spapr->phbs, list) { | 
|  | ret = spapr_dt_phb(spapr, phb, PHANDLE_INTC, fdt, NULL); | 
|  | if (ret < 0) { | 
|  | error_report("couldn't setup PCI devices in fdt"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | spapr_dt_cpus(fdt, spapr); | 
|  |  | 
|  | /* ibm,drc-indexes and friends */ | 
|  | if (smc->dr_lmb_enabled) { | 
|  | root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_LMB; | 
|  | } | 
|  | if (smc->dr_phb_enabled) { | 
|  | root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PHB; | 
|  | } | 
|  | if (mc->nvdimm_supported) { | 
|  | root_drc_type_mask |= SPAPR_DR_CONNECTOR_TYPE_PMEM; | 
|  | } | 
|  | if (root_drc_type_mask) { | 
|  | _FDT(spapr_dt_drc(fdt, 0, NULL, root_drc_type_mask)); | 
|  | } | 
|  |  | 
|  | if (mc->has_hotpluggable_cpus) { | 
|  | int offset = fdt_path_offset(fdt, "/cpus"); | 
|  | ret = spapr_dt_drc(fdt, offset, NULL, SPAPR_DR_CONNECTOR_TYPE_CPU); | 
|  | if (ret < 0) { | 
|  | error_report("Couldn't set up CPU DR device tree properties"); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* /event-sources */ | 
|  | spapr_dt_events(spapr, fdt); | 
|  |  | 
|  | /* /rtas */ | 
|  | spapr_dt_rtas(spapr, fdt); | 
|  |  | 
|  | /* /chosen */ | 
|  | spapr_dt_chosen(spapr, fdt, reset); | 
|  |  | 
|  | /* /hypervisor */ | 
|  | if (kvm_enabled()) { | 
|  | spapr_dt_hypervisor(spapr, fdt); | 
|  | } | 
|  |  | 
|  | /* Build memory reserve map */ | 
|  | if (reset) { | 
|  | if (spapr->kernel_size) { | 
|  | _FDT((fdt_add_mem_rsv(fdt, spapr->kernel_addr, | 
|  | spapr->kernel_size))); | 
|  | } | 
|  | if (spapr->initrd_size) { | 
|  | _FDT((fdt_add_mem_rsv(fdt, spapr->initrd_base, | 
|  | spapr->initrd_size))); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* NVDIMM devices */ | 
|  | if (mc->nvdimm_supported) { | 
|  | spapr_dt_persistent_memory(spapr, fdt); | 
|  | } | 
|  |  | 
|  | return fdt; | 
|  | } | 
|  |  | 
|  | static uint64_t translate_kernel_address(void *opaque, uint64_t addr) | 
|  | { | 
|  | SpaprMachineState *spapr = opaque; | 
|  |  | 
|  | return (addr & 0x0fffffff) + spapr->kernel_addr; | 
|  | } | 
|  |  | 
|  | static void emulate_spapr_hypercall(PPCVirtualHypervisor *vhyp, | 
|  | PowerPCCPU *cpu) | 
|  | { | 
|  | CPUPPCState *env = &cpu->env; | 
|  |  | 
|  | /* The TCG path should also be holding the BQL at this point */ | 
|  | g_assert(bql_locked()); | 
|  |  | 
|  | g_assert(!vhyp_cpu_in_nested(cpu)); | 
|  |  | 
|  | if (FIELD_EX64(env->msr, MSR, PR)) { | 
|  | hcall_dprintf("Hypercall made with MSR[PR]=1\n"); | 
|  | env->gpr[3] = H_PRIVILEGE; | 
|  | } else { | 
|  | env->gpr[3] = spapr_hypercall(cpu, env->gpr[3], &env->gpr[4]); | 
|  | } | 
|  | } | 
|  |  | 
|  | struct LPCRSyncState { | 
|  | target_ulong value; | 
|  | target_ulong mask; | 
|  | }; | 
|  |  | 
|  | static void do_lpcr_sync(CPUState *cs, run_on_cpu_data arg) | 
|  | { | 
|  | struct LPCRSyncState *s = arg.host_ptr; | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | target_ulong lpcr; | 
|  |  | 
|  | cpu_synchronize_state(cs); | 
|  | lpcr = env->spr[SPR_LPCR]; | 
|  | lpcr &= ~s->mask; | 
|  | lpcr |= s->value; | 
|  | ppc_store_lpcr(cpu, lpcr); | 
|  | } | 
|  |  | 
|  | void spapr_set_all_lpcrs(target_ulong value, target_ulong mask) | 
|  | { | 
|  | CPUState *cs; | 
|  | struct LPCRSyncState s = { | 
|  | .value = value, | 
|  | .mask = mask | 
|  | }; | 
|  | CPU_FOREACH(cs) { | 
|  | run_on_cpu(cs, do_lpcr_sync, RUN_ON_CPU_HOST_PTR(&s)); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* May be used when the machine is not running */ | 
|  | void spapr_init_all_lpcrs(target_ulong value, target_ulong mask) | 
|  | { | 
|  | CPUState *cs; | 
|  | CPU_FOREACH(cs) { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | CPUPPCState *env = &cpu->env; | 
|  | target_ulong lpcr; | 
|  |  | 
|  | lpcr = env->spr[SPR_LPCR]; | 
|  | lpcr &= ~(LPCR_HR | LPCR_UPRT); | 
|  | ppc_store_lpcr(cpu, lpcr); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool spapr_get_pate(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu, | 
|  | target_ulong lpid, ppc_v3_pate_t *entry) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  |  | 
|  | if (!spapr_cpu->in_nested) { | 
|  | assert(lpid == 0); | 
|  |  | 
|  | /* Copy PATE1:GR into PATE0:HR */ | 
|  | entry->dw0 = spapr->patb_entry & PATE0_HR; | 
|  | entry->dw1 = spapr->patb_entry; | 
|  | return true; | 
|  | } else { | 
|  | if (spapr_nested_api(spapr) == NESTED_API_KVM_HV) { | 
|  | return spapr_get_pate_nested_hv(spapr, cpu, lpid, entry); | 
|  | } else if (spapr_nested_api(spapr) == NESTED_API_PAPR) { | 
|  | return spapr_get_pate_nested_papr(spapr, cpu, lpid, entry); | 
|  | } else { | 
|  | g_assert_not_reached(); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | #define HPTE(_table, _i)   (void *)(((uint64_t *)(_table)) + ((_i) * 2)) | 
|  | #define HPTE_VALID(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_VALID) | 
|  | #define HPTE_DIRTY(_hpte)  (tswap64(*((uint64_t *)(_hpte))) & HPTE64_V_HPTE_DIRTY) | 
|  | #define CLEAN_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) &= tswap64(~HPTE64_V_HPTE_DIRTY)) | 
|  | #define DIRTY_HPTE(_hpte)  ((*(uint64_t *)(_hpte)) |= tswap64(HPTE64_V_HPTE_DIRTY)) | 
|  |  | 
|  | /* | 
|  | * Get the fd to access the kernel htab, re-opening it if necessary | 
|  | */ | 
|  | static int get_htab_fd(SpaprMachineState *spapr) | 
|  | { | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | if (spapr->htab_fd >= 0) { | 
|  | return spapr->htab_fd; | 
|  | } | 
|  |  | 
|  | spapr->htab_fd = kvmppc_get_htab_fd(false, 0, &local_err); | 
|  | if (spapr->htab_fd < 0) { | 
|  | error_report_err(local_err); | 
|  | } | 
|  |  | 
|  | return spapr->htab_fd; | 
|  | } | 
|  |  | 
|  | void close_htab_fd(SpaprMachineState *spapr) | 
|  | { | 
|  | if (spapr->htab_fd >= 0) { | 
|  | close(spapr->htab_fd); | 
|  | } | 
|  | spapr->htab_fd = -1; | 
|  | } | 
|  |  | 
|  | static hwaddr spapr_hpt_mask(PPCVirtualHypervisor *vhyp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
|  |  | 
|  | return HTAB_SIZE(spapr) / HASH_PTEG_SIZE_64 - 1; | 
|  | } | 
|  |  | 
|  | static target_ulong spapr_encode_hpt_for_kvm_pr(PPCVirtualHypervisor *vhyp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
|  |  | 
|  | assert(kvm_enabled()); | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return (target_ulong)(uintptr_t)spapr->htab | (spapr->htab_shift - 18); | 
|  | } | 
|  |  | 
|  | static const ppc_hash_pte64_t *spapr_map_hptes(PPCVirtualHypervisor *vhyp, | 
|  | hwaddr ptex, int n) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
|  | hwaddr pte_offset = ptex * HASH_PTE_SIZE_64; | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | /* | 
|  | * HTAB is controlled by KVM. Fetch into temporary buffer | 
|  | */ | 
|  | ppc_hash_pte64_t *hptes = g_malloc(n * HASH_PTE_SIZE_64); | 
|  | kvmppc_read_hptes(hptes, ptex, n); | 
|  | return hptes; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * HTAB is controlled by QEMU. Just point to the internally | 
|  | * accessible PTEG. | 
|  | */ | 
|  | return (const ppc_hash_pte64_t *)(spapr->htab + pte_offset); | 
|  | } | 
|  |  | 
|  | static void spapr_unmap_hptes(PPCVirtualHypervisor *vhyp, | 
|  | const ppc_hash_pte64_t *hptes, | 
|  | hwaddr ptex, int n) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | g_free((void *)hptes); | 
|  | } | 
|  |  | 
|  | /* Nothing to do for qemu managed HPT */ | 
|  | } | 
|  |  | 
|  | void spapr_store_hpte(PowerPCCPU *cpu, hwaddr ptex, | 
|  | uint64_t pte0, uint64_t pte1) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(cpu->vhyp); | 
|  | hwaddr offset = ptex * HASH_PTE_SIZE_64; | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | kvmppc_write_hpte(ptex, pte0, pte1); | 
|  | } else { | 
|  | if (pte0 & HPTE64_V_VALID) { | 
|  | stq_p(spapr->htab + offset + HPTE64_DW1, pte1); | 
|  | /* | 
|  | * When setting valid, we write PTE1 first. This ensures | 
|  | * proper synchronization with the reading code in | 
|  | * ppc_hash64_pteg_search() | 
|  | */ | 
|  | smp_wmb(); | 
|  | stq_p(spapr->htab + offset, pte0); | 
|  | } else { | 
|  | stq_p(spapr->htab + offset, pte0); | 
|  | /* | 
|  | * When clearing it we set PTE0 first. This ensures proper | 
|  | * synchronization with the reading code in | 
|  | * ppc_hash64_pteg_search() | 
|  | */ | 
|  | smp_wmb(); | 
|  | stq_p(spapr->htab + offset + HPTE64_DW1, pte1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_hpte_set_c(PPCVirtualHypervisor *vhyp, hwaddr ptex, | 
|  | uint64_t pte1) | 
|  | { | 
|  | hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_C; | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | /* There should always be a hash table when this is called */ | 
|  | error_report("spapr_hpte_set_c called with no hash table !"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The HW performs a non-atomic byte update */ | 
|  | stb_p(spapr->htab + offset, (pte1 & 0xff) | 0x80); | 
|  | } | 
|  |  | 
|  | static void spapr_hpte_set_r(PPCVirtualHypervisor *vhyp, hwaddr ptex, | 
|  | uint64_t pte1) | 
|  | { | 
|  | hwaddr offset = ptex * HASH_PTE_SIZE_64 + HPTE64_DW1_R; | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(vhyp); | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | /* There should always be a hash table when this is called */ | 
|  | error_report("spapr_hpte_set_r called with no hash table !"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The HW performs a non-atomic byte update */ | 
|  | stb_p(spapr->htab + offset, ((pte1 >> 8) & 0xff) | 0x01); | 
|  | } | 
|  |  | 
|  | int spapr_hpt_shift_for_ramsize(uint64_t ramsize) | 
|  | { | 
|  | int shift; | 
|  |  | 
|  | /* We aim for a hash table of size 1/128 the size of RAM (rounded | 
|  | * up).  The PAPR recommendation is actually 1/64 of RAM size, but | 
|  | * that's much more than is needed for Linux guests */ | 
|  | shift = ctz64(pow2ceil(ramsize)) - 7; | 
|  | shift = MAX(shift, 18); /* Minimum architected size */ | 
|  | shift = MIN(shift, 46); /* Maximum architected size */ | 
|  | return shift; | 
|  | } | 
|  |  | 
|  | void spapr_free_hpt(SpaprMachineState *spapr) | 
|  | { | 
|  | qemu_vfree(spapr->htab); | 
|  | spapr->htab = NULL; | 
|  | spapr->htab_shift = 0; | 
|  | close_htab_fd(spapr); | 
|  | } | 
|  |  | 
|  | int spapr_reallocate_hpt(SpaprMachineState *spapr, int shift, Error **errp) | 
|  | { | 
|  | ERRP_GUARD(); | 
|  | long rc; | 
|  |  | 
|  | /* Clean up any HPT info from a previous boot */ | 
|  | spapr_free_hpt(spapr); | 
|  |  | 
|  | rc = kvmppc_reset_htab(shift); | 
|  |  | 
|  | if (rc == -EOPNOTSUPP) { | 
|  | error_setg(errp, "HPT not supported in nested guests"); | 
|  | return -EOPNOTSUPP; | 
|  | } | 
|  |  | 
|  | if (rc < 0) { | 
|  | /* kernel-side HPT needed, but couldn't allocate one */ | 
|  | error_setg_errno(errp, errno, "Failed to allocate KVM HPT of order %d", | 
|  | shift); | 
|  | error_append_hint(errp, "Try smaller maxmem?\n"); | 
|  | return -errno; | 
|  | } else if (rc > 0) { | 
|  | /* kernel-side HPT allocated */ | 
|  | if (rc != shift) { | 
|  | error_setg(errp, | 
|  | "Requested order %d HPT, but kernel allocated order %ld", | 
|  | shift, rc); | 
|  | error_append_hint(errp, "Try smaller maxmem?\n"); | 
|  | return -ENOSPC; | 
|  | } | 
|  |  | 
|  | spapr->htab_shift = shift; | 
|  | spapr->htab = NULL; | 
|  | } else { | 
|  | /* kernel-side HPT not needed, allocate in userspace instead */ | 
|  | size_t size = 1ULL << shift; | 
|  | int i; | 
|  |  | 
|  | spapr->htab = qemu_memalign(size, size); | 
|  | memset(spapr->htab, 0, size); | 
|  | spapr->htab_shift = shift; | 
|  |  | 
|  | for (i = 0; i < size / HASH_PTE_SIZE_64; i++) { | 
|  | DIRTY_HPTE(HPTE(spapr->htab, i)); | 
|  | } | 
|  | } | 
|  | /* We're setting up a hash table, so that means we're not radix */ | 
|  | spapr->patb_entry = 0; | 
|  | spapr_init_all_lpcrs(0, LPCR_HR | LPCR_UPRT); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | void spapr_setup_hpt(SpaprMachineState *spapr) | 
|  | { | 
|  | int hpt_shift; | 
|  |  | 
|  | if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DISABLED) { | 
|  | hpt_shift = spapr_hpt_shift_for_ramsize(MACHINE(spapr)->maxram_size); | 
|  | } else { | 
|  | uint64_t current_ram_size; | 
|  |  | 
|  | current_ram_size = MACHINE(spapr)->ram_size + get_plugged_memory_size(); | 
|  | hpt_shift = spapr_hpt_shift_for_ramsize(current_ram_size); | 
|  | } | 
|  | spapr_reallocate_hpt(spapr, hpt_shift, &error_fatal); | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | hwaddr vrma_limit = kvmppc_vrma_limit(spapr->htab_shift); | 
|  |  | 
|  | /* Check our RMA fits in the possible VRMA */ | 
|  | if (vrma_limit < spapr->rma_size) { | 
|  | error_report("Unable to create %" HWADDR_PRIu | 
|  | "MiB RMA (VRMA only allows %" HWADDR_PRIu "MiB", | 
|  | spapr->rma_size / MiB, vrma_limit / MiB); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | void spapr_check_mmu_mode(bool guest_radix) | 
|  | { | 
|  | if (guest_radix) { | 
|  | if (kvm_enabled() && !kvmppc_has_cap_mmu_radix()) { | 
|  | error_report("Guest requested unavailable MMU mode (radix)."); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } else { | 
|  | if (kvm_enabled() && kvmppc_has_cap_mmu_radix() | 
|  | && !kvmppc_has_cap_mmu_hash_v3()) { | 
|  | error_report("Guest requested unavailable MMU mode (hash)."); | 
|  | exit(EXIT_FAILURE); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_machine_reset(MachineState *machine, ResetType type) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(machine); | 
|  | PowerPCCPU *first_ppc_cpu; | 
|  | hwaddr fdt_addr; | 
|  | void *fdt; | 
|  | int rc; | 
|  |  | 
|  | if (type != RESET_TYPE_SNAPSHOT_LOAD) { | 
|  | /* | 
|  | * Record-replay snapshot load must not consume random, this was | 
|  | * already replayed from initial machine reset. | 
|  | */ | 
|  | qemu_guest_getrandom_nofail(spapr->fdt_rng_seed, 32); | 
|  | } | 
|  |  | 
|  | if (machine->cgs) { | 
|  | confidential_guest_kvm_reset(machine->cgs, &error_fatal); | 
|  | } | 
|  | spapr_caps_apply(spapr); | 
|  | spapr_nested_reset(spapr); | 
|  |  | 
|  | first_ppc_cpu = POWERPC_CPU(first_cpu); | 
|  | if (kvm_enabled() && kvmppc_has_cap_mmu_radix() && | 
|  | ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, | 
|  | spapr->max_compat_pvr)) { | 
|  | /* | 
|  | * If using KVM with radix mode available, VCPUs can be started | 
|  | * without a HPT because KVM will start them in radix mode. | 
|  | * Set the GR bit in PATE so that we know there is no HPT. | 
|  | */ | 
|  | spapr->patb_entry = PATE1_GR; | 
|  | spapr_set_all_lpcrs(LPCR_HR | LPCR_UPRT, LPCR_HR | LPCR_UPRT); | 
|  | } else { | 
|  | spapr_setup_hpt(spapr); | 
|  | } | 
|  |  | 
|  | qemu_devices_reset(type); | 
|  |  | 
|  | spapr_ovec_cleanup(spapr->ov5_cas); | 
|  | spapr->ov5_cas = spapr_ovec_new(); | 
|  |  | 
|  | ppc_init_compat_all(spapr->max_compat_pvr, &error_fatal); | 
|  |  | 
|  | /* | 
|  | * This is fixing some of the default configuration of the XIVE | 
|  | * devices. To be called after the reset of the machine devices. | 
|  | */ | 
|  | spapr_irq_reset(spapr, &error_fatal); | 
|  |  | 
|  | /* | 
|  | * There is no CAS under qtest. Simulate one to please the code that | 
|  | * depends on spapr->ov5_cas. This is especially needed to test device | 
|  | * unplug, so we do that before resetting the DRCs. | 
|  | */ | 
|  | if (qtest_enabled()) { | 
|  | spapr_ovec_cleanup(spapr->ov5_cas); | 
|  | spapr->ov5_cas = spapr_ovec_clone(spapr->ov5); | 
|  | } | 
|  |  | 
|  | spapr_nvdimm_finish_flushes(); | 
|  |  | 
|  | /* DRC reset may cause a device to be unplugged. This will cause troubles | 
|  | * if this device is used by another device (eg, a running vhost backend | 
|  | * will crash QEMU if the DIMM holding the vring goes away). To avoid such | 
|  | * situations, we reset DRCs after all devices have been reset. | 
|  | */ | 
|  | spapr_drc_reset_all(spapr); | 
|  |  | 
|  | spapr_clear_pending_events(spapr); | 
|  |  | 
|  | /* | 
|  | * We place the device tree just below either the top of the RMA, | 
|  | * or just below 2GB, whichever is lower, so that it can be | 
|  | * processed with 32-bit real mode code if necessary | 
|  | */ | 
|  | fdt_addr = MIN(spapr->rma_size, FDT_MAX_ADDR) - FDT_MAX_SIZE; | 
|  |  | 
|  | fdt = spapr_build_fdt(spapr, true, FDT_MAX_SIZE); | 
|  | if (spapr->vof) { | 
|  | spapr_vof_reset(spapr, fdt, &error_fatal); | 
|  | /* | 
|  | * Do not pack the FDT as the client may change properties. | 
|  | * VOF client does not expect the FDT so we do not load it to the VM. | 
|  | */ | 
|  | } else { | 
|  | rc = fdt_pack(fdt); | 
|  | /* Should only fail if we've built a corrupted tree */ | 
|  | assert(rc == 0); | 
|  |  | 
|  | spapr_cpu_set_entry_state(first_ppc_cpu, SPAPR_ENTRY_POINT, | 
|  | 0, fdt_addr, 0); | 
|  | cpu_physical_memory_write(fdt_addr, fdt, fdt_totalsize(fdt)); | 
|  | } | 
|  | qemu_fdt_dumpdtb(fdt, fdt_totalsize(fdt)); | 
|  |  | 
|  | g_free(spapr->fdt_blob); | 
|  | spapr->fdt_size = fdt_totalsize(fdt); | 
