|  | /* | 
|  | * NVDIMM ACPI Implementation | 
|  | * | 
|  | * Copyright(C) 2015 Intel Corporation. | 
|  | * | 
|  | * Author: | 
|  | *  Xiao Guangrong <guangrong.xiao@linux.intel.com> | 
|  | * | 
|  | * NFIT is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) | 
|  | * and the DSM specification can be found at: | 
|  | *       http://pmem.io/documents/NVDIMM_DSM_Interface_Example.pdf | 
|  | * | 
|  | * Currently, it only supports PMEM Virtualization. | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/> | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/uuid.h" | 
|  | #include "qapi/error.h" | 
|  | #include "hw/acpi/acpi.h" | 
|  | #include "hw/acpi/aml-build.h" | 
|  | #include "hw/acpi/bios-linker-loader.h" | 
|  | #include "hw/nvram/fw_cfg.h" | 
|  | #include "hw/mem/nvdimm.h" | 
|  | #include "qemu/nvdimm-utils.h" | 
|  | #include "trace.h" | 
|  |  | 
|  | /* | 
|  | * define Byte Addressable Persistent Memory (PM) Region according to | 
|  | * ACPI 6.0: 5.2.25.1 System Physical Address Range Structure. | 
|  | */ | 
|  | static const uint8_t nvdimm_nfit_spa_uuid[] = | 
|  | UUID_LE(0x66f0d379, 0xb4f3, 0x4074, 0xac, 0x43, 0x0d, 0x33, | 
|  | 0x18, 0xb7, 0x8c, 0xdb); | 
|  |  | 
|  | /* | 
|  | * define NFIT structures according to ACPI 6.0: 5.2.25 NVDIMM Firmware | 
|  | * Interface Table (NFIT). | 
|  | */ | 
|  |  | 
|  | /* | 
|  | * System Physical Address Range Structure | 
|  | * | 
|  | * It describes the system physical address ranges occupied by NVDIMMs and | 
|  | * the types of the regions. | 
|  | */ | 
|  | struct NvdimmNfitSpa { | 
|  | uint16_t type; | 
|  | uint16_t length; | 
|  | uint16_t spa_index; | 
|  | uint16_t flags; | 
|  | uint32_t reserved; | 
|  | uint32_t proximity_domain; | 
|  | uint8_t type_guid[16]; | 
|  | uint64_t spa_base; | 
|  | uint64_t spa_length; | 
|  | uint64_t mem_attr; | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmNfitSpa NvdimmNfitSpa; | 
|  |  | 
|  | /* | 
|  | * Memory Device to System Physical Address Range Mapping Structure | 
|  | * | 
|  | * It enables identifying each NVDIMM region and the corresponding SPA | 
|  | * describing the memory interleave | 
|  | */ | 
|  | struct NvdimmNfitMemDev { | 
|  | uint16_t type; | 
|  | uint16_t length; | 
|  | uint32_t nfit_handle; | 
|  | uint16_t phys_id; | 
|  | uint16_t region_id; | 
|  | uint16_t spa_index; | 
|  | uint16_t dcr_index; | 
|  | uint64_t region_len; | 
|  | uint64_t region_offset; | 
|  | uint64_t region_dpa; | 
|  | uint16_t interleave_index; | 
|  | uint16_t interleave_ways; | 
|  | uint16_t flags; | 
|  | uint16_t reserved; | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmNfitMemDev NvdimmNfitMemDev; | 
|  |  | 
|  | #define ACPI_NFIT_MEM_NOT_ARMED     (1 << 3) | 
|  |  | 
|  | /* | 
|  | * NVDIMM Control Region Structure | 
|  | * | 
|  | * It describes the NVDIMM and if applicable, Block Control Window. | 
|  | */ | 
|  | struct NvdimmNfitControlRegion { | 
|  | uint16_t type; | 
|  | uint16_t length; | 
|  | uint16_t dcr_index; | 
|  | uint16_t vendor_id; | 
|  | uint16_t device_id; | 
|  | uint16_t revision_id; | 