|  | spapr->fdt_initial_size = spapr->fdt_size; | 
|  | spapr->fdt_blob = fdt; | 
|  |  | 
|  | /* Set machine->fdt for 'dumpdtb' QMP/HMP command */ | 
|  | machine->fdt = fdt; | 
|  |  | 
|  | /* Set up the entry state */ | 
|  | first_ppc_cpu->env.gpr[5] = 0; | 
|  |  | 
|  | spapr->fwnmi_system_reset_addr = -1; | 
|  | spapr->fwnmi_machine_check_addr = -1; | 
|  | spapr->fwnmi_machine_check_interlock = -1; | 
|  |  | 
|  | /* Signal all vCPUs waiting on this condition */ | 
|  | qemu_cond_broadcast(&spapr->fwnmi_machine_check_interlock_cond); | 
|  |  | 
|  | migrate_del_blocker(&spapr->fwnmi_migration_blocker); | 
|  | } | 
|  |  | 
|  | static void spapr_create_nvram(SpaprMachineState *spapr) | 
|  | { | 
|  | DeviceState *dev = qdev_new("spapr-nvram"); | 
|  | DriveInfo *dinfo = drive_get(IF_PFLASH, 0, 0); | 
|  |  | 
|  | if (dinfo) { | 
|  | qdev_prop_set_drive_err(dev, "drive", blk_by_legacy_dinfo(dinfo), | 
|  | &error_fatal); | 
|  | } | 
|  |  | 
|  | qdev_realize_and_unref(dev, &spapr->vio_bus->bus, &error_fatal); | 
|  |  | 
|  | spapr->nvram = (struct SpaprNvram *)dev; | 
|  | } | 
|  |  | 
|  | static void spapr_rtc_create(SpaprMachineState *spapr) | 
|  | { | 
|  | object_initialize_child_with_props(OBJECT(spapr), "rtc", &spapr->rtc, | 
|  | sizeof(spapr->rtc), TYPE_SPAPR_RTC, | 
|  | &error_fatal, NULL); | 
|  | qdev_realize(DEVICE(&spapr->rtc), NULL, &error_fatal); | 
|  | object_property_add_alias(OBJECT(spapr), "rtc-time", OBJECT(&spapr->rtc), | 
|  | "date"); | 
|  | } | 
|  |  | 
|  | /* Returns whether we want to use VGA or not */ | 
|  | static bool spapr_vga_init(PCIBus *pci_bus, Error **errp) | 
|  | { | 
|  | vga_interface_created = true; | 
|  | switch (vga_interface_type) { | 
|  | case VGA_NONE: | 
|  | return false; | 
|  | case VGA_DEVICE: | 
|  | return true; | 
|  | case VGA_STD: | 
|  | case VGA_VIRTIO: | 
|  | case VGA_CIRRUS: | 
|  | return pci_vga_init(pci_bus) != NULL; | 
|  | default: | 
|  | error_setg(errp, | 
|  | "Unsupported VGA mode, only -vga std or -vga virtio is supported"); | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int spapr_pre_load(void *opaque) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = spapr_caps_pre_load(opaque); | 
|  | if (rc) { | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int spapr_post_load(void *opaque, int version_id) | 
|  | { | 
|  | SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
|  | int err = 0; | 
|  |  | 
|  | err = spapr_caps_post_migration(spapr); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In earlier versions, there was no separate qdev for the PAPR | 
|  | * RTC, so the RTC offset was stored directly in sPAPREnvironment. | 
|  | * So when migrating from those versions, poke the incoming offset | 
|  | * value into the RTC device | 
|  | */ | 
|  | if (version_id < 3) { | 
|  | err = spapr_rtc_import_offset(&spapr->rtc, spapr->rtc_offset); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (kvm_enabled() && spapr->patb_entry) { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(first_cpu); | 
|  | bool radix = !!(spapr->patb_entry & PATE1_GR); | 
|  | bool gtse = !!(cpu->env.spr[SPR_LPCR] & LPCR_GTSE); | 
|  |  | 
|  | /* | 
|  | * Update LPCR:HR and UPRT as they may not be set properly in | 
|  | * the stream | 
|  | */ | 
|  | spapr_set_all_lpcrs(radix ? (LPCR_HR | LPCR_UPRT) : 0, | 
|  | LPCR_HR | LPCR_UPRT); | 
|  |  | 
|  | err = kvmppc_configure_v3_mmu(cpu, radix, gtse, spapr->patb_entry); | 
|  | if (err) { | 
|  | error_report("Process table config unsupported by the host"); | 
|  | return -EINVAL; | 
|  | } | 
|  | } | 
|  |  | 
|  | err = spapr_irq_post_load(spapr, version_id); | 
|  | if (err) { | 
|  | return err; | 
|  | } | 
|  |  | 
|  | return err; | 
|  | } | 
|  |  | 
|  | static int spapr_pre_save(void *opaque) | 
|  | { | 
|  | int rc; | 
|  |  | 
|  | rc = spapr_caps_pre_save(opaque); | 
|  | if (rc) { | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool version_before_3(void *opaque, int version_id) | 
|  | { | 
|  | return version_id < 3; | 
|  | } | 
|  |  | 
|  | static bool spapr_pending_events_needed(void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
|  | return !QTAILQ_EMPTY(&spapr->pending_events); | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_spapr_event_entry = { | 
|  | .name = "spapr_event_log_entry", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT32(summary, SpaprEventLogEntry), | 
|  | VMSTATE_UINT32(extended_length, SpaprEventLogEntry), | 
|  | VMSTATE_VBUFFER_ALLOC_UINT32(extended_log, SpaprEventLogEntry, 0, | 
|  | NULL, extended_length), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_spapr_pending_events = { | 
|  | .name = "spapr_pending_events", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = spapr_pending_events_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_QTAILQ_V(pending_events, SpaprMachineState, 1, | 
|  | vmstate_spapr_event_entry, SpaprEventLogEntry, next), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static bool spapr_ov5_cas_needed(void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = opaque; | 
|  | SpaprOptionVector *ov5_mask = spapr_ovec_new(); | 
|  | bool cas_needed; | 
|  |  | 
|  | /* Prior to the introduction of SpaprOptionVector, we had two option | 
|  | * vectors we dealt with: OV5_FORM1_AFFINITY, and OV5_DRCONF_MEMORY. | 
|  | * Both of these options encode machine topology into the device-tree | 
|  | * in such a way that the now-booted OS should still be able to interact | 
|  | * appropriately with QEMU regardless of what options were actually | 
|  | * negotiatied on the source side. | 
|  | * | 
|  | * As such, we can avoid migrating the CAS-negotiated options if these | 
|  | * are the only options available on the current machine/platform. | 
|  | * Since these are the only options available for pseries-2.7 and | 
|  | * earlier, this allows us to maintain old->new/new->old migration | 
|  | * compatibility. | 
|  | * | 
|  | * For QEMU 2.8+, there are additional CAS-negotiatable options available | 
|  | * via default pseries-2.8 machines and explicit command-line parameters. | 
|  | * Some of these options, like OV5_HP_EVT, *do* require QEMU to be aware | 
|  | * of the actual CAS-negotiated values to continue working properly. For | 
|  | * example, availability of memory unplug depends on knowing whether | 
|  | * OV5_HP_EVT was negotiated via CAS. | 
|  | * | 
|  | * Thus, for any cases where the set of available CAS-negotiatable | 
|  | * options extends beyond OV5_FORM1_AFFINITY and OV5_DRCONF_MEMORY, we | 
|  | * include the CAS-negotiated options in the migration stream, unless | 
|  | * if they affect boot time behaviour only. | 
|  | */ | 
|  | spapr_ovec_set(ov5_mask, OV5_FORM1_AFFINITY); | 
|  | spapr_ovec_set(ov5_mask, OV5_DRCONF_MEMORY); | 
|  | spapr_ovec_set(ov5_mask, OV5_DRMEM_V2); | 
|  |  | 
|  | /* We need extra information if we have any bits outside the mask | 
|  | * defined above */ | 
|  | cas_needed = !spapr_ovec_subset(spapr->ov5, ov5_mask); | 
|  |  | 
|  | spapr_ovec_cleanup(ov5_mask); | 
|  |  | 
|  | return cas_needed; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_spapr_ov5_cas = { | 
|  | .name = "spapr_option_vector_ov5_cas", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = spapr_ov5_cas_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_STRUCT_POINTER_V(ov5_cas, SpaprMachineState, 1, | 
|  | vmstate_spapr_ovec, SpaprOptionVector), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static bool spapr_patb_entry_needed(void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = opaque; | 
|  |  | 
|  | return !!spapr->patb_entry; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_spapr_patb_entry = { | 
|  | .name = "spapr_patb_entry", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = spapr_patb_entry_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT64(patb_entry, SpaprMachineState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static bool spapr_irq_map_needed(void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = opaque; | 
|  |  | 
|  | return spapr->irq_map && !bitmap_empty(spapr->irq_map, spapr->irq_map_nr); | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_spapr_irq_map = { | 
|  | .name = "spapr_irq_map", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = spapr_irq_map_needed, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_BITMAP(irq_map, SpaprMachineState, 0, irq_map_nr), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static bool spapr_dtb_needed(void *opaque) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(opaque); | 
|  |  | 
|  | return smc->update_dt_enabled; | 
|  | } | 
|  |  | 
|  | static int spapr_dtb_pre_load(void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
|  |  | 
|  | g_free(spapr->fdt_blob); | 
|  | spapr->fdt_blob = NULL; | 
|  | spapr->fdt_size = 0; | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_spapr_dtb = { | 
|  | .name = "spapr_dtb", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = spapr_dtb_needed, | 
|  | .pre_load = spapr_dtb_pre_load, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT32(fdt_initial_size, SpaprMachineState), | 
|  | VMSTATE_UINT32(fdt_size, SpaprMachineState), | 
|  | VMSTATE_VBUFFER_ALLOC_UINT32(fdt_blob, SpaprMachineState, 0, NULL, | 
|  | fdt_size), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static bool spapr_fwnmi_needed(void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
|  |  | 
|  | return spapr->fwnmi_machine_check_addr != -1; | 
|  | } | 
|  |  | 
|  | static int spapr_fwnmi_pre_save(void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = (SpaprMachineState *)opaque; | 
|  |  | 
|  | /* | 
|  | * Check if machine check handling is in progress and print a | 
|  | * warning message. | 
|  | */ | 
|  | if (spapr->fwnmi_machine_check_interlock != -1) { | 
|  | warn_report("A machine check is being handled during migration. The" | 
|  | "handler may run and log hardware error on the destination"); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static const VMStateDescription vmstate_spapr_fwnmi = { | 
|  | .name = "spapr_fwnmi", | 
|  | .version_id = 1, | 
|  | .minimum_version_id = 1, | 
|  | .needed = spapr_fwnmi_needed, | 
|  | .pre_save = spapr_fwnmi_pre_save, | 
|  | .fields = (const VMStateField[]) { | 
|  | VMSTATE_UINT64(fwnmi_system_reset_addr, SpaprMachineState), | 
|  | VMSTATE_UINT64(fwnmi_machine_check_addr, SpaprMachineState), | 
|  | VMSTATE_INT32(fwnmi_machine_check_interlock, SpaprMachineState), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static const VMStateDescription vmstate_spapr = { | 
|  | .name = "spapr", | 
|  | .version_id = 3, | 
|  | .minimum_version_id = 1, | 
|  | .pre_load = spapr_pre_load, | 
|  | .post_load = spapr_post_load, | 
|  | .pre_save = spapr_pre_save, | 
|  | .fields = (const VMStateField[]) { | 
|  | /* used to be @next_irq */ | 
|  | VMSTATE_UNUSED_BUFFER(version_before_3, 0, 4), | 
|  |  | 
|  | /* RTC offset */ | 
|  | VMSTATE_UINT64_TEST(rtc_offset, SpaprMachineState, version_before_3), | 
|  |  | 
|  | VMSTATE_PPC_TIMEBASE_V(tb, SpaprMachineState, 2), | 
|  | VMSTATE_END_OF_LIST() | 
|  | }, | 
|  | .subsections = (const VMStateDescription * const []) { | 
|  | &vmstate_spapr_ov5_cas, | 
|  | &vmstate_spapr_patb_entry, | 
|  | &vmstate_spapr_pending_events, | 
|  | &vmstate_spapr_cap_htm, | 
|  | &vmstate_spapr_cap_vsx, | 
|  | &vmstate_spapr_cap_dfp, | 
|  | &vmstate_spapr_cap_cfpc, | 
|  | &vmstate_spapr_cap_sbbc, | 
|  | &vmstate_spapr_cap_ibs, | 
|  | &vmstate_spapr_cap_hpt_maxpagesize, | 
|  | &vmstate_spapr_irq_map, | 
|  | &vmstate_spapr_cap_nested_kvm_hv, | 
|  | &vmstate_spapr_dtb, | 
|  | &vmstate_spapr_cap_large_decr, | 
|  | &vmstate_spapr_cap_ccf_assist, | 
|  | &vmstate_spapr_cap_fwnmi, | 
|  | &vmstate_spapr_fwnmi, | 
|  | &vmstate_spapr_cap_rpt_invalidate, | 
|  | &vmstate_spapr_cap_ail_mode_3, | 
|  | &vmstate_spapr_cap_nested_papr, | 
|  | NULL | 
|  | } | 
|  | }; | 
|  |  | 
|  | static int htab_save_setup(QEMUFile *f, void *opaque, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = opaque; | 
|  |  | 
|  | /* "Iteration" header */ | 
|  | if (!spapr->htab_shift) { | 
|  | qemu_put_be32(f, -1); | 
|  | } else { | 
|  | qemu_put_be32(f, spapr->htab_shift); | 
|  | } | 
|  |  | 
|  | if (spapr->htab) { | 
|  | spapr->htab_save_index = 0; | 
|  | spapr->htab_first_pass = true; | 
|  | } else { | 
|  | if (spapr->htab_shift) { | 
|  | assert(kvm_enabled()); | 
|  | } | 
|  | } | 
|  |  | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void htab_save_chunk(QEMUFile *f, SpaprMachineState *spapr, | 
|  | int chunkstart, int n_valid, int n_invalid) | 
|  | { | 
|  | qemu_put_be32(f, chunkstart); | 
|  | qemu_put_be16(f, n_valid); | 
|  | qemu_put_be16(f, n_invalid); | 
|  | qemu_put_buffer(f, HPTE(spapr->htab, chunkstart), | 
|  | HASH_PTE_SIZE_64 * n_valid); | 
|  | } | 
|  |  | 
|  | static void htab_save_end_marker(QEMUFile *f) | 
|  | { | 
|  | qemu_put_be32(f, 0); | 
|  | qemu_put_be16(f, 0); | 
|  | qemu_put_be16(f, 0); | 
|  | } | 
|  |  | 
|  | static void htab_save_first_pass(QEMUFile *f, SpaprMachineState *spapr, | 
|  | int64_t max_ns) | 
|  | { | 
|  | bool has_timeout = max_ns != -1; | 
|  | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | 
|  | int index = spapr->htab_save_index; | 
|  | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
|  |  | 
|  | assert(spapr->htab_first_pass); | 
|  |  | 
|  | do { | 
|  | int chunkstart; | 
|  |  | 
|  | /* Consume invalid HPTEs */ | 
|  | while ((index < htabslots) | 
|  | && !HPTE_VALID(HPTE(spapr->htab, index))) { | 
|  | CLEAN_HPTE(HPTE(spapr->htab, index)); | 
|  | index++; | 
|  | } | 
|  |  | 
|  | /* Consume valid HPTEs */ | 
|  | chunkstart = index; | 
|  | while ((index < htabslots) && (index - chunkstart < USHRT_MAX) | 
|  | && HPTE_VALID(HPTE(spapr->htab, index))) { | 
|  | CLEAN_HPTE(HPTE(spapr->htab, index)); | 
|  | index++; | 
|  | } | 
|  |  | 
|  | if (index > chunkstart) { | 
|  | int n_valid = index - chunkstart; | 
|  |  | 
|  | htab_save_chunk(f, spapr, chunkstart, n_valid, 0); | 
|  |  | 
|  | if (has_timeout && | 
|  | (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | } while ((index < htabslots) && !migration_rate_exceeded(f)); | 
|  |  | 
|  | if (index >= htabslots) { | 
|  | assert(index == htabslots); | 
|  | index = 0; | 
|  | spapr->htab_first_pass = false; | 
|  | } | 
|  | spapr->htab_save_index = index; | 
|  | } | 
|  |  | 
|  | static int htab_save_later_pass(QEMUFile *f, SpaprMachineState *spapr, | 
|  | int64_t max_ns) | 
|  | { | 
|  | bool final = max_ns < 0; | 
|  | int htabslots = HTAB_SIZE(spapr) / HASH_PTE_SIZE_64; | 
|  | int examined = 0, sent = 0; | 
|  | int index = spapr->htab_save_index; | 
|  | int64_t starttime = qemu_clock_get_ns(QEMU_CLOCK_REALTIME); | 
|  |  | 
|  | assert(!spapr->htab_first_pass); | 
|  |  | 
|  | do { | 
|  | int chunkstart, invalidstart; | 
|  |  | 
|  | /* Consume non-dirty HPTEs */ | 
|  | while ((index < htabslots) | 
|  | && !HPTE_DIRTY(HPTE(spapr->htab, index))) { | 
|  | index++; | 
|  | examined++; | 
|  | } | 
|  |  | 
|  | chunkstart = index; | 
|  | /* Consume valid dirty HPTEs */ | 
|  | while ((index < htabslots) && (index - chunkstart < USHRT_MAX) | 
|  | && HPTE_DIRTY(HPTE(spapr->htab, index)) | 
|  | && HPTE_VALID(HPTE(spapr->htab, index))) { | 
|  | CLEAN_HPTE(HPTE(spapr->htab, index)); | 
|  | index++; | 
|  | examined++; | 
|  | } | 
|  |  | 
|  | invalidstart = index; | 
|  | /* Consume invalid dirty HPTEs */ | 
|  | while ((index < htabslots) && (index - invalidstart < USHRT_MAX) | 
|  | && HPTE_DIRTY(HPTE(spapr->htab, index)) | 
|  | && !HPTE_VALID(HPTE(spapr->htab, index))) { | 
|  | CLEAN_HPTE(HPTE(spapr->htab, index)); | 
|  | index++; | 
|  | examined++; | 
|  | } | 
|  |  | 
|  | if (index > chunkstart) { | 
|  | int n_valid = invalidstart - chunkstart; | 
|  | int n_invalid = index - invalidstart; | 
|  |  | 
|  | htab_save_chunk(f, spapr, chunkstart, n_valid, n_invalid); | 
|  | sent += index - chunkstart; | 
|  |  | 
|  | if (!final && (qemu_clock_get_ns(QEMU_CLOCK_REALTIME) - starttime) > max_ns) { | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (examined >= htabslots) { | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (index >= htabslots) { | 
|  | assert(index == htabslots); | 
|  | index = 0; | 
|  | } | 
|  | } while ((examined < htabslots) && (!migration_rate_exceeded(f) || final)); | 
|  |  | 
|  | if (index >= htabslots) { | 
|  | assert(index == htabslots); | 
|  | index = 0; | 
|  | } | 
|  |  | 
|  | spapr->htab_save_index = index; | 
|  |  | 
|  | return (examined >= htabslots) && (sent == 0) ? 1 : 0; | 
|  | } | 
|  |  | 
|  | #define MAX_ITERATION_NS    5000000 /* 5 ms */ | 
|  | #define MAX_KVM_BUF_SIZE    2048 | 
|  |  | 
|  | static int htab_save_iterate(QEMUFile *f, void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = opaque; | 
|  | int fd; | 
|  | int rc = 0; | 
|  |  | 
|  | /* Iteration header */ | 
|  | if (!spapr->htab_shift) { | 
|  | qemu_put_be32(f, -1); | 
|  | return 1; | 
|  | } else { | 
|  | qemu_put_be32(f, 0); | 
|  | } | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | assert(kvm_enabled()); | 
|  |  | 
|  | fd = get_htab_fd(spapr); | 
|  | if (fd < 0) { | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, MAX_ITERATION_NS); | 
|  | if (rc < 0) { | 
|  | return rc; | 
|  | } | 
|  | } else  if (spapr->htab_first_pass) { | 
|  | htab_save_first_pass(f, spapr, MAX_ITERATION_NS); | 
|  | } else { | 
|  | rc = htab_save_later_pass(f, spapr, MAX_ITERATION_NS); | 
|  | } | 
|  |  | 
|  | htab_save_end_marker(f); | 
|  |  | 
|  | return rc; | 
|  | } | 
|  |  | 
|  | static int htab_save_complete(QEMUFile *f, void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = opaque; | 
|  | int fd; | 
|  |  | 
|  | /* Iteration header */ | 
|  | if (!spapr->htab_shift) { | 
|  | qemu_put_be32(f, -1); | 
|  | return 0; | 
|  | } else { | 
|  | qemu_put_be32(f, 0); | 
|  | } | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | int rc; | 
|  |  | 
|  | assert(kvm_enabled()); | 
|  |  | 
|  | fd = get_htab_fd(spapr); | 
|  | if (fd < 0) { | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | rc = kvmppc_save_htab(f, fd, MAX_KVM_BUF_SIZE, -1); | 
|  | if (rc < 0) { | 
|  | return rc; | 
|  | } | 
|  | } else { | 
|  | if (spapr->htab_first_pass) { | 
|  | htab_save_first_pass(f, spapr, -1); | 
|  | } | 
|  | htab_save_later_pass(f, spapr, -1); | 
|  | } | 
|  |  | 
|  | /* End marker */ | 
|  | htab_save_end_marker(f); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int htab_load(QEMUFile *f, void *opaque, int version_id) | 
|  | { | 
|  | SpaprMachineState *spapr = opaque; | 
|  | uint32_t section_hdr; | 
|  | int fd = -1; | 
|  | Error *local_err = NULL; | 
|  |  | 
|  | if (version_id < 1 || version_id > 1) { | 
|  | error_report("htab_load() bad version"); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | section_hdr = qemu_get_be32(f); | 
|  |  | 
|  | if (section_hdr == -1) { | 
|  | spapr_free_hpt(spapr); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (section_hdr) { | 
|  | int ret; | 
|  |  | 
|  | /* First section gives the htab size */ | 
|  | ret = spapr_reallocate_hpt(spapr, section_hdr, &local_err); | 
|  | if (ret < 0) { | 
|  | error_report_err(local_err); | 
|  | return ret; | 
|  | } | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | assert(kvm_enabled()); | 
|  |  | 
|  | fd = kvmppc_get_htab_fd(true, 0, &local_err); | 
|  | if (fd < 0) { | 
|  | error_report_err(local_err); | 
|  | return fd; | 
|  | } | 
|  | } | 
|  |  | 
|  | while (true) { | 
|  | uint32_t index; | 
|  | uint16_t n_valid, n_invalid; | 
|  |  | 
|  | index = qemu_get_be32(f); | 
|  | n_valid = qemu_get_be16(f); | 
|  | n_invalid = qemu_get_be16(f); | 
|  |  | 
|  | if ((index == 0) && (n_valid == 0) && (n_invalid == 0)) { | 
|  | /* End of Stream */ | 
|  | break; | 
|  | } | 
|  |  | 
|  | if ((index + n_valid + n_invalid) > | 
|  | (HTAB_SIZE(spapr) / HASH_PTE_SIZE_64)) { | 
|  | /* Bad index in stream */ | 
|  | error_report( | 
|  | "htab_load() bad index %d (%hd+%hd entries) in htab stream (htab_shift=%d)", | 
|  | index, n_valid, n_invalid, spapr->htab_shift); | 
|  | return -EINVAL; | 
|  | } | 
|  |  | 
|  | if (spapr->htab) { | 
|  | if (n_valid) { | 
|  | qemu_get_buffer(f, HPTE(spapr->htab, index), | 
|  | HASH_PTE_SIZE_64 * n_valid); | 
|  | } | 
|  | if (n_invalid) { | 
|  | memset(HPTE(spapr->htab, index + n_valid), 0, | 
|  | HASH_PTE_SIZE_64 * n_invalid); | 
|  | } | 
|  | } else { | 
|  | int rc; | 
|  |  | 
|  | assert(fd >= 0); | 
|  |  | 
|  | rc = kvmppc_load_htab_chunk(f, fd, index, n_valid, n_invalid, | 
|  | &local_err); | 
|  | if (rc < 0) { | 
|  | error_report_err(local_err); | 
|  | return rc; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | if (!spapr->htab) { | 
|  | assert(fd >= 0); | 
|  | close(fd); | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void htab_save_cleanup(void *opaque) | 
|  | { | 
|  | SpaprMachineState *spapr = opaque; | 
|  |  | 
|  | close_htab_fd(spapr); | 
|  | } | 
|  |  | 
|  | static SaveVMHandlers savevm_htab_handlers = { | 
|  | .save_setup = htab_save_setup, | 
|  | .save_live_iterate = htab_save_iterate, | 
|  | .save_live_complete_precopy = htab_save_complete, | 
|  | .save_cleanup = htab_save_cleanup, | 
|  | .load_state = htab_load, | 
|  | }; | 
|  |  | 
|  | static void spapr_boot_set(void *opaque, const char *boot_device, | 
|  | Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(opaque); | 
|  |  | 
|  | g_free(spapr->boot_device); | 
|  | spapr->boot_device = g_strdup(boot_device); | 
|  | } | 
|  |  | 
|  | static void spapr_create_lmb_dr_connectors(SpaprMachineState *spapr) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | uint64_t lmb_size = SPAPR_MEMORY_BLOCK_SIZE; | 
|  | uint32_t nr_lmbs = (machine->maxram_size - machine->ram_size)/lmb_size; | 
|  | int i; | 
|  |  | 
|  | g_assert(!nr_lmbs || machine->device_memory); | 
|  | for (i = 0; i < nr_lmbs; i++) { | 
|  | uint64_t addr; | 
|  |  | 
|  | addr = i * lmb_size + machine->device_memory->base; | 
|  | spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_LMB, | 
|  | addr / lmb_size); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * If RAM size, maxmem size and individual node mem sizes aren't aligned | 
|  | * to SPAPR_MEMORY_BLOCK_SIZE(256MB), then refuse to start the guest | 
|  | * since we can't support such unaligned sizes with DRCONF_MEMORY. | 
|  | */ | 
|  | static void spapr_validate_node_memory(MachineState *machine, Error **errp) | 
|  | { | 
|  | int i; | 
|  |  | 
|  | if (machine->ram_size % SPAPR_MEMORY_BLOCK_SIZE) { | 
|  | error_setg(errp, "Memory size 0x" RAM_ADDR_FMT | 
|  | " is not aligned to %" PRIu64 " MiB", | 
|  | machine->ram_size, | 
|  | SPAPR_MEMORY_BLOCK_SIZE / MiB); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (machine->maxram_size % SPAPR_MEMORY_BLOCK_SIZE) { | 
|  | error_setg(errp, "Maximum memory size 0x" RAM_ADDR_FMT | 
|  | " is not aligned to %" PRIu64 " MiB", | 
|  | machine->ram_size, | 
|  | SPAPR_MEMORY_BLOCK_SIZE / MiB); | 
|  | return; | 
|  | } | 
|  |  | 
|  | for (i = 0; i < machine->numa_state->num_nodes; i++) { | 
|  | if (machine->numa_state->nodes[i].node_mem % SPAPR_MEMORY_BLOCK_SIZE) { | 
|  | error_setg(errp, | 
|  | "Node %d memory size 0x%" PRIx64 | 
|  | " is not aligned to %" PRIu64 " MiB", | 
|  | i, machine->numa_state->nodes[i].node_mem, | 
|  | SPAPR_MEMORY_BLOCK_SIZE / MiB); | 
|  | return; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* find cpu slot in machine->possible_cpus by core_id */ | 
|  | static CPUArchId *spapr_find_cpu_slot(MachineState *ms, uint32_t id, int *idx) | 
|  | { | 
|  | int index = id / ms->smp.threads; | 
|  |  | 
|  | if (index >= ms->possible_cpus->len) { | 
|  | return NULL; | 
|  | } | 
|  | if (idx) { | 
|  | *idx = index; | 
|  | } | 
|  | return &ms->possible_cpus->cpus[index]; | 
|  | } | 
|  |  | 
|  | static void spapr_set_vsmt_mode(SpaprMachineState *spapr, Error **errp) | 
|  | { | 
|  | MachineState *ms = MACHINE(spapr); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
|  | Error *local_err = NULL; | 
|  | bool vsmt_user = !!spapr->vsmt; | 
|  | int kvm_smt = kvmppc_smt_threads(); | 
|  | int ret; | 
|  | unsigned int smp_threads = ms->smp.threads; | 
|  |  | 
|  | if (tcg_enabled()) { | 
|  | if (smp_threads > 1 && | 
|  | !ppc_type_check_compat(ms->cpu_type, CPU_POWERPC_LOGICAL_2_07, 0, | 
|  | spapr->max_compat_pvr)) { | 
|  | error_setg(errp, "TCG only supports SMT on POWER8 or newer CPUs"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (smp_threads > 8) { | 
|  | error_setg(errp, "TCG cannot support more than 8 threads/core " | 
|  | "on a pseries machine"); | 
|  | return; | 
|  | } | 
|  | } | 
|  | if (!is_power_of_2(smp_threads)) { | 
|  | error_setg(errp, "Cannot support %d threads/core on a pseries " | 
|  | "machine because it must be a power of 2", smp_threads); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Determine the VSMT mode to use: */ | 
|  | if (vsmt_user) { | 
|  | if (spapr->vsmt < smp_threads) { | 
|  | error_setg(errp, "Cannot support VSMT mode %d" | 
|  | " because it must be >= threads/core (%d)", | 
|  | spapr->vsmt, smp_threads); | 
|  | return; | 
|  | } | 
|  | /* In this case, spapr->vsmt has been set by the command line */ | 
|  | } else if (!smc->smp_threads_vsmt) { | 
|  | /* | 
|  | * Default VSMT value is tricky, because we need it to be as | 
|  | * consistent as possible (for migration), but this requires | 
|  | * changing it for at least some existing cases.  We pick 8 as | 
|  | * the value that we'd get with KVM on POWER8, the | 
|  | * overwhelmingly common case in production systems. | 
|  | */ | 
|  | spapr->vsmt = MAX(8, smp_threads); | 
|  | } else { | 
|  | spapr->vsmt = smp_threads; | 
|  | } | 
|  |  | 
|  | /* KVM: If necessary, set the SMT mode: */ | 
|  | if (kvm_enabled() && (spapr->vsmt != kvm_smt)) { | 
|  | ret = kvmppc_set_smt_threads(spapr->vsmt); | 
|  | if (ret) { | 
|  | /* Looks like KVM isn't able to change VSMT mode */ | 
|  | error_setg(&local_err, | 
|  | "Failed to set KVM's VSMT mode to %d (errno %d)", | 
|  | spapr->vsmt, ret); | 
|  | /* We can live with that if the default one is big enough | 
|  | * for the number of threads, and a submultiple of the one | 
|  | * we want.  In this case we'll waste some vcpu ids, but | 
|  | * behaviour will be correct */ | 
|  | if ((kvm_smt >= smp_threads) && ((spapr->vsmt % kvm_smt) == 0)) { | 
|  | warn_report_err(local_err); | 
|  | } else { | 
|  | if (!vsmt_user) { | 
|  | error_append_hint(&local_err, | 
|  | "On PPC, a VM with %d threads/core" | 
|  | " on a host with %d threads/core" | 
|  | " requires the use of VSMT mode %d.\n", | 
|  | smp_threads, kvm_smt, spapr->vsmt); | 
|  | } | 
|  | kvmppc_error_append_smt_possible_hint(&local_err); | 
|  | error_propagate(errp, local_err); | 
|  | } | 
|  | } | 
|  | } | 
|  | /* else TCG: nothing to do currently */ | 
|  | } | 
|  |  | 
|  | static void spapr_init_cpus(SpaprMachineState *spapr) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(machine); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | 
|  | const char *type = spapr_get_cpu_core_type(machine->cpu_type); | 
|  | const CPUArchIdList *possible_cpus; | 
|  | unsigned int smp_cpus = machine->smp.cpus; | 
|  | unsigned int smp_threads = machine->smp.threads; | 
|  | unsigned int max_cpus = machine->smp.max_cpus; | 
|  | int boot_cores_nr = smp_cpus / smp_threads; | 
|  | int i; | 
|  |  | 
|  | possible_cpus = mc->possible_cpu_arch_ids(machine); | 
|  | if (mc->has_hotpluggable_cpus) { | 
|  | if (smp_cpus % smp_threads) { | 
|  | error_report("smp_cpus (%u) must be multiple of threads (%u)", | 
|  | smp_cpus, smp_threads); | 
|  | exit(1); | 
|  | } | 
|  | if (max_cpus % smp_threads) { | 
|  | error_report("max_cpus (%u) must be multiple of threads (%u)", | 
|  | max_cpus, smp_threads); | 
|  | exit(1); | 
|  | } | 
|  | } else { | 
|  | if (max_cpus != smp_cpus) { | 
|  | error_report("This machine version does not support CPU hotplug"); | 
|  | exit(1); | 
|  | } | 
|  | boot_cores_nr = possible_cpus->len; | 
|  | } | 
|  |  | 
|  | if (smc->pre_2_10_has_unused_icps) { | 
|  | for (i = 0; i < spapr_max_server_number(spapr); i++) { | 
|  | /* Dummy entries get deregistered when real ICPState objects | 
|  | * are registered during CPU core hotplug. | 
|  | */ | 
|  | pre_2_10_vmstate_register_dummy_icp(i); | 
|  | } | 
|  | } | 
|  |  | 
|  | for (i = 0; i < possible_cpus->len; i++) { | 
|  | int core_id = i * smp_threads; | 
|  |  | 
|  | if (mc->has_hotpluggable_cpus) { | 
|  | spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_CPU, | 
|  | spapr_vcpu_id(spapr, core_id)); | 
|  | } | 
|  |  | 
|  | if (i < boot_cores_nr) { | 
|  | Object *core  = object_new(type); | 
|  | int nr_threads = smp_threads; | 
|  |  | 
|  | /* Handle the partially filled core for older machine types */ | 
|  | if ((i + 1) * smp_threads >= smp_cpus) { | 
|  | nr_threads = smp_cpus - i * smp_threads; | 
|  | } | 
|  |  | 
|  | object_property_set_int(core, "nr-threads", nr_threads, | 
|  | &error_fatal); | 
|  | object_property_set_int(core, CPU_CORE_PROP_CORE_ID, core_id, | 
|  | &error_fatal); | 
|  | qdev_realize(DEVICE(core), NULL, &error_fatal); | 
|  |  | 
|  | object_unref(core); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static PCIHostState *spapr_create_default_phb(void) | 
|  | { | 
|  | DeviceState *dev; | 
|  |  | 
|  | dev = qdev_new(TYPE_SPAPR_PCI_HOST_BRIDGE); | 
|  | qdev_prop_set_uint32(dev, "index", 0); | 
|  | sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal); | 
|  |  | 
|  | return PCI_HOST_BRIDGE(dev); | 
|  | } | 
|  |  | 
|  | static hwaddr spapr_rma_size(SpaprMachineState *spapr, Error **errp) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
|  | hwaddr rma_size = machine->ram_size; | 
|  | hwaddr node0_size = spapr_node0_size(machine); | 
|  |  | 
|  | /* RMA has to fit in the first NUMA node */ | 
|  | rma_size = MIN(rma_size, node0_size); | 
|  |  | 
|  | /* | 
|  | * VRMA access is via a special 1TiB SLB mapping, so the RMA can | 
|  | * never exceed that | 
|  | */ | 
|  | rma_size = MIN(rma_size, 1 * TiB); | 
|  |  | 
|  | /* | 
|  | * Clamp the RMA size based on machine type.  This is for | 
|  | * migration compatibility with older qemu versions, which limited | 
|  | * the RMA size for complicated and mostly bad reasons. | 
|  | */ | 
|  | if (smc->rma_limit) { | 
|  | rma_size = MIN(rma_size, smc->rma_limit); | 
|  | } | 
|  |  | 
|  | if (rma_size < MIN_RMA_SLOF) { | 
|  | error_setg(errp, | 
|  | "pSeries SLOF firmware requires >= %" HWADDR_PRIx | 
|  | "ldMiB guest RMA (Real Mode Area memory)", | 
|  | MIN_RMA_SLOF / MiB); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | return rma_size; | 
|  | } | 
|  |  | 
|  | static void spapr_create_nvdimm_dr_connectors(SpaprMachineState *spapr) | 
|  | { | 
|  | MachineState *machine = MACHINE(spapr); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < machine->ram_slots; i++) { | 
|  | spapr_dr_connector_new(OBJECT(spapr), TYPE_SPAPR_DRC_PMEM, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* pSeries LPAR / sPAPR hardware init */ | 
|  | static void spapr_machine_init(MachineState *machine) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(machine); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(machine); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(machine); | 
|  | const char *bios_default = spapr->vof ? FW_FILE_NAME_VOF : FW_FILE_NAME; | 
|  | const char *bios_name = machine->firmware ?: bios_default; | 
|  | g_autofree char *filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name); | 
|  | const char *kernel_filename = machine->kernel_filename; | 
|  | const char *initrd_filename = machine->initrd_filename; | 
|  | PCIHostState *phb; | 
|  | bool has_vga; | 
|  | int i; | 
|  | MemoryRegion *sysmem = get_system_memory(); | 
|  | long load_limit, fw_size; | 
|  | Error *resize_hpt_err = NULL; | 
|  | NICInfo *nd; | 
|  |  | 
|  | if (!filename) { | 
|  | error_report("Could not find LPAR firmware '%s'", bios_name); | 
|  | exit(1); | 
|  | } | 
|  | fw_size = load_image_targphys(filename, 0, FW_MAX_SIZE); | 
|  | if (fw_size <= 0) { | 
|  | error_report("Could not load LPAR firmware '%s'", filename); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * if Secure VM (PEF) support is configured, then initialize it | 
|  | */ | 
|  | if (machine->cgs) { | 
|  | confidential_guest_kvm_init(machine->cgs, &error_fatal); | 
|  | } | 
|  |  | 
|  | msi_nonbroken = true; | 
|  |  | 
|  | QLIST_INIT(&spapr->phbs); | 
|  | QTAILQ_INIT(&spapr->pending_dimm_unplugs); | 
|  |  | 
|  | /* Determine capabilities to run with */ | 
|  | spapr_caps_init(spapr); | 
|  |  | 
|  | kvmppc_check_papr_resize_hpt(&resize_hpt_err); | 
|  | if (spapr->resize_hpt == SPAPR_RESIZE_HPT_DEFAULT) { | 
|  | /* | 
|  | * If the user explicitly requested a mode we should either | 
|  | * supply it, or fail completely (which we do below).  But if | 
|  | * it's not set explicitly, we reset our mode to something | 
|  | * that works | 
|  | */ | 
|  | if (resize_hpt_err) { | 
|  | spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; | 
|  | error_free(resize_hpt_err); | 
|  | resize_hpt_err = NULL; | 
|  | } else { | 
|  | spapr->resize_hpt = smc->resize_hpt_default; | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(spapr->resize_hpt != SPAPR_RESIZE_HPT_DEFAULT); | 
|  |  | 
|  | if ((spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) && resize_hpt_err) { | 
|  | /* | 
|  | * User requested HPT resize, but this host can't supply it.  Bail out | 
|  | */ | 
|  | error_report_err(resize_hpt_err); | 
|  | exit(1); | 
|  | } | 
|  | error_free(resize_hpt_err); | 
|  |  | 
|  | spapr->rma_size = spapr_rma_size(spapr, &error_fatal); | 
|  |  | 
|  | /* Setup a load limit for the ramdisk leaving room for SLOF and FDT */ | 
|  | load_limit = MIN(spapr->rma_size, FDT_MAX_ADDR) - FW_OVERHEAD; | 
|  |  | 
|  | /* | 