|  | uint16_t sub_vendor_id; | 
|  | uint16_t sub_device_id; | 
|  | uint16_t sub_revision_id; | 
|  | uint8_t reserved[6]; | 
|  | uint32_t serial_number; | 
|  | uint16_t fic; | 
|  | uint16_t num_bcw; | 
|  | uint64_t bcw_size; | 
|  | uint64_t cmd_offset; | 
|  | uint64_t cmd_size; | 
|  | uint64_t status_offset; | 
|  | uint64_t status_size; | 
|  | uint16_t flags; | 
|  | uint8_t reserved2[6]; | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmNfitControlRegion NvdimmNfitControlRegion; | 
|  |  | 
|  | /* | 
|  | * NVDIMM Platform Capabilities Structure | 
|  | * | 
|  | * Defined in section 5.2.25.9 of ACPI 6.2 Errata A, September 2017 | 
|  | */ | 
|  | struct NvdimmNfitPlatformCaps { | 
|  | uint16_t type; | 
|  | uint16_t length; | 
|  | uint8_t highest_cap; | 
|  | uint8_t reserved[3]; | 
|  | uint32_t capabilities; | 
|  | uint8_t reserved2[4]; | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmNfitPlatformCaps NvdimmNfitPlatformCaps; | 
|  |  | 
|  | /* | 
|  | * Module serial number is a unique number for each device. We use the | 
|  | * slot id of NVDIMM device to generate this number so that each device | 
|  | * associates with a different number. | 
|  | * | 
|  | * 0x123456 is a magic number we arbitrarily chose. | 
|  | */ | 
|  | static uint32_t nvdimm_slot_to_sn(int slot) | 
|  | { | 
|  | return 0x123456 + slot; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * handle is used to uniquely associate nfit_memdev structure with NVDIMM | 
|  | * ACPI device - nfit_memdev.nfit_handle matches with the value returned | 
|  | * by ACPI device _ADR method. | 
|  | * | 
|  | * We generate the handle with the slot id of NVDIMM device and reserve | 
|  | * 0 for NVDIMM root device. | 
|  | */ | 
|  | static uint32_t nvdimm_slot_to_handle(int slot) | 
|  | { | 
|  | return slot + 1; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * index uniquely identifies the structure, 0 is reserved which indicates | 
|  | * that the structure is not valid or the associated structure is not | 
|  | * present. | 
|  | * | 
|  | * Each NVDIMM device needs two indexes, one for nfit_spa and another for | 
|  | * nfit_dc which are generated by the slot id of NVDIMM device. | 
|  | */ | 
|  | static uint16_t nvdimm_slot_to_spa_index(int slot) | 
|  | { | 
|  | return (slot + 1) << 1; | 
|  | } | 
|  |  | 
|  | /* See the comments of nvdimm_slot_to_spa_index(). */ | 
|  | static uint32_t nvdimm_slot_to_dcr_index(int slot) | 
|  | { | 
|  | return nvdimm_slot_to_spa_index(slot) + 1; | 
|  | } | 
|  |  | 
|  | static NVDIMMDevice *nvdimm_get_device_by_handle(uint32_t handle) | 
|  | { | 
|  | NVDIMMDevice *nvdimm = NULL; | 
|  | GSList *list, *device_list = nvdimm_get_device_list(); | 
|  |  | 
|  | for (list = device_list; list; list = list->next) { | 
|  | NVDIMMDevice *nvd = list->data; | 
|  | int slot = object_property_get_int(OBJECT(nvd), PC_DIMM_SLOT_PROP, | 
|  | NULL); | 
|  |  | 
|  | if (nvdimm_slot_to_handle(slot) == handle) { | 
|  | nvdimm = nvd; | 
|  | break; | 
|  | } | 
|  | } | 
|  |  | 
|  | g_slist_free(device_list); | 
|  | return nvdimm; | 