|  | * VSMT must be set in order to be able to compute VCPU ids, ie to | 
|  | * call spapr_max_server_number() or spapr_vcpu_id(). | 
|  | */ | 
|  | spapr_set_vsmt_mode(spapr, &error_fatal); | 
|  |  | 
|  | /* Set up Interrupt Controller before we create the VCPUs */ | 
|  | spapr_irq_init(spapr, &error_fatal); | 
|  |  | 
|  | /* Set up containers for ibm,client-architecture-support negotiated options | 
|  | */ | 
|  | spapr->ov5 = spapr_ovec_new(); | 
|  | spapr->ov5_cas = spapr_ovec_new(); | 
|  |  | 
|  | if (smc->dr_lmb_enabled) { | 
|  | spapr_ovec_set(spapr->ov5, OV5_DRCONF_MEMORY); | 
|  | spapr_validate_node_memory(machine, &error_fatal); | 
|  | } | 
|  |  | 
|  | spapr_ovec_set(spapr->ov5, OV5_FORM1_AFFINITY); | 
|  |  | 
|  | /* Do not advertise FORM2 NUMA support for pseries-6.1 and older */ | 
|  | if (!smc->pre_6_2_numa_affinity) { | 
|  | spapr_ovec_set(spapr->ov5, OV5_FORM2_AFFINITY); | 
|  | } | 
|  |  | 
|  | /* advertise support for dedicated HP event source to guests */ | 
|  | if (spapr->use_hotplug_event_source) { | 
|  | spapr_ovec_set(spapr->ov5, OV5_HP_EVT); | 
|  | } | 
|  |  | 
|  | /* advertise support for HPT resizing */ | 
|  | if (spapr->resize_hpt != SPAPR_RESIZE_HPT_DISABLED) { | 
|  | spapr_ovec_set(spapr->ov5, OV5_HPT_RESIZE); | 
|  | } | 
|  |  | 
|  | /* advertise support for ibm,dyamic-memory-v2 */ | 
|  | spapr_ovec_set(spapr->ov5, OV5_DRMEM_V2); | 
|  |  | 
|  | /* advertise XIVE on POWER9 machines */ | 
|  | if (spapr->irq->xive) { | 
|  | spapr_ovec_set(spapr->ov5, OV5_XIVE_EXPLOIT); | 
|  | } | 
|  |  | 
|  | /* init CPUs */ | 
|  | spapr_init_cpus(spapr); | 
|  |  | 
|  | /* Init numa_assoc_array */ | 
|  | spapr_numa_associativity_init(spapr, machine); | 
|  |  | 
|  | if ((!kvm_enabled() || kvmppc_has_cap_mmu_radix()) && | 
|  | ppc_type_check_compat(machine->cpu_type, CPU_POWERPC_LOGICAL_3_00, 0, | 
|  | spapr->max_compat_pvr)) { | 
|  | spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_300); | 
|  | /* KVM and TCG always allow GTSE with radix... */ | 
|  | spapr_ovec_set(spapr->ov5, OV5_MMU_RADIX_GTSE); | 
|  | } | 
|  | /* ... but not with hash (currently). */ | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | /* Enable H_LOGICAL_CI_* so SLOF can talk to in-kernel devices */ | 
|  | kvmppc_enable_logical_ci_hcalls(); | 
|  | kvmppc_enable_set_mode_hcall(); | 
|  |  | 
|  | /* H_CLEAR_MOD/_REF are mandatory in PAPR, but off by default */ | 
|  | kvmppc_enable_clear_ref_mod_hcalls(); | 
|  |  | 
|  | /* Enable H_PAGE_INIT */ | 
|  | kvmppc_enable_h_page_init(); | 
|  | } | 
|  |  | 
|  | /* map RAM */ | 
|  | memory_region_add_subregion(sysmem, 0, machine->ram); | 
|  |  | 
|  | /* initialize hotplug memory address space */ | 
|  | if (machine->ram_size < machine->maxram_size) { | 
|  | ram_addr_t device_mem_size = machine->maxram_size - machine->ram_size; | 
|  | hwaddr device_mem_base; | 
|  |  | 
|  | /* | 
|  | * Limit the number of hotpluggable memory slots to half the number | 
|  | * slots that KVM supports, leaving the other half for PCI and other | 
|  | * devices. However ensure that number of slots doesn't drop below 32. | 
|  | */ | 
|  | int max_memslots = kvm_enabled() ? kvm_get_max_memslots() / 2 : | 
|  | SPAPR_MAX_RAM_SLOTS; | 
|  |  | 
|  | if (max_memslots < SPAPR_MAX_RAM_SLOTS) { | 
|  | max_memslots = SPAPR_MAX_RAM_SLOTS; | 
|  | } | 
|  | if (machine->ram_slots > max_memslots) { | 
|  | error_report("Specified number of memory slots %" | 
|  | PRIu64" exceeds max supported %d", | 
|  | machine->ram_slots, max_memslots); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | device_mem_base = ROUND_UP(machine->ram_size, SPAPR_DEVICE_MEM_ALIGN); | 
|  | machine_memory_devices_init(machine, device_mem_base, device_mem_size); | 
|  | } | 
|  |  | 
|  | if (smc->dr_lmb_enabled) { | 
|  | spapr_create_lmb_dr_connectors(spapr); | 
|  | } | 
|  |  | 
|  | if (mc->nvdimm_supported) { | 
|  | spapr_create_nvdimm_dr_connectors(spapr); | 
|  | } | 
|  |  | 
|  | /* Set up RTAS event infrastructure */ | 
|  | spapr_events_init(spapr); | 
|  |  | 
|  | /* Set up the RTC RTAS interfaces */ | 
|  | spapr_rtc_create(spapr); | 
|  |  | 
|  | /* Set up VIO bus */ | 
|  | spapr->vio_bus = spapr_vio_bus_init(); | 
|  |  | 
|  | for (i = 0; serial_hd(i); i++) { | 
|  | spapr_vty_create(spapr->vio_bus, serial_hd(i)); | 
|  | } | 
|  |  | 
|  | /* We always have at least the nvram device on VIO */ | 
|  | spapr_create_nvram(spapr); | 
|  |  | 
|  | /* | 
|  | * Setup hotplug / dynamic-reconfiguration connectors. top-level | 
|  | * connectors (described in root DT node's "ibm,drc-types" property) | 
|  | * are pre-initialized here. additional child connectors (such as | 
|  | * connectors for a PHBs PCI slots) are added as needed during their | 
|  | * parent's realization. | 
|  | */ | 
|  | if (smc->dr_phb_enabled) { | 
|  | for (i = 0; i < SPAPR_MAX_PHBS; i++) { | 
|  | spapr_dr_connector_new(OBJECT(machine), TYPE_SPAPR_DRC_PHB, i); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Set up PCI */ | 
|  | spapr_pci_rtas_init(); | 
|  |  | 
|  | phb = spapr_create_default_phb(); | 
|  |  | 
|  | while ((nd = qemu_find_nic_info("spapr-vlan", true, "ibmveth"))) { | 
|  | spapr_vlan_create(spapr->vio_bus, nd); | 
|  | } | 
|  |  | 
|  | pci_init_nic_devices(phb->bus, NULL); | 
|  |  | 
|  | for (i = 0; i <= drive_get_max_bus(IF_SCSI); i++) { | 
|  | spapr_vscsi_create(spapr->vio_bus); | 
|  | } | 
|  |  | 
|  | /* Graphics */ | 
|  | has_vga = spapr_vga_init(phb->bus, &error_fatal); | 
|  | if (has_vga) { | 
|  | spapr->want_stdout_path = !machine->enable_graphics; | 
|  | machine->usb |= defaults_enabled() && !machine->usb_disabled; | 
|  | } else { | 
|  | spapr->want_stdout_path = true; | 
|  | } | 
|  |  | 
|  | if (machine->usb) { | 
|  | if (smc->use_ohci_by_default) { | 
|  | pci_create_simple(phb->bus, -1, "pci-ohci"); | 
|  | } else { | 
|  | pci_create_simple(phb->bus, -1, "nec-usb-xhci"); | 
|  | } | 
|  |  | 
|  | if (has_vga) { | 
|  | USBBus *usb_bus; | 
|  |  | 
|  | usb_bus = USB_BUS(object_resolve_type_unambiguous(TYPE_USB_BUS, | 
|  | &error_abort)); | 
|  | usb_create_simple(usb_bus, "usb-kbd"); | 
|  | usb_create_simple(usb_bus, "usb-mouse"); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (kernel_filename) { | 
|  | uint64_t loaded_addr = 0; | 
|  |  | 
|  | spapr->kernel_size = load_elf(kernel_filename, NULL, | 
|  | translate_kernel_address, spapr, | 
|  | NULL, &loaded_addr, NULL, NULL, 1, | 
|  | PPC_ELF_MACHINE, 0, 0); | 
|  | if (spapr->kernel_size == ELF_LOAD_WRONG_ENDIAN) { | 
|  | spapr->kernel_size = load_elf(kernel_filename, NULL, | 
|  | translate_kernel_address, spapr, | 
|  | NULL, &loaded_addr, NULL, NULL, 0, | 
|  | PPC_ELF_MACHINE, 0, 0); | 
|  | spapr->kernel_le = spapr->kernel_size > 0; | 
|  | } | 
|  | if (spapr->kernel_size < 0) { | 
|  | error_report("error loading %s: %s", kernel_filename, | 
|  | load_elf_strerror(spapr->kernel_size)); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | if (spapr->kernel_addr != loaded_addr) { | 
|  | warn_report("spapr: kernel_addr changed from 0x%"PRIx64 | 
|  | " to 0x%"PRIx64, | 
|  | spapr->kernel_addr, loaded_addr); | 
|  | spapr->kernel_addr = loaded_addr; | 
|  | } | 
|  |  | 
|  | /* load initrd */ | 
|  | if (initrd_filename) { | 
|  | /* Try to locate the initrd in the gap between the kernel | 
|  | * and the firmware. Add a bit of space just in case | 
|  | */ | 
|  | spapr->initrd_base = (spapr->kernel_addr + spapr->kernel_size | 
|  | + 0x1ffff) & ~0xffff; | 
|  | spapr->initrd_size = load_image_targphys(initrd_filename, | 
|  | spapr->initrd_base, | 
|  | load_limit | 
|  | - spapr->initrd_base); | 
|  | if (spapr->initrd_size < 0) { | 
|  | error_report("could not load initial ram disk '%s'", | 
|  | initrd_filename); | 
|  | exit(1); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | /* FIXME: Should register things through the MachineState's qdev | 
|  | * interface, this is a legacy from the sPAPREnvironment structure | 
|  | * which predated MachineState but had a similar function */ | 
|  | vmstate_register(NULL, 0, &vmstate_spapr, spapr); | 
|  | register_savevm_live("spapr/htab", VMSTATE_INSTANCE_ID_ANY, 1, | 
|  | &savevm_htab_handlers, spapr); | 
|  |  | 
|  | qbus_set_hotplug_handler(sysbus_get_default(), OBJECT(machine)); | 
|  |  | 
|  | qemu_register_boot_set(spapr_boot_set, spapr); | 
|  |  | 
|  | /* | 
|  | * Nothing needs to be done to resume a suspended guest because | 
|  | * suspending does not change the machine state, so no need for | 
|  | * a ->wakeup method. | 
|  | */ | 
|  | qemu_register_wakeup_support(); | 
|  |  | 
|  | if (kvm_enabled()) { | 
|  | /* to stop and start vmclock */ | 
|  | qemu_add_vm_change_state_handler(cpu_ppc_clock_vm_state_change, | 
|  | &spapr->tb); | 
|  |  | 
|  | kvmppc_spapr_enable_inkernel_multitce(); | 
|  | } | 
|  |  | 
|  | qemu_cond_init(&spapr->fwnmi_machine_check_interlock_cond); | 
|  | if (spapr->vof) { | 
|  | spapr->vof->fw_size = fw_size; /* for claim() on itself */ | 
|  | spapr_register_hypercall(KVMPPC_H_VOF_CLIENT, spapr_h_vof_client); | 
|  | } | 
|  |  | 
|  | spapr_watchdog_init(spapr); | 
|  | } | 
|  |  | 
|  | #define DEFAULT_KVM_TYPE "auto" | 
|  | static int spapr_kvm_type(MachineState *machine, const char *vm_type) | 
|  | { | 
|  | /* | 
|  | * The use of g_ascii_strcasecmp() for 'hv' and 'pr' is to | 
|  | * accommodate the 'HV' and 'PV' formats that exists in the | 
|  | * wild. The 'auto' mode is being introduced already as | 
|  | * lower-case, thus we don't need to bother checking for | 
|  | * "AUTO". | 
|  | */ | 
|  | if (!vm_type || !strcmp(vm_type, DEFAULT_KVM_TYPE)) { | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | if (!g_ascii_strcasecmp(vm_type, "hv")) { | 
|  | return 1; | 
|  | } | 
|  |  | 
|  | if (!g_ascii_strcasecmp(vm_type, "pr")) { | 
|  | return 2; | 
|  | } | 
|  |  | 
|  | error_report("Unknown kvm-type specified '%s'", vm_type); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Implementation of an interface to adjust firmware path | 
|  | * for the bootindex property handling. | 
|  | */ | 
|  | static char *spapr_get_fw_dev_path(FWPathProvider *p, BusState *bus, | 
|  | DeviceState *dev) | 
|  | { | 
|  | #define CAST(type, obj, name) \ | 
|  | ((type *)object_dynamic_cast(OBJECT(obj), (name))) | 
|  | SCSIDevice *d = CAST(SCSIDevice,  dev, TYPE_SCSI_DEVICE); | 
|  | SpaprPhbState *phb = CAST(SpaprPhbState, dev, TYPE_SPAPR_PCI_HOST_BRIDGE); | 
|  | VHostSCSICommon *vsc = CAST(VHostSCSICommon, dev, TYPE_VHOST_SCSI_COMMON); | 
|  | PCIDevice *pcidev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); | 
|  |  | 
|  | if (d && bus) { | 
|  | void *spapr = CAST(void, bus->parent, "spapr-vscsi"); | 
|  | VirtIOSCSI *virtio = CAST(VirtIOSCSI, bus->parent, TYPE_VIRTIO_SCSI); | 
|  | USBDevice *usb = CAST(USBDevice, bus->parent, TYPE_USB_DEVICE); | 
|  |  | 
|  | if (spapr) { | 
|  | /* | 
|  | * Replace "channel@0/disk@0,0" with "disk@8000000000000000": | 
|  | * In the top 16 bits of the 64-bit LUN, we use SRP luns of the form | 
|  | * 0x8000 | (target << 8) | (bus << 5) | lun | 
|  | * (see the "Logical unit addressing format" table in SAM5) | 
|  | */ | 
|  | unsigned id = 0x8000 | (d->id << 8) | (d->channel << 5) | d->lun; | 
|  | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | 
|  | (uint64_t)id << 48); | 
|  | } else if (virtio) { | 
|  | /* | 
|  | * We use SRP luns of the form 01000000 | (target << 8) | lun | 
|  | * in the top 32 bits of the 64-bit LUN | 
|  | * Note: the quote above is from SLOF and it is wrong, | 
|  | * the actual binding is: | 
|  | * swap 0100 or 10 << or 20 << ( target lun-id -- srplun ) | 
|  | */ | 
|  | unsigned id = 0x1000000 | (d->id << 16) | d->lun; | 
|  | if (d->lun >= 256) { | 
|  | /* Use the LUN "flat space addressing method" */ | 
|  | id |= 0x4000; | 
|  | } | 
|  | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | 
|  | (uint64_t)id << 32); | 
|  | } else if (usb) { | 
|  | /* | 
|  | * We use SRP luns of the form 01000000 | (usb-port << 16) | lun | 
|  | * in the top 32 bits of the 64-bit LUN | 
|  | */ | 
|  | unsigned usb_port = atoi(usb->port->path); | 
|  | unsigned id = 0x1000000 | (usb_port << 16) | d->lun; | 
|  | return g_strdup_printf("%s@%"PRIX64, qdev_fw_name(dev), | 
|  | (uint64_t)id << 32); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * SLOF probes the USB devices, and if it recognizes that the device is a | 
|  | * storage device, it changes its name to "storage" instead of "usb-host", | 
|  | * and additionally adds a child node for the SCSI LUN, so the correct | 
|  | * boot path in SLOF is something like .../storage@1/disk@xxx" instead. | 
|  | */ | 
|  | if (strcmp("usb-host", qdev_fw_name(dev)) == 0) { | 
|  | USBDevice *usbdev = CAST(USBDevice, dev, TYPE_USB_DEVICE); | 
|  | if (usb_device_is_scsi_storage(usbdev)) { | 
|  | return g_strdup_printf("storage@%s/disk", usbdev->port->path); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (phb) { | 
|  | /* Replace "pci" with "pci@800000020000000" */ | 
|  | return g_strdup_printf("pci@%"PRIX64, phb->buid); | 
|  | } | 
|  |  | 
|  | if (vsc) { | 
|  | /* Same logic as virtio above */ | 
|  | unsigned id = 0x1000000 | (vsc->target << 16) | vsc->lun; | 
|  | return g_strdup_printf("disk@%"PRIX64, (uint64_t)id << 32); | 
|  | } | 
|  |  | 
|  | if (g_str_equal("pci-bridge", qdev_fw_name(dev))) { | 
|  | /* SLOF uses "pci" instead of "pci-bridge" for PCI bridges */ | 
|  | PCIDevice *pdev = CAST(PCIDevice, dev, TYPE_PCI_DEVICE); | 
|  | return g_strdup_printf("pci@%x", PCI_SLOT(pdev->devfn)); | 
|  | } | 
|  |  | 
|  | if (pcidev) { | 
|  | return spapr_pci_fw_dev_name(pcidev); | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static char *spapr_get_kvm_type(Object *obj, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | return g_strdup(spapr->kvm_type); | 
|  | } | 
|  |  | 
|  | static void spapr_set_kvm_type(Object *obj, const char *value, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | g_free(spapr->kvm_type); | 
|  | spapr->kvm_type = g_strdup(value); | 
|  | } | 
|  |  | 
|  | static bool spapr_get_modern_hotplug_events(Object *obj, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | return spapr->use_hotplug_event_source; | 
|  | } | 
|  |  | 
|  | static void spapr_set_modern_hotplug_events(Object *obj, bool value, | 
|  | Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | spapr->use_hotplug_event_source = value; | 
|  | } | 
|  |  | 
|  | static bool spapr_get_msix_emulation(Object *obj, Error **errp) | 
|  | { | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static char *spapr_get_resize_hpt(Object *obj, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | switch (spapr->resize_hpt) { | 
|  | case SPAPR_RESIZE_HPT_DEFAULT: | 
|  | return g_strdup("default"); | 
|  | case SPAPR_RESIZE_HPT_DISABLED: | 
|  | return g_strdup("disabled"); | 
|  | case SPAPR_RESIZE_HPT_ENABLED: | 
|  | return g_strdup("enabled"); | 
|  | case SPAPR_RESIZE_HPT_REQUIRED: | 
|  | return g_strdup("required"); | 
|  | } | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | static void spapr_set_resize_hpt(Object *obj, const char *value, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | if (strcmp(value, "default") == 0) { | 
|  | spapr->resize_hpt = SPAPR_RESIZE_HPT_DEFAULT; | 
|  | } else if (strcmp(value, "disabled") == 0) { | 
|  | spapr->resize_hpt = SPAPR_RESIZE_HPT_DISABLED; | 
|  | } else if (strcmp(value, "enabled") == 0) { | 
|  | spapr->resize_hpt = SPAPR_RESIZE_HPT_ENABLED; | 
|  | } else if (strcmp(value, "required") == 0) { | 
|  | spapr->resize_hpt = SPAPR_RESIZE_HPT_REQUIRED; | 
|  | } else { | 
|  | error_setg(errp, "Bad value for \"resize-hpt\" property"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static bool spapr_get_vof(Object *obj, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | return spapr->vof != NULL; | 
|  | } | 
|  |  | 
|  | static void spapr_set_vof(Object *obj, bool value, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | if (spapr->vof) { | 
|  | vof_cleanup(spapr->vof); | 
|  | g_free(spapr->vof); | 
|  | spapr->vof = NULL; | 
|  | } | 
|  | if (!value) { | 
|  | return; | 
|  | } | 
|  | spapr->vof = g_malloc0(sizeof(*spapr->vof)); | 
|  | } | 
|  |  | 
|  | static char *spapr_get_ic_mode(Object *obj, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | if (spapr->irq == &spapr_irq_xics_legacy) { | 
|  | return g_strdup("legacy"); | 
|  | } else if (spapr->irq == &spapr_irq_xics) { | 
|  | return g_strdup("xics"); | 
|  | } else if (spapr->irq == &spapr_irq_xive) { | 
|  | return g_strdup("xive"); | 
|  | } else if (spapr->irq == &spapr_irq_dual) { | 
|  | return g_strdup("dual"); | 
|  | } | 
|  | g_assert_not_reached(); | 
|  | } | 
|  |  | 
|  | static void spapr_set_ic_mode(Object *obj, const char *value, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) { | 
|  | error_setg(errp, "This machine only uses the legacy XICS backend, don't pass ic-mode"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* The legacy IRQ backend can not be set */ | 
|  | if (strcmp(value, "xics") == 0) { | 
|  | spapr->irq = &spapr_irq_xics; | 
|  | } else if (strcmp(value, "xive") == 0) { | 
|  | spapr->irq = &spapr_irq_xive; | 
|  | } else if (strcmp(value, "dual") == 0) { | 
|  | spapr->irq = &spapr_irq_dual; | 
|  | } else { | 
|  | error_setg(errp, "Bad value for \"ic-mode\" property"); | 
|  | } | 
|  | } | 
|  |  | 
|  | static char *spapr_get_host_model(Object *obj, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | return g_strdup(spapr->host_model); | 
|  | } | 
|  |  | 
|  | static void spapr_set_host_model(Object *obj, const char *value, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | g_free(spapr->host_model); | 
|  | spapr->host_model = g_strdup(value); | 
|  | } | 
|  |  | 
|  | static char *spapr_get_host_serial(Object *obj, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | return g_strdup(spapr->host_serial); | 
|  | } | 
|  |  | 
|  | static void spapr_set_host_serial(Object *obj, const char *value, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | g_free(spapr->host_serial); | 
|  | spapr->host_serial = g_strdup(value); | 
|  | } | 
|  |  | 
|  | static void spapr_instance_init(Object *obj) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
|  | MachineState *ms = MACHINE(spapr); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(ms); | 
|  |  | 
|  | /* | 
|  | * NVDIMM support went live in 5.1 without considering that, in | 
|  | * other archs, the user needs to enable NVDIMM support with the | 
|  | * 'nvdimm' machine option and the default behavior is NVDIMM | 
|  | * support disabled. It is too late to roll back to the standard | 
|  | * behavior without breaking 5.1 guests. | 
|  | */ | 
|  | if (mc->nvdimm_supported) { | 
|  | ms->nvdimms_state->is_enabled = true; | 
|  | } | 
|  |  | 
|  | spapr->htab_fd = -1; | 
|  | spapr->use_hotplug_event_source = true; | 
|  | spapr->kvm_type = g_strdup(DEFAULT_KVM_TYPE); | 
|  | object_property_add_str(obj, "kvm-type", | 
|  | spapr_get_kvm_type, spapr_set_kvm_type); | 
|  | object_property_set_description(obj, "kvm-type", | 
|  | "Specifies the KVM virtualization mode (auto," | 
|  | " hv, pr). Defaults to 'auto'. This mode will use" | 
|  | " any available KVM module loaded in the host," | 
|  | " where kvm_hv takes precedence if both kvm_hv and" | 
|  | " kvm_pr are loaded."); | 
|  | object_property_add_bool(obj, "modern-hotplug-events", | 
|  | spapr_get_modern_hotplug_events, | 
|  | spapr_set_modern_hotplug_events); | 
|  | object_property_set_description(obj, "modern-hotplug-events", | 
|  | "Use dedicated hotplug event mechanism in" | 
|  | " place of standard EPOW events when possible" | 
|  | " (required for memory hot-unplug support)"); | 
|  | ppc_compat_add_property(obj, "max-cpu-compat", &spapr->max_compat_pvr, | 
|  | "Maximum permitted CPU compatibility mode"); | 
|  |  | 
|  | object_property_add_str(obj, "resize-hpt", | 
|  | spapr_get_resize_hpt, spapr_set_resize_hpt); | 
|  | object_property_set_description(obj, "resize-hpt", | 
|  | "Resizing of the Hash Page Table (enabled, disabled, required)"); | 
|  | object_property_add_uint32_ptr(obj, "vsmt", | 
|  | &spapr->vsmt, OBJ_PROP_FLAG_READWRITE); | 
|  | object_property_set_description(obj, "vsmt", | 
|  | "Virtual SMT: KVM behaves as if this were" | 
|  | " the host's SMT mode"); | 
|  |  | 
|  | object_property_add_bool(obj, "vfio-no-msix-emulation", | 
|  | spapr_get_msix_emulation, NULL); | 
|  |  | 
|  | object_property_add_uint64_ptr(obj, "kernel-addr", | 
|  | &spapr->kernel_addr, OBJ_PROP_FLAG_READWRITE); | 
|  | object_property_set_description(obj, "kernel-addr", | 
|  | stringify(KERNEL_LOAD_ADDR) | 
|  | " for -kernel is the default"); | 
|  | spapr->kernel_addr = KERNEL_LOAD_ADDR; | 
|  |  | 
|  | object_property_add_bool(obj, "x-vof", spapr_get_vof, spapr_set_vof); | 
|  | object_property_set_description(obj, "x-vof", | 
|  | "Enable Virtual Open Firmware (experimental)"); | 
|  |  | 
|  | /* The machine class defines the default interrupt controller mode */ | 
|  | spapr->irq = smc->irq; | 
|  | object_property_add_str(obj, "ic-mode", spapr_get_ic_mode, | 
|  | spapr_set_ic_mode); | 
|  | object_property_set_description(obj, "ic-mode", | 
|  | "Specifies the interrupt controller mode (xics, xive, dual)"); | 
|  |  | 
|  | object_property_add_str(obj, "host-model", | 
|  | spapr_get_host_model, spapr_set_host_model); | 
|  | object_property_set_description(obj, "host-model", | 
|  | "Host model to advertise in guest device tree"); | 
|  | object_property_add_str(obj, "host-serial", | 
|  | spapr_get_host_serial, spapr_set_host_serial); | 
|  | object_property_set_description(obj, "host-serial", | 
|  | "Host serial number to advertise in guest device tree"); | 
|  | } | 
|  |  | 
|  | static void spapr_machine_finalizefn(Object *obj) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | g_free(spapr->kvm_type); | 
|  | } | 
|  |  | 
|  | void spapr_do_system_reset_on_cpu(CPUState *cs, run_on_cpu_data arg) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); | 
|  | CPUPPCState *env = cpu_env(cs); | 
|  |  | 
|  | cpu_synchronize_state(cs); | 
|  | /* If FWNMI is inactive, addr will be -1, which will deliver to 0x100 */ | 
|  | if (spapr->fwnmi_system_reset_addr != -1) { | 
|  | uint64_t rtas_addr, addr; | 
|  |  | 
|  | /* get rtas addr from fdt */ | 
|  | rtas_addr = spapr_get_rtas_addr(); | 
|  | if (!rtas_addr) { | 
|  | qemu_system_guest_panicked(NULL); | 
|  | return; | 
|  | } | 
|  |  | 
|  | addr = rtas_addr + RTAS_ERROR_LOG_MAX + cs->cpu_index * sizeof(uint64_t)*2; | 
|  | stq_be_phys(&address_space_memory, addr, env->gpr[3]); | 
|  | stq_be_phys(&address_space_memory, addr + sizeof(uint64_t), 0); | 
|  | env->gpr[3] = addr; | 
|  | } | 
|  | ppc_cpu_do_system_reset(cs); | 
|  | if (spapr->fwnmi_system_reset_addr != -1) { | 
|  | env->nip = spapr->fwnmi_system_reset_addr; | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_nmi(NMIState *n, int cpu_index, Error **errp) | 
|  | { | 
|  | CPUState *cs; | 
|  |  | 
|  | CPU_FOREACH(cs) { | 
|  | async_run_on_cpu(cs, spapr_do_system_reset_on_cpu, RUN_ON_CPU_NULL); | 
|  | } | 
|  | } | 
|  |  | 
|  | int spapr_lmb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, | 
|  | void *fdt, int *fdt_start_offset, Error **errp) | 
|  | { | 
|  | uint64_t addr; | 
|  | uint32_t node; | 
|  |  | 
|  | addr = spapr_drc_index(drc) * SPAPR_MEMORY_BLOCK_SIZE; | 
|  | node = object_property_get_uint(OBJECT(drc->dev), PC_DIMM_NODE_PROP, | 
|  | &error_abort); | 
|  | *fdt_start_offset = spapr_dt_memory_node(spapr, fdt, node, addr, | 
|  | SPAPR_MEMORY_BLOCK_SIZE); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spapr_add_lmbs(DeviceState *dev, uint64_t addr_start, uint64_t size, | 
|  | bool dedicated_hp_event_source) | 
|  | { | 
|  | SpaprDrc *drc; | 
|  | uint32_t nr_lmbs = size/SPAPR_MEMORY_BLOCK_SIZE; | 
|  | int i; | 
|  | uint64_t addr = addr_start; | 
|  | bool hotplugged = spapr_drc_hotplugged(dev); | 
|  |  | 
|  | for (i = 0; i < nr_lmbs; i++) { | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
|  | addr / SPAPR_MEMORY_BLOCK_SIZE); | 
|  | g_assert(drc); | 
|  |  | 
|  | /* | 
|  | * memory_device_get_free_addr() provided a range of free addresses | 
|  | * that doesn't overlap with any existing mapping at pre-plug. The | 
|  | * corresponding LMB DRCs are thus assumed to be all attachable. | 
|  | */ | 
|  | spapr_drc_attach(drc, dev); | 
|  | if (!hotplugged) { | 
|  | spapr_drc_reset(drc); | 
|  | } | 
|  | addr += SPAPR_MEMORY_BLOCK_SIZE; | 
|  | } | 
|  | /* send hotplug notification to the | 
|  | * guest only in case of hotplugged memory | 
|  | */ | 
|  | if (hotplugged) { | 
|  | if (dedicated_hp_event_source) { | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
|  | addr_start / SPAPR_MEMORY_BLOCK_SIZE); | 
|  | g_assert(drc); | 
|  | spapr_hotplug_req_add_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, | 
|  | nr_lmbs, | 
|  | spapr_drc_index(drc)); | 
|  | } else { | 
|  | spapr_hotplug_req_add_by_count(SPAPR_DR_CONNECTOR_TYPE_LMB, | 
|  | nr_lmbs); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_memory_plug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
|  | { | 
|  | SpaprMachineState *ms = SPAPR_MACHINE(hotplug_dev); | 
|  | PCDIMMDevice *dimm = PC_DIMM(dev); | 
|  | uint64_t size, addr; | 
|  | int64_t slot; | 
|  | bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); | 
|  |  | 
|  | size = memory_device_get_region_size(MEMORY_DEVICE(dev), &error_abort); | 
|  |  | 
|  | pc_dimm_plug(dimm, MACHINE(ms)); | 
|  |  | 
|  | if (!is_nvdimm) { | 
|  | addr = object_property_get_uint(OBJECT(dimm), | 
|  | PC_DIMM_ADDR_PROP, &error_abort); | 
|  | spapr_add_lmbs(dev, addr, size, | 
|  | spapr_ovec_test(ms->ov5_cas, OV5_HP_EVT)); | 
|  | } else { | 
|  | slot = object_property_get_int(OBJECT(dimm), | 
|  | PC_DIMM_SLOT_PROP, &error_abort); | 
|  | /* We should have valid slot number at this point */ | 
|  | g_assert(slot >= 0); | 
|  | spapr_add_nvdimm(dev, slot); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_memory_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | 
|  | Error **errp) | 
|  | { | 
|  | const SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(hotplug_dev); | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); | 
|  | bool is_nvdimm = object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM); | 
|  | PCDIMMDevice *dimm = PC_DIMM(dev); | 
|  | Error *local_err = NULL; | 
|  | uint64_t size; | 
|  | Object *memdev; | 
|  | hwaddr pagesize; | 
|  |  | 
|  | if (!smc->dr_lmb_enabled) { | 
|  | error_setg(errp, "Memory hotplug not supported for this machine"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &local_err); | 
|  | if (local_err) { | 
|  | error_propagate(errp, local_err); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (is_nvdimm) { | 
|  | if (!spapr_nvdimm_validate(hotplug_dev, NVDIMM(dev), size, errp)) { | 
|  | return; | 
|  | } | 
|  | } else if (size % SPAPR_MEMORY_BLOCK_SIZE) { | 
|  | error_setg(errp, "Hotplugged memory size must be a multiple of " | 
|  | "%" PRIu64 " MB", SPAPR_MEMORY_BLOCK_SIZE / MiB); | 
|  | return; | 
|  | } | 
|  |  | 
|  | memdev = object_property_get_link(OBJECT(dimm), PC_DIMM_MEMDEV_PROP, | 
|  | &error_abort); | 
|  | pagesize = host_memory_backend_pagesize(MEMORY_BACKEND(memdev)); | 
|  | if (!spapr_check_pagesize(spapr, pagesize, errp)) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | pc_dimm_pre_plug(dimm, MACHINE(hotplug_dev), errp); | 
|  | } | 
|  |  | 
|  | struct SpaprDimmState { | 
|  | PCDIMMDevice *dimm; | 
|  | uint32_t nr_lmbs; | 
|  | QTAILQ_ENTRY(SpaprDimmState) next; | 
|  | }; | 
|  |  | 
|  | static SpaprDimmState *spapr_pending_dimm_unplugs_find(SpaprMachineState *s, | 
|  | PCDIMMDevice *dimm) | 
|  | { | 
|  | SpaprDimmState *dimm_state = NULL; | 
|  |  | 
|  | QTAILQ_FOREACH(dimm_state, &s->pending_dimm_unplugs, next) { | 
|  | if (dimm_state->dimm == dimm) { | 
|  | break; | 
|  | } | 
|  | } | 
|  | return dimm_state; | 
|  | } | 
|  |  | 
|  | static SpaprDimmState *spapr_pending_dimm_unplugs_add(SpaprMachineState *spapr, | 
|  | uint32_t nr_lmbs, | 
|  | PCDIMMDevice *dimm) | 
|  | { | 
|  | SpaprDimmState *ds = NULL; | 
|  |  | 
|  | /* | 
|  | * If this request is for a DIMM whose removal had failed earlier | 
|  | * (due to guest's refusal to remove the LMBs), we would have this | 
|  | * dimm already in the pending_dimm_unplugs list. In that | 
|  | * case don't add again. | 
|  | */ | 
|  | ds = spapr_pending_dimm_unplugs_find(spapr, dimm); | 
|  | if (!ds) { | 
|  | ds = g_new0(SpaprDimmState, 1); | 
|  | ds->nr_lmbs = nr_lmbs; | 
|  | ds->dimm = dimm; | 
|  | QTAILQ_INSERT_HEAD(&spapr->pending_dimm_unplugs, ds, next); | 
|  | } | 
|  | return ds; | 
|  | } | 
|  |  | 
|  | static void spapr_pending_dimm_unplugs_remove(SpaprMachineState *spapr, | 
|  | SpaprDimmState *dimm_state) | 
|  | { | 
|  | QTAILQ_REMOVE(&spapr->pending_dimm_unplugs, dimm_state, next); | 
|  | g_free(dimm_state); | 
|  | } | 
|  |  | 
|  | static SpaprDimmState *spapr_recover_pending_dimm_state(SpaprMachineState *ms, | 
|  | PCDIMMDevice *dimm) | 
|  | { | 
|  | SpaprDrc *drc; | 
|  | uint64_t size = memory_device_get_region_size(MEMORY_DEVICE(dimm), | 
|  | &error_abort); | 
|  | uint32_t nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; | 
|  | uint32_t avail_lmbs = 0; | 
|  | uint64_t addr_start, addr; | 
|  | int i; | 
|  |  | 
|  | addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, | 
|  | &error_abort); | 
|  |  | 
|  | addr = addr_start; | 
|  | for (i = 0; i < nr_lmbs; i++) { | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
|  | addr / SPAPR_MEMORY_BLOCK_SIZE); | 
|  | g_assert(drc); | 
|  | if (drc->dev) { | 
|  | avail_lmbs++; | 
|  | } | 
|  | addr += SPAPR_MEMORY_BLOCK_SIZE; | 
|  | } | 
|  |  | 
|  | return spapr_pending_dimm_unplugs_add(ms, avail_lmbs, dimm); | 
|  | } | 
|  |  | 
|  | void spapr_memory_unplug_rollback(SpaprMachineState *spapr, DeviceState *dev) | 
|  | { | 
|  | SpaprDimmState *ds; | 
|  | PCDIMMDevice *dimm; | 
|  | SpaprDrc *drc; | 
|  | uint32_t nr_lmbs; | 
|  | uint64_t size, addr_start, addr; | 
|  | int i; | 
|  |  | 
|  | if (!dev) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | dimm = PC_DIMM(dev); | 
|  | ds = spapr_pending_dimm_unplugs_find(spapr, dimm); | 
|  |  | 
|  | /* | 
|  | * 'ds == NULL' would mean that the DIMM doesn't have a pending | 
|  | * unplug state, but one of its DRC is marked as unplug_requested. | 
|  | * This is bad and weird enough to g_assert() out. | 
|  | */ | 
|  | g_assert(ds); | 
|  |  | 
|  | spapr_pending_dimm_unplugs_remove(spapr, ds); | 
|  |  | 
|  | size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); | 
|  | nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; | 
|  |  | 
|  | addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, | 
|  | &error_abort); | 
|  |  | 
|  | addr = addr_start; | 
|  | for (i = 0; i < nr_lmbs; i++) { | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
|  | addr / SPAPR_MEMORY_BLOCK_SIZE); | 
|  | g_assert(drc); | 
|  |  | 
|  | drc->unplug_requested = false; | 
|  | addr += SPAPR_MEMORY_BLOCK_SIZE; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Tell QAPI that something happened and the memory | 
|  | * hotunplug wasn't successful. | 
|  | */ | 
|  | qapi_event_send_device_unplug_guest_error(dev->id, | 
|  | dev->canonical_path); | 
|  | } | 
|  |  | 
|  | /* Callback to be called during DRC release. */ | 
|  | void spapr_lmb_release(DeviceState *dev) | 
|  | { | 
|  | HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_ctrl); | 
|  | SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); | 
|  |  | 
|  | /* This information will get lost if a migration occurs | 
|  | * during the unplug process. In this case recover it. */ | 
|  | if (ds == NULL) { | 
|  | ds = spapr_recover_pending_dimm_state(spapr, PC_DIMM(dev)); | 
|  | g_assert(ds); | 
|  | /* The DRC being examined by the caller at least must be counted */ | 
|  | g_assert(ds->nr_lmbs); | 
|  | } | 
|  |  | 
|  | if (--ds->nr_lmbs) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Now that all the LMBs have been removed by the guest, call the | 
|  | * unplug handler chain. This can never fail. | 
|  | */ | 
|  | hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); | 
|  | object_unparent(OBJECT(dev)); | 
|  | } | 
|  |  | 
|  | static void spapr_memory_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); | 
|  | SpaprDimmState *ds = spapr_pending_dimm_unplugs_find(spapr, PC_DIMM(dev)); | 
|  |  | 
|  | /* We really shouldn't get this far without anything to unplug */ | 
|  | g_assert(ds); | 
|  |  | 
|  | pc_dimm_unplug(PC_DIMM(dev), MACHINE(hotplug_dev)); | 
|  | qdev_unrealize(dev); | 
|  | spapr_pending_dimm_unplugs_remove(spapr, ds); | 
|  | } | 
|  |  | 
|  | static void spapr_memory_unplug_request(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(hotplug_dev); | 
|  | PCDIMMDevice *dimm = PC_DIMM(dev); | 
|  | uint32_t nr_lmbs; | 
|  | uint64_t size, addr_start, addr; | 
|  | int i; | 
|  | SpaprDrc *drc; | 
|  |  | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_NVDIMM)) { | 
|  | error_setg(errp, "nvdimm device hot unplug is not supported yet."); | 
|  | return; | 
|  | } | 
|  |  | 
|  | size = memory_device_get_region_size(MEMORY_DEVICE(dimm), &error_abort); | 
|  | nr_lmbs = size / SPAPR_MEMORY_BLOCK_SIZE; | 
|  |  | 
|  | addr_start = object_property_get_uint(OBJECT(dimm), PC_DIMM_ADDR_PROP, | 
|  | &error_abort); | 
|  |  | 
|  | /* | 
|  | * An existing pending dimm state for this DIMM means that there is an | 
|  | * unplug operation in progress, waiting for the spapr_lmb_release | 
|  | * callback to complete the job (BQL can't cover that far). In this case, | 
|  | * bail out to avoid detaching DRCs that were already released. | 
|  | */ | 
|  | if (spapr_pending_dimm_unplugs_find(spapr, dimm)) { | 
|  | error_setg(errp, "Memory unplug already in progress for device %s", | 