|  | } | 
|  |  | 
|  | /* ACPI 6.0: 5.2.25.1 System Physical Address Range Structure */ | 
|  | static void | 
|  | nvdimm_build_structure_spa(GArray *structures, DeviceState *dev) | 
|  | { | 
|  | NvdimmNfitSpa *nfit_spa; | 
|  | uint64_t addr = object_property_get_uint(OBJECT(dev), PC_DIMM_ADDR_PROP, | 
|  | NULL); | 
|  | uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, | 
|  | NULL); | 
|  | uint32_t node = object_property_get_uint(OBJECT(dev), PC_DIMM_NODE_PROP, | 
|  | NULL); | 
|  | int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, | 
|  | NULL); | 
|  |  | 
|  | nfit_spa = acpi_data_push(structures, sizeof(*nfit_spa)); | 
|  |  | 
|  | nfit_spa->type = cpu_to_le16(0 /* System Physical Address Range | 
|  | Structure */); | 
|  | nfit_spa->length = cpu_to_le16(sizeof(*nfit_spa)); | 
|  | nfit_spa->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); | 
|  |  | 
|  | /* | 
|  | * Control region is strict as all the device info, such as SN, index, | 
|  | * is associated with slot id. | 
|  | */ | 
|  | nfit_spa->flags = cpu_to_le16(1 /* Control region is strictly for | 
|  | management during hot add/online | 
|  | operation */ | | 
|  | 2 /* Data in Proximity Domain field is | 
|  | valid*/); | 
|  |  | 
|  | /* NUMA node. */ | 
|  | nfit_spa->proximity_domain = cpu_to_le32(node); | 
|  | /* the region reported as PMEM. */ | 
|  | memcpy(nfit_spa->type_guid, nvdimm_nfit_spa_uuid, | 
|  | sizeof(nvdimm_nfit_spa_uuid)); | 
|  |  | 
|  | nfit_spa->spa_base = cpu_to_le64(addr); | 
|  | nfit_spa->spa_length = cpu_to_le64(size); | 
|  |  | 
|  | /* It is the PMEM and can be cached as writeback. */ | 
|  | nfit_spa->mem_attr = cpu_to_le64(0x8ULL /* EFI_MEMORY_WB */ | | 
|  | 0x8000ULL /* EFI_MEMORY_NV */); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ACPI 6.0: 5.2.25.2 Memory Device to System Physical Address Range Mapping | 
|  | * Structure | 
|  | */ | 
|  | static void | 
|  | nvdimm_build_structure_memdev(GArray *structures, DeviceState *dev) | 
|  | { | 
|  | NvdimmNfitMemDev *nfit_memdev; | 
|  | NVDIMMDevice *nvdimm = NVDIMM(OBJECT(dev)); | 
|  | uint64_t size = object_property_get_uint(OBJECT(dev), PC_DIMM_SIZE_PROP, | 
|  | NULL); | 
|  | int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, | 
|  | NULL); | 
|  | uint32_t handle = nvdimm_slot_to_handle(slot); | 
|  |  | 
|  | nfit_memdev = acpi_data_push(structures, sizeof(*nfit_memdev)); | 
|  |  | 
|  | nfit_memdev->type = cpu_to_le16(1 /* Memory Device to System Address | 
|  | Range Map Structure*/); | 
|  | nfit_memdev->length = cpu_to_le16(sizeof(*nfit_memdev)); | 
|  | nfit_memdev->nfit_handle = cpu_to_le32(handle); | 
|  |  | 
|  | /* | 
|  | * associate memory device with System Physical Address Range | 
|  | * Structure. | 
|  | */ | 
|  | nfit_memdev->spa_index = cpu_to_le16(nvdimm_slot_to_spa_index(slot)); | 
|  | /* associate memory device with Control Region Structure. */ | 
|  | nfit_memdev->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); | 
|  |  | 
|  | /* The memory region on the device. */ | 
|  | nfit_memdev->region_len = cpu_to_le64(size); | 