|  | dev->id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | spapr_pending_dimm_unplugs_add(spapr, nr_lmbs, dimm); | 
|  |  | 
|  | addr = addr_start; | 
|  | for (i = 0; i < nr_lmbs; i++) { | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
|  | addr / SPAPR_MEMORY_BLOCK_SIZE); | 
|  | g_assert(drc); | 
|  |  | 
|  | spapr_drc_unplug_request(drc); | 
|  | addr += SPAPR_MEMORY_BLOCK_SIZE; | 
|  | } | 
|  |  | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_LMB, | 
|  | addr_start / SPAPR_MEMORY_BLOCK_SIZE); | 
|  | spapr_hotplug_req_remove_by_count_indexed(SPAPR_DR_CONNECTOR_TYPE_LMB, | 
|  | nr_lmbs, spapr_drc_index(drc)); | 
|  | } | 
|  |  | 
|  | /* Callback to be called during DRC release. */ | 
|  | void spapr_core_release(DeviceState *dev) | 
|  | { | 
|  | HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); | 
|  |  | 
|  | /* Call the unplug handler chain. This can never fail. */ | 
|  | hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); | 
|  | object_unparent(OBJECT(dev)); | 
|  | } | 
|  |  | 
|  | static void spapr_core_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
|  | { | 
|  | MachineState *ms = MACHINE(hotplug_dev); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(ms); | 
|  | CPUCore *cc = CPU_CORE(dev); | 
|  | CPUArchId *core_slot = spapr_find_cpu_slot(ms, cc->core_id, NULL); | 
|  |  | 
|  | if (smc->pre_2_10_has_unused_icps) { | 
|  | SpaprCpuCore *sc = SPAPR_CPU_CORE(OBJECT(dev)); | 
|  | int i; | 
|  |  | 
|  | for (i = 0; i < cc->nr_threads; i++) { | 
|  | CPUState *cs = CPU(sc->threads[i]); | 
|  |  | 
|  | pre_2_10_vmstate_register_dummy_icp(cs->cpu_index); | 
|  | } | 
|  | } | 
|  |  | 
|  | assert(core_slot); | 
|  | core_slot->cpu = NULL; | 
|  | qdev_unrealize(dev); | 
|  | } | 
|  |  | 
|  | static | 
|  | void spapr_core_unplug_request(HotplugHandler *hotplug_dev, DeviceState *dev, | 
|  | Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
|  | int index; | 
|  | SpaprDrc *drc; | 
|  | CPUCore *cc = CPU_CORE(dev); | 
|  |  | 
|  | if (!spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index)) { | 
|  | error_setg(errp, "Unable to find CPU core with core-id: %d", | 
|  | cc->core_id); | 
|  | return; | 
|  | } | 
|  | if (index == 0) { | 
|  | error_setg(errp, "Boot CPU core may not be unplugged"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, | 
|  | spapr_vcpu_id(spapr, cc->core_id)); | 
|  | g_assert(drc); | 
|  |  | 
|  | if (!spapr_drc_unplug_requested(drc)) { | 
|  | spapr_drc_unplug_request(drc); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * spapr_hotplug_req_remove_by_index is left unguarded, out of the | 
|  | * "!spapr_drc_unplug_requested" check, to allow for multiple IRQ | 
|  | * pulses removing the same CPU. Otherwise, in an failed hotunplug | 
|  | * attempt (e.g. the kernel will refuse to remove the last online | 
|  | * CPU), we will never attempt it again because unplug_requested | 
|  | * will still be 'true' in that case. | 
|  | */ | 
|  | spapr_hotplug_req_remove_by_index(drc); | 
|  | } | 
|  |  | 
|  | int spapr_core_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, | 
|  | void *fdt, int *fdt_start_offset, Error **errp) | 
|  | { | 
|  | SpaprCpuCore *core = SPAPR_CPU_CORE(drc->dev); | 
|  | CPUState *cs = CPU(core->threads[0]); | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  | DeviceClass *dc = DEVICE_GET_CLASS(cs); | 
|  | int id = spapr_get_vcpu_id(cpu); | 
|  | g_autofree char *nodename = NULL; | 
|  | int offset; | 
|  |  | 
|  | nodename = g_strdup_printf("%s@%x", dc->fw_name, id); | 
|  | offset = fdt_add_subnode(fdt, 0, nodename); | 
|  |  | 
|  | spapr_dt_cpu(cs, fdt, offset, spapr); | 
|  |  | 
|  | /* | 
|  | * spapr_dt_cpu() does not fill the 'name' property in the | 
|  | * CPU node. The function is called during boot process, before | 
|  | * and after CAS, and overwriting the 'name' property written | 
|  | * by SLOF is not allowed. | 
|  | * | 
|  | * Write it manually after spapr_dt_cpu(). This makes the hotplug | 
|  | * CPUs more compatible with the coldplugged ones, which have | 
|  | * the 'name' property. Linux Kernel also relies on this | 
|  | * property to identify CPU nodes. | 
|  | */ | 
|  | _FDT((fdt_setprop_string(fdt, offset, "name", nodename))); | 
|  |  | 
|  | *fdt_start_offset = offset; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void spapr_core_plug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(spapr); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  | SpaprCpuCore *core = SPAPR_CPU_CORE(OBJECT(dev)); | 
|  | CPUCore *cc = CPU_CORE(dev); | 
|  | SpaprDrc *drc; | 
|  | CPUArchId *core_slot; | 
|  | int index; | 
|  | bool hotplugged = spapr_drc_hotplugged(dev); | 
|  | int i; | 
|  |  | 
|  | core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); | 
|  | g_assert(core_slot); /* Already checked in spapr_core_pre_plug() */ | 
|  |  | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_CPU, | 
|  | spapr_vcpu_id(spapr, cc->core_id)); | 
|  |  | 
|  | g_assert(drc || !mc->has_hotpluggable_cpus); | 
|  |  | 
|  | if (drc) { | 
|  | /* | 
|  | * spapr_core_pre_plug() already buys us this is a brand new | 
|  | * core being plugged into a free slot. Nothing should already | 
|  | * be attached to the corresponding DRC. | 
|  | */ | 
|  | spapr_drc_attach(drc, dev); | 
|  |  | 
|  | if (hotplugged) { | 
|  | /* | 
|  | * Send hotplug notification interrupt to the guest only | 
|  | * in case of hotplugged CPUs. | 
|  | */ | 
|  | spapr_hotplug_req_add_by_index(drc); | 
|  | } else { | 
|  | spapr_drc_reset(drc); | 
|  | } | 
|  | } | 
|  |  | 
|  | core_slot->cpu = CPU(dev); | 
|  |  | 
|  | /* | 
|  | * Set compatibility mode to match the boot CPU, which was either set | 
|  | * by the machine reset code or by CAS. This really shouldn't fail at | 
|  | * this point. | 
|  | */ | 
|  | if (hotplugged) { | 
|  | for (i = 0; i < cc->nr_threads; i++) { | 
|  | ppc_set_compat(core->threads[i], POWERPC_CPU(first_cpu)->compat_pvr, | 
|  | &error_abort); | 
|  | } | 
|  | } | 
|  |  | 
|  | if (smc->pre_2_10_has_unused_icps) { | 
|  | for (i = 0; i < cc->nr_threads; i++) { | 
|  | CPUState *cs = CPU(core->threads[i]); | 
|  | pre_2_10_vmstate_unregister_dummy_icp(cs->cpu_index); | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_core_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | 
|  | Error **errp) | 
|  | { | 
|  | MachineState *machine = MACHINE(OBJECT(hotplug_dev)); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(hotplug_dev); | 
|  | CPUCore *cc = CPU_CORE(dev); | 
|  | const char *base_core_type = spapr_get_cpu_core_type(machine->cpu_type); | 
|  | const char *type = object_get_typename(OBJECT(dev)); | 
|  | CPUArchId *core_slot; | 
|  | int index; | 
|  | unsigned int smp_threads = machine->smp.threads; | 
|  |  | 
|  | if (dev->hotplugged && !mc->has_hotpluggable_cpus) { | 
|  | error_setg(errp, "CPU hotplug not supported for this machine"); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (strcmp(base_core_type, type)) { | 
|  | error_setg(errp, "CPU core type should be %s", base_core_type); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (cc->core_id % smp_threads) { | 
|  | error_setg(errp, "invalid core id %d", cc->core_id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * In general we should have homogeneous threads-per-core, but old | 
|  | * (pre hotplug support) machine types allow the last core to have | 
|  | * reduced threads as a compatibility hack for when we allowed | 
|  | * total vcpus not a multiple of threads-per-core. | 
|  | */ | 
|  | if (mc->has_hotpluggable_cpus && (cc->nr_threads != smp_threads)) { | 
|  | error_setg(errp, "invalid nr-threads %d, must be %d", cc->nr_threads, | 
|  | smp_threads); | 
|  | return; | 
|  | } | 
|  |  | 
|  | core_slot = spapr_find_cpu_slot(MACHINE(hotplug_dev), cc->core_id, &index); | 
|  | if (!core_slot) { | 
|  | error_setg(errp, "core id %d out of range", cc->core_id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (core_slot->cpu) { | 
|  | error_setg(errp, "core %d already populated", cc->core_id); | 
|  | return; | 
|  | } | 
|  |  | 
|  | numa_cpu_pre_plug(core_slot, dev, errp); | 
|  | } | 
|  |  | 
|  | int spapr_phb_dt_populate(SpaprDrc *drc, SpaprMachineState *spapr, | 
|  | void *fdt, int *fdt_start_offset, Error **errp) | 
|  | { | 
|  | SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(drc->dev); | 
|  | int intc_phandle; | 
|  |  | 
|  | intc_phandle = spapr_irq_get_phandle(spapr, spapr->fdt_blob, errp); | 
|  | if (intc_phandle <= 0) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (spapr_dt_phb(spapr, sphb, intc_phandle, fdt, fdt_start_offset)) { | 
|  | error_setg(errp, "unable to create FDT node for PHB %d", sphb->index); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* generally SLOF creates these, for hotplug it's up to QEMU */ | 
|  | _FDT(fdt_setprop_string(fdt, *fdt_start_offset, "name", "pci")); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static bool spapr_phb_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | 
|  | Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
|  | SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
|  | const unsigned windows_supported = spapr_phb_windows_supported(sphb); | 
|  | SpaprDrc *drc; | 
|  |  | 
|  | if (dev->hotplugged && !smc->dr_phb_enabled) { | 
|  | error_setg(errp, "PHB hotplug not supported for this machine"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (sphb->index == (uint32_t)-1) { | 
|  | error_setg(errp, "\"index\" for PAPR PHB is mandatory"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); | 
|  | if (drc && drc->dev) { | 
|  | error_setg(errp, "PHB %d already attached", sphb->index); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This will check that sphb->index doesn't exceed the maximum number of | 
|  | * PHBs for the current machine type. | 
|  | */ | 
|  | return | 
|  | smc->phb_placement(spapr, sphb->index, | 
|  | &sphb->buid, &sphb->io_win_addr, | 
|  | &sphb->mem_win_addr, &sphb->mem64_win_addr, | 
|  | windows_supported, sphb->dma_liobn, | 
|  | errp); | 
|  | } | 
|  |  | 
|  | static void spapr_phb_plug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_GET_CLASS(spapr); | 
|  | SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); | 
|  | SpaprDrc *drc; | 
|  | bool hotplugged = spapr_drc_hotplugged(dev); | 
|  |  | 
|  | if (!smc->dr_phb_enabled) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); | 
|  | /* hotplug hooks should check it's enabled before getting this far */ | 
|  | assert(drc); | 
|  |  | 
|  | /* spapr_phb_pre_plug() already checked the DRC is attachable */ | 
|  | spapr_drc_attach(drc, dev); | 
|  |  | 
|  | if (hotplugged) { | 
|  | spapr_hotplug_req_add_by_index(drc); | 
|  | } else { | 
|  | spapr_drc_reset(drc); | 
|  | } | 
|  | } | 
|  |  | 
|  | void spapr_phb_release(DeviceState *dev) | 
|  | { | 
|  | HotplugHandler *hotplug_ctrl = qdev_get_hotplug_handler(dev); | 
|  |  | 
|  | hotplug_handler_unplug(hotplug_ctrl, dev, &error_abort); | 
|  | object_unparent(OBJECT(dev)); | 
|  | } | 
|  |  | 
|  | static void spapr_phb_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
|  | { | 
|  | qdev_unrealize(dev); | 
|  | } | 
|  |  | 
|  | static void spapr_phb_unplug_request(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | SpaprPhbState *sphb = SPAPR_PCI_HOST_BRIDGE(dev); | 
|  | SpaprDrc *drc; | 
|  |  | 
|  | drc = spapr_drc_by_id(TYPE_SPAPR_DRC_PHB, sphb->index); | 
|  | assert(drc); | 
|  |  | 
|  | if (!spapr_drc_unplug_requested(drc)) { | 
|  | spapr_drc_unplug_request(drc); | 
|  | spapr_hotplug_req_remove_by_index(drc); | 
|  | } else { | 
|  | error_setg(errp, | 
|  | "PCI Host Bridge unplug already in progress for device %s", | 
|  | dev->id); | 
|  | } | 
|  | } | 
|  |  | 
|  | static | 
|  | bool spapr_tpm_proxy_pre_plug(HotplugHandler *hotplug_dev, DeviceState *dev, | 
|  | Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
|  |  | 
|  | if (spapr->tpm_proxy != NULL) { | 
|  | error_setg(errp, "Only one TPM proxy can be specified for this machine"); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void spapr_tpm_proxy_plug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
|  | SpaprTpmProxy *tpm_proxy = SPAPR_TPM_PROXY(dev); | 
|  |  | 
|  | /* Already checked in spapr_tpm_proxy_pre_plug() */ | 
|  | g_assert(spapr->tpm_proxy == NULL); | 
|  |  | 
|  | spapr->tpm_proxy = tpm_proxy; | 
|  | } | 
|  |  | 
|  | static void spapr_tpm_proxy_unplug(HotplugHandler *hotplug_dev, DeviceState *dev) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
|  |  | 
|  | qdev_unrealize(dev); | 
|  | object_unparent(OBJECT(dev)); | 
|  | spapr->tpm_proxy = NULL; | 
|  | } | 
|  |  | 
|  | static void spapr_machine_device_plug(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
|  | spapr_memory_plug(hotplug_dev, dev); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | 
|  | spapr_core_plug(hotplug_dev, dev); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | 
|  | spapr_phb_plug(hotplug_dev, dev); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
|  | spapr_tpm_proxy_plug(hotplug_dev, dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_machine_device_unplug(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
|  | spapr_memory_unplug(hotplug_dev, dev); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | 
|  | spapr_core_unplug(hotplug_dev, dev); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | 
|  | spapr_phb_unplug(hotplug_dev, dev); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
|  | spapr_tpm_proxy_unplug(hotplug_dev, dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | bool spapr_memory_hot_unplug_supported(SpaprMachineState *spapr) | 
|  | { | 
|  | return spapr_ovec_test(spapr->ov5_cas, OV5_HP_EVT) || | 
|  | /* | 
|  | * CAS will process all pending unplug requests. | 
|  | * | 
|  | * HACK: a guest could theoretically have cleared all bits in OV5, | 
|  | * but none of the guests we care for do. | 
|  | */ | 
|  | spapr_ovec_empty(spapr->ov5_cas); | 
|  | } | 
|  |  | 
|  | static void spapr_machine_device_unplug_request(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | SpaprMachineState *sms = SPAPR_MACHINE(OBJECT(hotplug_dev)); | 
|  | MachineClass *mc = MACHINE_GET_CLASS(sms); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
|  | if (spapr_memory_hot_unplug_supported(sms)) { | 
|  | spapr_memory_unplug_request(hotplug_dev, dev, errp); | 
|  | } else { | 
|  | error_setg(errp, "Memory hot unplug not supported for this guest"); | 
|  | } | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | 
|  | if (!mc->has_hotpluggable_cpus) { | 
|  | error_setg(errp, "CPU hot unplug not supported on this machine"); | 
|  | return; | 
|  | } | 
|  | spapr_core_unplug_request(hotplug_dev, dev, errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | 
|  | if (!smc->dr_phb_enabled) { | 
|  | error_setg(errp, "PHB hot unplug not supported on this machine"); | 
|  | return; | 
|  | } | 
|  | spapr_phb_unplug_request(hotplug_dev, dev, errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
|  | spapr_tpm_proxy_unplug(hotplug_dev, dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_machine_device_pre_plug(HotplugHandler *hotplug_dev, | 
|  | DeviceState *dev, Error **errp) | 
|  | { | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM)) { | 
|  | spapr_memory_pre_plug(hotplug_dev, dev, errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE)) { | 
|  | spapr_core_pre_plug(hotplug_dev, dev, errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE)) { | 
|  | spapr_phb_pre_plug(hotplug_dev, dev, errp); | 
|  | } else if (object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
|  | spapr_tpm_proxy_pre_plug(hotplug_dev, dev, errp); | 
|  | } | 
|  | } | 
|  |  | 
|  | static HotplugHandler *spapr_get_hotplug_handler(MachineState *machine, | 
|  | DeviceState *dev) | 
|  | { | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PC_DIMM) || | 
|  | object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_CPU_CORE) || | 
|  | object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_PCI_HOST_BRIDGE) || | 
|  | object_dynamic_cast(OBJECT(dev), TYPE_SPAPR_TPM_PROXY)) { | 
|  | return HOTPLUG_HANDLER(machine); | 
|  | } | 
|  | if (object_dynamic_cast(OBJECT(dev), TYPE_PCI_DEVICE)) { | 
|  | PCIDevice *pcidev = PCI_DEVICE(dev); | 
|  | PCIBus *root = pci_device_root_bus(pcidev); | 
|  | SpaprPhbState *phb = | 
|  | (SpaprPhbState *)object_dynamic_cast(OBJECT(BUS(root)->parent), | 
|  | TYPE_SPAPR_PCI_HOST_BRIDGE); | 
|  |  | 
|  | if (phb) { | 
|  | return HOTPLUG_HANDLER(phb); | 
|  | } | 
|  | } | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static CpuInstanceProperties | 
|  | spapr_cpu_index_to_props(MachineState *machine, unsigned cpu_index) | 
|  | { | 
|  | CPUArchId *core_slot; | 
|  | MachineClass *mc = MACHINE_GET_CLASS(machine); | 
|  |  | 
|  | /* make sure possible_cpu are initialized */ | 
|  | mc->possible_cpu_arch_ids(machine); | 
|  | /* get CPU core slot containing thread that matches cpu_index */ | 
|  | core_slot = spapr_find_cpu_slot(machine, cpu_index, NULL); | 
|  | assert(core_slot); | 
|  | return core_slot->props; | 
|  | } | 
|  |  | 
|  | static int64_t spapr_get_default_cpu_node_id(const MachineState *ms, int idx) | 
|  | { | 
|  | return idx / ms->smp.cores % ms->numa_state->num_nodes; | 
|  | } | 
|  |  | 
|  | static const CPUArchIdList *spapr_possible_cpu_arch_ids(MachineState *machine) | 
|  | { | 
|  | int i; | 
|  | unsigned int smp_threads = machine->smp.threads; | 
|  | unsigned int smp_cpus = machine->smp.cpus; | 
|  | const char *core_type; | 
|  | int spapr_max_cores = machine->smp.max_cpus / smp_threads; | 
|  | MachineClass *mc = MACHINE_GET_CLASS(machine); | 
|  |  | 
|  | if (!mc->has_hotpluggable_cpus) { | 
|  | spapr_max_cores = QEMU_ALIGN_UP(smp_cpus, smp_threads) / smp_threads; | 
|  | } | 
|  | if (machine->possible_cpus) { | 
|  | assert(machine->possible_cpus->len == spapr_max_cores); | 
|  | return machine->possible_cpus; | 
|  | } | 
|  |  | 
|  | core_type = spapr_get_cpu_core_type(machine->cpu_type); | 
|  | if (!core_type) { | 
|  | error_report("Unable to find sPAPR CPU Core definition"); | 
|  | exit(1); | 
|  | } | 
|  |  | 
|  | machine->possible_cpus = g_malloc0(sizeof(CPUArchIdList) + | 
|  | sizeof(CPUArchId) * spapr_max_cores); | 
|  | machine->possible_cpus->len = spapr_max_cores; | 
|  | for (i = 0; i < machine->possible_cpus->len; i++) { | 
|  | int core_id = i * smp_threads; | 
|  |  | 
|  | machine->possible_cpus->cpus[i].type = core_type; | 
|  | machine->possible_cpus->cpus[i].vcpus_count = smp_threads; | 
|  | machine->possible_cpus->cpus[i].arch_id = core_id; | 
|  | machine->possible_cpus->cpus[i].props.has_core_id = true; | 
|  | machine->possible_cpus->cpus[i].props.core_id = core_id; | 
|  | } | 
|  | return machine->possible_cpus; | 
|  | } | 
|  |  | 
|  | static bool spapr_phb_placement(SpaprMachineState *spapr, uint32_t index, | 
|  | uint64_t *buid, hwaddr *pio, | 
|  | hwaddr *mmio32, hwaddr *mmio64, | 
|  | unsigned n_dma, uint32_t *liobns, Error **errp) | 
|  | { | 
|  | /* | 
|  | * New-style PHB window placement. | 
|  | * | 
|  | * Goals: Gives large (1TiB), naturally aligned 64-bit MMIO window | 
|  | * for each PHB, in addition to 2GiB 32-bit MMIO and 64kiB PIO | 
|  | * windows. | 
|  | * | 
|  | * Some guest kernels can't work with MMIO windows above 1<<46 | 
|  | * (64TiB), so we place up to 31 PHBs in the area 32TiB..64TiB | 
|  | * | 
|  | * 32TiB..(33TiB+1984kiB) contains the 64kiB PIO windows for each | 
|  | * PHB stacked together.  (32TiB+2GiB)..(32TiB+64GiB) contains the | 
|  | * 2GiB 32-bit MMIO windows for each PHB.  Then 33..64TiB has the | 
|  | * 1TiB 64-bit MMIO windows for each PHB. | 
|  | */ | 
|  | const uint64_t base_buid = 0x800000020000000ULL; | 
|  | int i; | 
|  |  | 
|  | /* Sanity check natural alignments */ | 
|  | QEMU_BUILD_BUG_ON((SPAPR_PCI_BASE % SPAPR_PCI_MEM64_WIN_SIZE) != 0); | 
|  | QEMU_BUILD_BUG_ON((SPAPR_PCI_LIMIT % SPAPR_PCI_MEM64_WIN_SIZE) != 0); | 
|  | QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM64_WIN_SIZE % SPAPR_PCI_MEM32_WIN_SIZE) != 0); | 
|  | QEMU_BUILD_BUG_ON((SPAPR_PCI_MEM32_WIN_SIZE % SPAPR_PCI_IO_WIN_SIZE) != 0); | 
|  | /* Sanity check bounds */ | 
|  | QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_IO_WIN_SIZE) > | 
|  | SPAPR_PCI_MEM32_WIN_SIZE); | 
|  | QEMU_BUILD_BUG_ON((SPAPR_MAX_PHBS * SPAPR_PCI_MEM32_WIN_SIZE) > | 
|  | SPAPR_PCI_MEM64_WIN_SIZE); | 
|  |  | 
|  | if (index >= SPAPR_MAX_PHBS) { | 
|  | error_setg(errp, "\"index\" for PAPR PHB is too large (max %llu)", | 
|  | SPAPR_MAX_PHBS - 1); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *buid = base_buid + index; | 
|  | for (i = 0; i < n_dma; ++i) { | 
|  | liobns[i] = SPAPR_PCI_LIOBN(index, i); | 
|  | } | 
|  |  | 
|  | *pio = SPAPR_PCI_BASE + index * SPAPR_PCI_IO_WIN_SIZE; | 
|  | *mmio32 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM32_WIN_SIZE; | 
|  | *mmio64 = SPAPR_PCI_BASE + (index + 1) * SPAPR_PCI_MEM64_WIN_SIZE; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static ICSState *spapr_ics_get(XICSFabric *dev, int irq) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(dev); | 
|  |  | 
|  | return ics_valid_irq(spapr->ics, irq) ? spapr->ics : NULL; | 
|  | } | 
|  |  | 
|  | static void spapr_ics_resend(XICSFabric *dev) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(dev); | 
|  |  | 
|  | ics_resend(spapr->ics); | 
|  | } | 
|  |  | 
|  | static ICPState *spapr_icp_get(XICSFabric *xi, int vcpu_id) | 
|  | { | 
|  | PowerPCCPU *cpu = spapr_find_cpu(vcpu_id); | 
|  |  | 
|  | return cpu ? spapr_cpu_state(cpu)->icp : NULL; | 
|  | } | 
|  |  | 
|  | static void spapr_pic_print_info(InterruptStatsProvider *obj, GString *buf) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(obj); | 
|  |  | 
|  | spapr_irq_print_info(spapr, buf); | 
|  | g_string_append_printf(buf, "irqchip: %s\n", | 
|  | kvm_irqchip_in_kernel() ? "in-kernel" : "emulated"); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * This is a XIVE only operation | 
|  | */ | 
|  | static int spapr_match_nvt(XiveFabric *xfb, uint8_t format, | 
|  | uint8_t nvt_blk, uint32_t nvt_idx, | 
|  | bool cam_ignore, uint8_t priority, | 
|  | uint32_t logic_serv, XiveTCTXMatch *match) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(xfb); | 
|  | XivePresenter *xptr = XIVE_PRESENTER(spapr->active_intc); | 
|  | XivePresenterClass *xpc = XIVE_PRESENTER_GET_CLASS(xptr); | 
|  | int count; | 
|  |  | 
|  | count = xpc->match_nvt(xptr, format, nvt_blk, nvt_idx, cam_ignore, | 
|  | priority, logic_serv, match); | 
|  | if (count < 0) { | 
|  | return count; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * When we implement the save and restore of the thread interrupt | 
|  | * contexts in the enter/exit CPU handlers of the machine and the | 
|  | * escalations in QEMU, we should be able to handle non dispatched | 
|  | * vCPUs. | 
|  | * | 
|  | * Until this is done, the sPAPR machine should find at least one | 
|  | * matching context always. | 
|  | */ | 
|  | if (count == 0) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, "XIVE: NVT %x/%x is not dispatched\n", | 
|  | nvt_blk, nvt_idx); | 
|  | } | 
|  |  | 
|  | return count; | 
|  | } | 
|  |  | 
|  | int spapr_get_vcpu_id(PowerPCCPU *cpu) | 
|  | { | 
|  | return cpu->vcpu_id; | 
|  | } | 
|  |  | 
|  | bool spapr_set_vcpu_id(PowerPCCPU *cpu, int cpu_index, Error **errp) | 
|  | { | 
|  | SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine()); | 
|  | MachineState *ms = MACHINE(spapr); | 
|  | int vcpu_id; | 
|  |  | 
|  | vcpu_id = spapr_vcpu_id(spapr, cpu_index); | 
|  |  | 
|  | if (kvm_enabled() && !kvm_vcpu_id_is_valid(vcpu_id)) { | 
|  | error_setg(errp, "Can't create CPU with id %d in KVM", vcpu_id); | 
|  | error_append_hint(errp, "Adjust the number of cpus to %d " | 
|  | "or try to raise the number of threads per core\n", | 
|  | vcpu_id * ms->smp.threads / spapr->vsmt); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | cpu->vcpu_id = vcpu_id; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | PowerPCCPU *spapr_find_cpu(int vcpu_id) | 
|  | { | 
|  | CPUState *cs; | 
|  |  | 
|  | CPU_FOREACH(cs) { | 
|  | PowerPCCPU *cpu = POWERPC_CPU(cs); | 
|  |  | 
|  | if (spapr_get_vcpu_id(cpu) == vcpu_id) { | 
|  | return cpu; | 
|  | } | 
|  | } | 
|  |  | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | static bool spapr_cpu_in_nested(PowerPCCPU *cpu) | 
|  | { | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  |  | 
|  | return spapr_cpu->in_nested; | 
|  | } | 
|  |  | 
|  | static void spapr_cpu_exec_enter(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) | 
|  | { | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  |  | 
|  | /* These are only called by TCG, KVM maintains dispatch state */ | 
|  |  | 
|  | spapr_cpu->prod = false; | 
|  | if (spapr_cpu->vpa_addr) { | 
|  | CPUState *cs = CPU(cpu); | 
|  | uint32_t dispatch; | 
|  |  | 
|  | dispatch = ldl_be_phys(cs->as, | 
|  | spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); | 
|  | dispatch++; | 
|  | if ((dispatch & 1) != 0) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "VPA: incorrect dispatch counter value for " | 
|  | "dispatched partition %u, correcting.\n", dispatch); | 
|  | dispatch++; | 
|  | } | 
|  | stl_be_phys(cs->as, | 
|  | spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_cpu_exec_exit(PPCVirtualHypervisor *vhyp, PowerPCCPU *cpu) | 
|  | { | 
|  | SpaprCpuState *spapr_cpu = spapr_cpu_state(cpu); | 
|  |  | 
|  | if (spapr_cpu->vpa_addr) { | 
|  | CPUState *cs = CPU(cpu); | 
|  | uint32_t dispatch; | 
|  |  | 
|  | dispatch = ldl_be_phys(cs->as, | 
|  | spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER); | 
|  | dispatch++; | 
|  | if ((dispatch & 1) != 1) { | 
|  | qemu_log_mask(LOG_GUEST_ERROR, | 
|  | "VPA: incorrect dispatch counter value for " | 
|  | "preempted partition %u, correcting.\n", dispatch); | 
|  | dispatch++; | 
|  | } | 
|  | stl_be_phys(cs->as, | 
|  | spapr_cpu->vpa_addr + VPA_DISPATCH_COUNTER, dispatch); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void spapr_machine_class_init(ObjectClass *oc, void *data) | 
|  | { | 
|  | MachineClass *mc = MACHINE_CLASS(oc); | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(oc); | 
|  | FWPathProviderClass *fwc = FW_PATH_PROVIDER_CLASS(oc); | 
|  | NMIClass *nc = NMI_CLASS(oc); | 
|  | HotplugHandlerClass *hc = HOTPLUG_HANDLER_CLASS(oc); | 
|  | PPCVirtualHypervisorClass *vhc = PPC_VIRTUAL_HYPERVISOR_CLASS(oc); | 
|  | XICSFabricClass *xic = XICS_FABRIC_CLASS(oc); | 
|  | InterruptStatsProviderClass *ispc = INTERRUPT_STATS_PROVIDER_CLASS(oc); | 
|  | XiveFabricClass *xfc = XIVE_FABRIC_CLASS(oc); | 
|  | VofMachineIfClass *vmc = VOF_MACHINE_CLASS(oc); | 
|  |  | 
|  | mc->desc = "pSeries Logical Partition (PAPR compliant)"; | 
|  | mc->ignore_boot_device_suffixes = true; | 
|  |  | 
|  | /* | 
|  | * We set up the default / latest behaviour here.  The class_init | 
|  | * functions for the specific versioned machine types can override | 
|  | * these details for backwards compatibility | 
|  | */ | 
|  | mc->init = spapr_machine_init; | 
|  | mc->reset = spapr_machine_reset; | 
|  | mc->block_default_type = IF_SCSI; | 
|  |  | 
|  | /* | 
|  | * While KVM determines max cpus in kvm_init() using kvm_max_vcpus(), | 
|  | * In TCG the limit is restricted by the range of CPU IPIs available. | 
|  | */ | 
|  | mc->max_cpus = SPAPR_IRQ_NR_IPIS; | 
|  |  | 
|  | mc->no_parallel = 1; | 
|  | mc->default_boot_order = ""; | 
|  | mc->default_ram_size = 512 * MiB; | 
|  | mc->default_ram_id = "ppc_spapr.ram"; | 
|  | mc->default_display = "std"; | 
|  | mc->kvm_type = spapr_kvm_type; | 
|  | machine_class_allow_dynamic_sysbus_dev(mc, TYPE_SPAPR_PCI_HOST_BRIDGE); | 
|  | mc->pci_allow_0_address = true; | 
|  | assert(!mc->get_hotplug_handler); | 
|  | mc->get_hotplug_handler = spapr_get_hotplug_handler; | 
|  | hc->pre_plug = spapr_machine_device_pre_plug; | 
|  | hc->plug = spapr_machine_device_plug; | 
|  | mc->cpu_index_to_instance_props = spapr_cpu_index_to_props; | 
|  | mc->get_default_cpu_node_id = spapr_get_default_cpu_node_id; | 
|  | mc->possible_cpu_arch_ids = spapr_possible_cpu_arch_ids; | 
|  | hc->unplug_request = spapr_machine_device_unplug_request; | 
|  | hc->unplug = spapr_machine_device_unplug; | 
|  |  | 
|  | smc->dr_lmb_enabled = true; | 
|  | smc->update_dt_enabled = true; | 
|  | mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power10_v2.0"); | 
|  | mc->has_hotpluggable_cpus = true; | 
|  | mc->nvdimm_supported = true; | 
|  | smc->resize_hpt_default = SPAPR_RESIZE_HPT_ENABLED; | 
|  | fwc->get_dev_path = spapr_get_fw_dev_path; | 
|  | nc->nmi_monitor_handler = spapr_nmi; | 
|  | smc->phb_placement = spapr_phb_placement; | 
|  | vhc->cpu_in_nested = spapr_cpu_in_nested; | 
|  | vhc->deliver_hv_excp = spapr_exit_nested; | 
|  | vhc->hypercall = emulate_spapr_hypercall; | 
|  | vhc->hpt_mask = spapr_hpt_mask; | 
|  | vhc->map_hptes = spapr_map_hptes; | 
|  | vhc->unmap_hptes = spapr_unmap_hptes; | 
|  | vhc->hpte_set_c = spapr_hpte_set_c; | 
|  | vhc->hpte_set_r = spapr_hpte_set_r; | 
|  | vhc->get_pate = spapr_get_pate; | 
|  | vhc->encode_hpt_for_kvm_pr = spapr_encode_hpt_for_kvm_pr; | 
|  | vhc->cpu_exec_enter = spapr_cpu_exec_enter; | 
|  | vhc->cpu_exec_exit = spapr_cpu_exec_exit; | 
|  | xic->ics_get = spapr_ics_get; | 
|  | xic->ics_resend = spapr_ics_resend; | 
|  | xic->icp_get = spapr_icp_get; | 
|  | ispc->print_info = spapr_pic_print_info; | 
|  | /* Force NUMA node memory size to be a multiple of | 
|  | * SPAPR_MEMORY_BLOCK_SIZE (256M) since that's the granularity | 
|  | * in which LMBs are represented and hot-added | 
|  | */ | 
|  | mc->numa_mem_align_shift = 28; | 
|  | mc->auto_enable_numa = true; | 
|  |  | 
|  | smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_OFF; | 
|  | smc->default_caps.caps[SPAPR_CAP_VSX] = SPAPR_CAP_ON; | 
|  | smc->default_caps.caps[SPAPR_CAP_DFP] = SPAPR_CAP_ON; | 
|  | smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; | 
|  | smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; | 
|  | smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_WORKAROUND; | 
|  | smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 16; /* 64kiB */ | 
|  | smc->default_caps.caps[SPAPR_CAP_NESTED_KVM_HV] = SPAPR_CAP_OFF; | 
|  | smc->default_caps.caps[SPAPR_CAP_NESTED_PAPR] = SPAPR_CAP_OFF; | 
|  | smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_ON; | 
|  | smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_ON; | 
|  | smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_ON; | 
|  | smc->default_caps.caps[SPAPR_CAP_RPT_INVALIDATE] = SPAPR_CAP_OFF; | 
|  |  | 
|  | /* | 
|  | * This cap specifies whether the AIL 3 mode for | 
|  | * H_SET_RESOURCE is supported. The default is modified | 
|  | * by default_caps_with_cpu(). | 
|  | */ | 
|  | smc->default_caps.caps[SPAPR_CAP_AIL_MODE_3] = SPAPR_CAP_ON; | 
|  | spapr_caps_add_properties(smc); | 
|  | smc->irq = &spapr_irq_dual; | 
|  | smc->dr_phb_enabled = true; | 
|  | smc->linux_pci_probe = true; | 
|  | smc->smp_threads_vsmt = true; | 
|  | smc->nr_xirqs = SPAPR_NR_XIRQS; | 
|  | xfc->match_nvt = spapr_match_nvt; | 
|  | vmc->client_architecture_support = spapr_vof_client_architecture_support; | 
|  | vmc->quiesce = spapr_vof_quiesce; | 
|  | vmc->setprop = spapr_vof_setprop; | 
|  | } | 
|  |  | 
|  | static const TypeInfo spapr_machine_info = { | 
|  | .name          = TYPE_SPAPR_MACHINE, | 
|  | .parent        = TYPE_MACHINE, | 
|  | .abstract      = true, | 
|  | .instance_size = sizeof(SpaprMachineState), | 
|  | .instance_init = spapr_instance_init, | 
|  | .instance_finalize = spapr_machine_finalizefn, | 
|  | .class_size    = sizeof(SpaprMachineClass), | 
|  | .class_init    = spapr_machine_class_init, | 
|  | .interfaces = (InterfaceInfo[]) { | 
|  | { TYPE_FW_PATH_PROVIDER }, | 
|  | { TYPE_NMI }, | 
|  | { TYPE_HOTPLUG_HANDLER }, | 
|  | { TYPE_PPC_VIRTUAL_HYPERVISOR }, | 
|  | { TYPE_XICS_FABRIC }, | 
|  | { TYPE_INTERRUPT_STATS_PROVIDER }, | 
|  | { TYPE_XIVE_FABRIC }, | 
|  | { TYPE_VOF_MACHINE_IF }, | 
|  | { } | 
|  | }, | 
|  | }; | 
|  |  | 
|  | static void spapr_machine_latest_class_options(MachineClass *mc) | 
|  | { | 
|  | mc->alias = "pseries"; | 
|  | mc->is_default = true; | 
|  | } | 
|  |  | 
|  | #define DEFINE_SPAPR_MACHINE_IMPL(latest, ...)                       \ | 
|  | static void MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__)(     \ | 
|  | ObjectClass *oc,                                             \ | 
|  | void *data)                                                  \ | 
|  | {                                                                \ | 
|  | MachineClass *mc = MACHINE_CLASS(oc);                        \ | 
|  | MACHINE_VER_SYM(class_options, spapr, __VA_ARGS__)(mc);      \ | 
|  | MACHINE_VER_DEPRECATION(__VA_ARGS__);                        \ | 
|  | if (latest) {                                                \ | 
|  | spapr_machine_latest_class_options(mc);                  \ | 
|  | }                                                            \ | 
|  | }                                                                \ | 
|  | static const TypeInfo MACHINE_VER_SYM(info, spapr, __VA_ARGS__) = \ | 
|  | {                                                                \ | 
|  | .name = MACHINE_VER_TYPE_NAME("pseries", __VA_ARGS__),       \ | 
|  | .parent = TYPE_SPAPR_MACHINE,                                \ | 
|  | .class_init = MACHINE_VER_SYM(class_init, spapr, __VA_ARGS__), \ | 
|  | };                                                               \ | 
|  | static void MACHINE_VER_SYM(register, spapr, __VA_ARGS__)(void)  \ | 
|  | {                                                                \ | 
|  | MACHINE_VER_DELETION(__VA_ARGS__);                           \ | 
|  | type_register(&MACHINE_VER_SYM(info, spapr, __VA_ARGS__));   \ | 
|  | }                                                                \ | 
|  | type_init(MACHINE_VER_SYM(register, spapr, __VA_ARGS__)) | 