|  | /* The device address starts from 0. */ | 
|  | nfit_memdev->region_dpa = cpu_to_le64(0); | 
|  |  | 
|  | /* Only one interleave for PMEM. */ | 
|  | nfit_memdev->interleave_ways = cpu_to_le16(1); | 
|  |  | 
|  | if (nvdimm->unarmed) { | 
|  | nfit_memdev->flags |= cpu_to_le16(ACPI_NFIT_MEM_NOT_ARMED); | 
|  | } | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ACPI 6.0: 5.2.25.5 NVDIMM Control Region Structure. | 
|  | */ | 
|  | static void nvdimm_build_structure_dcr(GArray *structures, DeviceState *dev) | 
|  | { | 
|  | NvdimmNfitControlRegion *nfit_dcr; | 
|  | int slot = object_property_get_int(OBJECT(dev), PC_DIMM_SLOT_PROP, | 
|  | NULL); | 
|  | uint32_t sn = nvdimm_slot_to_sn(slot); | 
|  |  | 
|  | nfit_dcr = acpi_data_push(structures, sizeof(*nfit_dcr)); | 
|  |  | 
|  | nfit_dcr->type = cpu_to_le16(4 /* NVDIMM Control Region Structure */); | 
|  | nfit_dcr->length = cpu_to_le16(sizeof(*nfit_dcr)); | 
|  | nfit_dcr->dcr_index = cpu_to_le16(nvdimm_slot_to_dcr_index(slot)); | 
|  |  | 
|  | /* vendor: Intel. */ | 
|  | nfit_dcr->vendor_id = cpu_to_le16(0x8086); | 
|  | nfit_dcr->device_id = cpu_to_le16(1); | 
|  |  | 
|  | /* The _DSM method is following Intel's DSM specification. */ | 
|  | nfit_dcr->revision_id = cpu_to_le16(1 /* Current Revision supported | 
|  | in ACPI 6.0 is 1. */); | 
|  | nfit_dcr->serial_number = cpu_to_le32(sn); | 
|  | nfit_dcr->fic = cpu_to_le16(0x301 /* Format Interface Code: | 
|  | Byte addressable, no energy backed. | 
|  | See ACPI 6.2, sect 5.2.25.6 and | 
|  | JEDEC Annex L Release 3. */); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * ACPI 6.2 Errata A: 5.2.25.9 NVDIMM Platform Capabilities Structure | 
|  | */ | 
|  | static void | 
|  | nvdimm_build_structure_caps(GArray *structures, uint32_t capabilities) | 
|  | { | 
|  | NvdimmNfitPlatformCaps *nfit_caps; | 
|  |  | 
|  | nfit_caps = acpi_data_push(structures, sizeof(*nfit_caps)); | 
|  |  | 
|  | nfit_caps->type = cpu_to_le16(7 /* NVDIMM Platform Capabilities */); | 
|  | nfit_caps->length = cpu_to_le16(sizeof(*nfit_caps)); | 
|  | nfit_caps->highest_cap = 31 - clz32(capabilities); | 
|  | nfit_caps->capabilities = cpu_to_le32(capabilities); | 
|  | } | 
|  |  | 
|  | static GArray *nvdimm_build_device_structure(NVDIMMState *state) | 
|  | { | 
|  | GSList *device_list, *list = nvdimm_get_device_list(); | 
|  | GArray *structures = g_array_new(false, true /* clear */, 1); | 
|  |  | 
|  | for (device_list = list; device_list; device_list = device_list->next) { | 
|  | DeviceState *dev = device_list->data; | 
|  |  | 
|  | /* build System Physical Address Range Structure. */ | 
|  | nvdimm_build_structure_spa(structures, dev); | 
|  |  | 
|  | /* | 
|  | * build Memory Device to System Physical Address Range Mapping | 
|  | * Structure. | 
|  | */ | 
|  | nvdimm_build_structure_memdev(structures, dev); | 
|  |  | 
|  | /* build NVDIMM Control Region Structure. */ | 
|  | nvdimm_build_structure_dcr(structures, dev); | 
|  | } | 
|  | g_slist_free(list); | 
|  |  | 
|  | if (state->persistence) { | 
|  | nvdimm_build_structure_caps(structures, state->persistence); | 