|  |  | 
|  | #define DEFINE_SPAPR_MACHINE_AS_LATEST(major, minor) \ | 
|  | DEFINE_SPAPR_MACHINE_IMPL(true, major, minor) | 
|  | #define DEFINE_SPAPR_MACHINE(major, minor) \ | 
|  | DEFINE_SPAPR_MACHINE_IMPL(false, major, minor) | 
|  | #define DEFINE_SPAPR_MACHINE_TAGGED(major, minor, tag) \ | 
|  | DEFINE_SPAPR_MACHINE_IMPL(false, major, minor, _, tag) | 
|  |  | 
|  | /* | 
|  | * pseries-9.2 | 
|  | */ | 
|  | static void spapr_machine_9_2_class_options(MachineClass *mc) | 
|  | { | 
|  | /* Defaults for the latest behaviour inherited from the base class */ | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE_AS_LATEST(9, 2); | 
|  |  | 
|  | /* | 
|  | * pseries-9.1 | 
|  | */ | 
|  | static void spapr_machine_9_1_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_9_2_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_9_1, hw_compat_9_1_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(9, 1); | 
|  |  | 
|  | /* | 
|  | * pseries-9.0 | 
|  | */ | 
|  | static void spapr_machine_9_0_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_9_1_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_9_0, hw_compat_9_0_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(9, 0); | 
|  |  | 
|  | /* | 
|  | * pseries-8.2 | 
|  | */ | 
|  | static void spapr_machine_8_2_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_9_0_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_8_2, hw_compat_8_2_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(8, 2); | 
|  |  | 
|  | /* | 
|  | * pseries-8.1 | 
|  | */ | 
|  | static void spapr_machine_8_1_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_8_2_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_8_1, hw_compat_8_1_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(8, 1); | 
|  |  | 
|  | /* | 
|  | * pseries-8.0 | 
|  | */ | 
|  | static void spapr_machine_8_0_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_8_1_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_8_0, hw_compat_8_0_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(8, 0); | 
|  |  | 
|  | /* | 
|  | * pseries-7.2 | 
|  | */ | 
|  | static void spapr_machine_7_2_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_8_0_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_7_2, hw_compat_7_2_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(7, 2); | 
|  |  | 
|  | /* | 
|  | * pseries-7.1 | 
|  | */ | 
|  | static void spapr_machine_7_1_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_7_2_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_7_1, hw_compat_7_1_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(7, 1); | 
|  |  | 
|  | /* | 
|  | * pseries-7.0 | 
|  | */ | 
|  | static void spapr_machine_7_0_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_7_1_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_7_0, hw_compat_7_0_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(7, 0); | 
|  |  | 
|  | /* | 
|  | * pseries-6.2 | 
|  | */ | 
|  | static void spapr_machine_6_2_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_7_0_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_6_2, hw_compat_6_2_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(6, 2); | 
|  |  | 
|  | /* | 
|  | * pseries-6.1 | 
|  | */ | 
|  | static void spapr_machine_6_1_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | spapr_machine_6_2_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_6_1, hw_compat_6_1_len); | 
|  | smc->pre_6_2_numa_affinity = true; | 
|  | mc->smp_props.prefer_sockets = true; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(6, 1); | 
|  |  | 
|  | /* | 
|  | * pseries-6.0 | 
|  | */ | 
|  | static void spapr_machine_6_0_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_6_1_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_6_0, hw_compat_6_0_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(6, 0); | 
|  |  | 
|  | /* | 
|  | * pseries-5.2 | 
|  | */ | 
|  | static void spapr_machine_5_2_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_6_0_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_5_2, hw_compat_5_2_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(5, 2); | 
|  |  | 
|  | /* | 
|  | * pseries-5.1 | 
|  | */ | 
|  | static void spapr_machine_5_1_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | spapr_machine_5_2_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_5_1, hw_compat_5_1_len); | 
|  | smc->pre_5_2_numa_associativity = true; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(5, 1); | 
|  |  | 
|  | /* | 
|  | * pseries-5.0 | 
|  | */ | 
|  | static void spapr_machine_5_0_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  | static GlobalProperty compat[] = { | 
|  | { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-5.1-associativity", "on" }, | 
|  | }; | 
|  |  | 
|  | spapr_machine_5_1_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_5_0, hw_compat_5_0_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  | mc->numa_mem_supported = true; | 
|  | smc->pre_5_1_assoc_refpoints = true; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(5, 0); | 
|  |  | 
|  | /* | 
|  | * pseries-4.2 | 
|  | */ | 
|  | static void spapr_machine_4_2_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | spapr_machine_5_0_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_4_2, hw_compat_4_2_len); | 
|  | smc->default_caps.caps[SPAPR_CAP_CCF_ASSIST] = SPAPR_CAP_OFF; | 
|  | smc->default_caps.caps[SPAPR_CAP_FWNMI] = SPAPR_CAP_OFF; | 
|  | smc->rma_limit = 16 * GiB; | 
|  | mc->nvdimm_supported = false; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(4, 2); | 
|  |  | 
|  | /* | 
|  | * pseries-4.1 | 
|  | */ | 
|  | static void spapr_machine_4_1_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  | static GlobalProperty compat[] = { | 
|  | /* Only allow 4kiB and 64kiB IOMMU pagesizes */ | 
|  | { TYPE_SPAPR_PCI_HOST_BRIDGE, "pgsz", "0x11000" }, | 
|  | }; | 
|  |  | 
|  | spapr_machine_4_2_class_options(mc); | 
|  | smc->linux_pci_probe = false; | 
|  | smc->smp_threads_vsmt = false; | 
|  | compat_props_add(mc->compat_props, hw_compat_4_1, hw_compat_4_1_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(4, 1); | 
|  |  | 
|  | /* | 
|  | * pseries-4.0 | 
|  | */ | 
|  | static bool phb_placement_4_0(SpaprMachineState *spapr, uint32_t index, | 
|  | uint64_t *buid, hwaddr *pio, | 
|  | hwaddr *mmio32, hwaddr *mmio64, | 
|  | unsigned n_dma, uint32_t *liobns, Error **errp) | 
|  | { | 
|  | if (!spapr_phb_placement(spapr, index, buid, pio, mmio32, mmio64, n_dma, | 
|  | liobns, errp)) { | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  | static void spapr_machine_4_0_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | spapr_machine_4_1_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_4_0, hw_compat_4_0_len); | 
|  | smc->phb_placement = phb_placement_4_0; | 
|  | smc->irq = &spapr_irq_xics; | 
|  | smc->pre_4_1_migration = true; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(4, 0); | 
|  |  | 
|  | /* | 
|  | * pseries-3.1 | 
|  | */ | 
|  | static void spapr_machine_3_1_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | spapr_machine_4_0_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_3_1, hw_compat_3_1_len); | 
|  |  | 
|  | mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power8_v2.0"); | 
|  | smc->update_dt_enabled = false; | 
|  | smc->dr_phb_enabled = false; | 
|  | smc->broken_host_serial_model = true; | 
|  | smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_BROKEN; | 
|  | smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_BROKEN; | 
|  | smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_BROKEN; | 
|  | smc->default_caps.caps[SPAPR_CAP_LARGE_DECREMENTER] = SPAPR_CAP_OFF; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(3, 1); | 
|  |  | 
|  | /* | 
|  | * pseries-3.0 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_3_0_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | spapr_machine_3_1_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_3_0, hw_compat_3_0_len); | 
|  |  | 
|  | smc->legacy_irq_allocation = true; | 
|  | smc->nr_xirqs = 0x400; | 
|  | smc->irq = &spapr_irq_xics_legacy; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(3, 0); | 
|  |  | 
|  | /* | 
|  | * pseries-2.12 | 
|  | */ | 
|  | static void spapr_machine_2_12_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  | static GlobalProperty compat[] = { | 
|  | { TYPE_POWERPC_CPU, "pre-3.0-migration", "on" }, | 
|  | { TYPE_SPAPR_CPU_CORE, "pre-3.0-migration", "on" }, | 
|  | }; | 
|  |  | 
|  | spapr_machine_3_0_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_12, hw_compat_2_12_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  |  | 
|  | /* We depend on kvm_enabled() to choose a default value for the | 
|  | * hpt-max-page-size capability. Of course we can't do it here | 
|  | * because this is too early and the HW accelerator isn't initialized | 
|  | * yet. Postpone this to machine init (see default_caps_with_cpu()). | 
|  | */ | 
|  | smc->default_caps.caps[SPAPR_CAP_HPT_MAXPAGESIZE] = 0; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(2, 12); | 
|  |  | 
|  | static void spapr_machine_2_12_sxxm_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | spapr_machine_2_12_class_options(mc); | 
|  | smc->default_caps.caps[SPAPR_CAP_CFPC] = SPAPR_CAP_WORKAROUND; | 
|  | smc->default_caps.caps[SPAPR_CAP_SBBC] = SPAPR_CAP_WORKAROUND; | 
|  | smc->default_caps.caps[SPAPR_CAP_IBS] = SPAPR_CAP_FIXED_CCD; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE_TAGGED(2, 12, sxxm); | 
|  |  | 
|  | /* | 
|  | * pseries-2.11 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_11_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | spapr_machine_2_12_class_options(mc); | 
|  | smc->default_caps.caps[SPAPR_CAP_HTM] = SPAPR_CAP_ON; | 
|  | compat_props_add(mc->compat_props, hw_compat_2_11, hw_compat_2_11_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(2, 11); | 
|  |  | 
|  | /* | 
|  | * pseries-2.10 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_10_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_2_11_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_10, hw_compat_2_10_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(2, 10); | 
|  |  | 
|  | /* | 
|  | * pseries-2.9 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_9_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  | static GlobalProperty compat[] = { | 
|  | { TYPE_POWERPC_CPU, "pre-2.10-migration", "on" }, | 
|  | }; | 
|  |  | 
|  | spapr_machine_2_10_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_9, hw_compat_2_9_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  | smc->pre_2_10_has_unused_icps = true; | 
|  | smc->resize_hpt_default = SPAPR_RESIZE_HPT_DISABLED; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(2, 9); | 
|  |  | 
|  | /* | 
|  | * pseries-2.8 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_8_class_options(MachineClass *mc) | 
|  | { | 
|  | static GlobalProperty compat[] = { | 
|  | { TYPE_SPAPR_PCI_HOST_BRIDGE, "pcie-extended-configuration-space", "off" }, | 
|  | }; | 
|  |  | 
|  | spapr_machine_2_9_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_8, hw_compat_2_8_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  | mc->numa_mem_align_shift = 23; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(2, 8); | 
|  |  | 
|  | /* | 
|  | * pseries-2.7 | 
|  | */ | 
|  |  | 
|  | static bool phb_placement_2_7(SpaprMachineState *spapr, uint32_t index, | 
|  | uint64_t *buid, hwaddr *pio, | 
|  | hwaddr *mmio32, hwaddr *mmio64, | 
|  | unsigned n_dma, uint32_t *liobns, Error **errp) | 
|  | { | 
|  | /* Legacy PHB placement for pseries-2.7 and earlier machine types */ | 
|  | const uint64_t base_buid = 0x800000020000000ULL; | 
|  | const hwaddr phb_spacing = 0x1000000000ULL; /* 64 GiB */ | 
|  | const hwaddr mmio_offset = 0xa0000000; /* 2 GiB + 512 MiB */ | 
|  | const hwaddr pio_offset = 0x80000000; /* 2 GiB */ | 
|  | const uint32_t max_index = 255; | 
|  | const hwaddr phb0_alignment = 0x10000000000ULL; /* 1 TiB */ | 
|  |  | 
|  | uint64_t ram_top = MACHINE(spapr)->ram_size; | 
|  | hwaddr phb0_base, phb_base; | 
|  | int i; | 
|  |  | 
|  | /* Do we have device memory? */ | 
|  | if (MACHINE(spapr)->device_memory) { | 
|  | /* Can't just use maxram_size, because there may be an | 
|  | * alignment gap between normal and device memory regions | 
|  | */ | 
|  | ram_top = MACHINE(spapr)->device_memory->base + | 
|  | memory_region_size(&MACHINE(spapr)->device_memory->mr); | 
|  | } | 
|  |  | 
|  | phb0_base = QEMU_ALIGN_UP(ram_top, phb0_alignment); | 
|  |  | 
|  | if (index > max_index) { | 
|  | error_setg(errp, "\"index\" for PAPR PHB is too large (max %u)", | 
|  | max_index); | 
|  | return false; | 
|  | } | 
|  |  | 
|  | *buid = base_buid + index; | 
|  | for (i = 0; i < n_dma; ++i) { | 
|  | liobns[i] = SPAPR_PCI_LIOBN(index, i); | 
|  | } | 
|  |  | 
|  | phb_base = phb0_base + index * phb_spacing; | 
|  | *pio = phb_base + pio_offset; | 
|  | *mmio32 = phb_base + mmio_offset; | 
|  | /* | 
|  | * We don't set the 64-bit MMIO window, relying on the PHB's | 
|  | * fallback behaviour of automatically splitting a large "32-bit" | 
|  | * window into contiguous 32-bit and 64-bit windows | 
|  | */ | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | static void spapr_machine_2_7_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  | static GlobalProperty compat[] = { | 
|  | { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0xf80000000", }, | 
|  | { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem64_win_size", "0", }, | 
|  | { TYPE_POWERPC_CPU, "pre-2.8-migration", "on", }, | 
|  | { TYPE_SPAPR_PCI_HOST_BRIDGE, "pre-2.8-migration", "on", }, | 
|  | }; | 
|  |  | 
|  | spapr_machine_2_8_class_options(mc); | 
|  | mc->default_cpu_type = POWERPC_CPU_TYPE_NAME("power7_v2.3"); | 
|  | mc->default_machine_opts = "modern-hotplug-events=off"; | 
|  | compat_props_add(mc->compat_props, hw_compat_2_7, hw_compat_2_7_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  | smc->phb_placement = phb_placement_2_7; | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(2, 7); | 
|  |  | 
|  | /* | 
|  | * pseries-2.6 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_6_class_options(MachineClass *mc) | 
|  | { | 
|  | static GlobalProperty compat[] = { | 
|  | { TYPE_SPAPR_PCI_HOST_BRIDGE, "ddw", "off" }, | 
|  | }; | 
|  |  | 
|  | spapr_machine_2_7_class_options(mc); | 
|  | mc->has_hotpluggable_cpus = false; | 
|  | compat_props_add(mc->compat_props, hw_compat_2_6, hw_compat_2_6_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(2, 6); | 
|  |  | 
|  | /* | 
|  | * pseries-2.5 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_5_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  | static GlobalProperty compat[] = { | 
|  | { "spapr-vlan", "use-rx-buffer-pools", "off" }, | 
|  | }; | 
|  |  | 
|  | spapr_machine_2_6_class_options(mc); | 
|  | smc->use_ohci_by_default = true; | 
|  | compat_props_add(mc->compat_props, hw_compat_2_5, hw_compat_2_5_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(2, 5); | 
|  |  | 
|  | /* | 
|  | * pseries-2.4 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_4_class_options(MachineClass *mc) | 
|  | { | 
|  | SpaprMachineClass *smc = SPAPR_MACHINE_CLASS(mc); | 
|  |  | 
|  | spapr_machine_2_5_class_options(mc); | 
|  | smc->dr_lmb_enabled = false; | 
|  | compat_props_add(mc->compat_props, hw_compat_2_4, hw_compat_2_4_len); | 
|  | } | 
|  |  | 
|  | DEFINE_SPAPR_MACHINE(2, 4); | 
|  |  | 
|  | /* | 
|  | * pseries-2.3 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_3_class_options(MachineClass *mc) | 
|  | { | 
|  | static GlobalProperty compat[] = { | 
|  | { "spapr-pci-host-bridge", "dynamic-reconfiguration", "off" }, | 
|  | }; | 
|  | spapr_machine_2_4_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_3, hw_compat_2_3_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  | } | 
|  | DEFINE_SPAPR_MACHINE(2, 3); | 
|  |  | 
|  | /* | 
|  | * pseries-2.2 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_2_class_options(MachineClass *mc) | 
|  | { | 
|  | static GlobalProperty compat[] = { | 
|  | { TYPE_SPAPR_PCI_HOST_BRIDGE, "mem_win_size", "0x20000000" }, | 
|  | }; | 
|  |  | 
|  | spapr_machine_2_3_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_2, hw_compat_2_2_len); | 
|  | compat_props_add(mc->compat_props, compat, G_N_ELEMENTS(compat)); | 
|  | mc->default_machine_opts = "modern-hotplug-events=off,suppress-vmdesc=on"; | 
|  | } | 
|  | DEFINE_SPAPR_MACHINE(2, 2); | 
|  |  | 
|  | /* | 
|  | * pseries-2.1 | 
|  | */ | 
|  |  | 
|  | static void spapr_machine_2_1_class_options(MachineClass *mc) | 
|  | { | 
|  | spapr_machine_2_2_class_options(mc); | 
|  | compat_props_add(mc->compat_props, hw_compat_2_1, hw_compat_2_1_len); | 
|  | } | 
|  | DEFINE_SPAPR_MACHINE(2, 1); | 
|  |  | 
|  | static void spapr_machine_register_types(void) | 
|  | { | 
|  | type_register_static(&spapr_machine_info); | 
|  | } | 
|  |  | 
|  | type_init(spapr_machine_register_types) |