|  | } | 
|  |  | 
|  | return structures; | 
|  | } | 
|  |  | 
|  | static void nvdimm_init_fit_buffer(NvdimmFitBuffer *fit_buf) | 
|  | { | 
|  | fit_buf->fit = g_array_new(false, true /* clear */, 1); | 
|  | } | 
|  |  | 
|  | static void nvdimm_build_fit_buffer(NVDIMMState *state) | 
|  | { | 
|  | NvdimmFitBuffer *fit_buf = &state->fit_buf; | 
|  |  | 
|  | g_array_free(fit_buf->fit, true); | 
|  | fit_buf->fit = nvdimm_build_device_structure(state); | 
|  | fit_buf->dirty = true; | 
|  | } | 
|  |  | 
|  | void nvdimm_plug(NVDIMMState *state) | 
|  | { | 
|  | nvdimm_build_fit_buffer(state); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * NVDIMM Firmware Interface Table | 
|  | * @signature: "NFIT" | 
|  | * | 
|  | * It provides information that allows OSPM to enumerate NVDIMM present in | 
|  | * the platform and associate system physical address ranges created by the | 
|  | * NVDIMMs. | 
|  | * | 
|  | * It is defined in ACPI 6.0: 5.2.25 NVDIMM Firmware Interface Table (NFIT) | 
|  | */ | 
|  |  | 
|  | static void nvdimm_build_nfit(NVDIMMState *state, GArray *table_offsets, | 
|  | GArray *table_data, BIOSLinker *linker, | 
|  | const char *oem_id, const char *oem_table_id) | 
|  | { | 
|  | NvdimmFitBuffer *fit_buf = &state->fit_buf; | 
|  | AcpiTable table = { .sig = "NFIT", .rev = 1, | 
|  | .oem_id = oem_id, .oem_table_id = oem_table_id }; | 
|  |  | 
|  | acpi_add_table(table_offsets, table_data); | 
|  |  | 
|  | acpi_table_begin(&table, table_data); | 
|  | /* Reserved */ | 
|  | build_append_int_noprefix(table_data, 0, 4); | 
|  | /* NVDIMM device structures. */ | 
|  | g_array_append_vals(table_data, fit_buf->fit->data, fit_buf->fit->len); | 
|  | acpi_table_end(linker, &table); | 
|  | } | 
|  |  | 
|  | #define NVDIMM_DSM_MEMORY_SIZE      4096 | 
|  |  | 
|  | struct NvdimmDsmIn { | 
|  | uint32_t handle; | 
|  | uint32_t revision; | 
|  | uint32_t function; | 
|  | /* the remaining size in the page is used by arg3. */ | 
|  | union { | 
|  | uint8_t arg3[4084]; | 
|  | }; | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmDsmIn NvdimmDsmIn; | 
|  | QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmIn) != NVDIMM_DSM_MEMORY_SIZE); | 
|  |  | 
|  | struct NvdimmDsmOut { | 
|  | /* the size of buffer filled by QEMU. */ | 
|  | uint32_t len; | 
|  | uint8_t data[4092]; | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmDsmOut NvdimmDsmOut; | 
|  | QEMU_BUILD_BUG_ON(sizeof(NvdimmDsmOut) != NVDIMM_DSM_MEMORY_SIZE); | 
|  |  | 
|  | struct NvdimmDsmFunc0Out { | 
|  | /* the size of buffer filled by QEMU. */ | 
|  | uint32_t len; | 
|  | uint32_t supported_func; | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmDsmFunc0Out NvdimmDsmFunc0Out; | 
|  |  | 
|  | struct NvdimmDsmFuncNoPayloadOut { | 
|  | /* the size of buffer filled by QEMU. */ | 
|  | uint32_t len; | 
|  | uint32_t func_ret_status; | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmDsmFuncNoPayloadOut NvdimmDsmFuncNoPayloadOut; | 
|  |  | 
|  | struct NvdimmFuncGetLabelSizeOut { | 
|  | /* the size of buffer filled by QEMU. */ | 
|  | uint32_t len; | 
|  | uint32_t func_ret_status; /* return status code. */ | 
|  | uint32_t label_size; /* the size of label data area. */ | 
|  | /* | 
|  | * Maximum size of the namespace label data length supported by | 
|  | * the platform in Get/Set Namespace Label Data functions. | 
|  | */ | 
|  | uint32_t max_xfer; | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmFuncGetLabelSizeOut NvdimmFuncGetLabelSizeOut; | 
|  | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelSizeOut) > NVDIMM_DSM_MEMORY_SIZE); | 
|  |  | 
|  | struct NvdimmFuncGetLabelDataIn { | 
|  | uint32_t offset; /* the offset in the namespace label data area. */ | 
|  | uint32_t length; /* the size of data is to be read via the function. */ | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmFuncGetLabelDataIn NvdimmFuncGetLabelDataIn; | 
|  | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataIn) + | 
|  | offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); | 
|  |  | 
|  | struct NvdimmFuncGetLabelDataOut { | 
|  | /* the size of buffer filled by QEMU. */ | 
|  | uint32_t len; | 
|  | uint32_t func_ret_status; /* return status code. */ | 
|  | uint8_t out_buf[]; /* the data got via Get Namespace Label function. */ | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmFuncGetLabelDataOut NvdimmFuncGetLabelDataOut; | 
|  | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncGetLabelDataOut) > NVDIMM_DSM_MEMORY_SIZE); | 
|  |  | 
|  | struct NvdimmFuncSetLabelDataIn { | 
|  | uint32_t offset; /* the offset in the namespace label data area. */ | 
|  | uint32_t length; /* the size of data is to be written via the function. */ | 
|  | uint8_t in_buf[]; /* the data written to label data area. */ | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmFuncSetLabelDataIn NvdimmFuncSetLabelDataIn; | 
|  | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncSetLabelDataIn) + | 
|  | offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); | 
|  |  | 
|  | struct NvdimmFuncReadFITIn { | 
|  | uint32_t offset; /* the offset into FIT buffer. */ | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmFuncReadFITIn NvdimmFuncReadFITIn; | 
|  | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITIn) + | 
|  | offsetof(NvdimmDsmIn, arg3) > NVDIMM_DSM_MEMORY_SIZE); | 
|  |  | 
|  | struct NvdimmFuncReadFITOut { | 
|  | /* the size of buffer filled by QEMU. */ | 
|  | uint32_t len; | 
|  | uint32_t func_ret_status; /* return status code. */ | 
|  | uint8_t fit[]; /* the FIT data. */ | 
|  | } QEMU_PACKED; | 
|  | typedef struct NvdimmFuncReadFITOut NvdimmFuncReadFITOut; | 
|  | QEMU_BUILD_BUG_ON(sizeof(NvdimmFuncReadFITOut) > NVDIMM_DSM_MEMORY_SIZE); | 
|  |  | 
|  | static void | 
|  | nvdimm_dsm_function0(uint32_t supported_func, hwaddr dsm_mem_addr) | 
|  | { | 
|  | NvdimmDsmFunc0Out func0 = { | 
|  | .len = cpu_to_le32(sizeof(func0)), | 
|  | .supported_func = cpu_to_le32(supported_func), | 
|  | }; | 
|  | cpu_physical_memory_write(dsm_mem_addr, &func0, sizeof(func0)); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvdimm_dsm_no_payload(uint32_t func_ret_status, hwaddr dsm_mem_addr) | 
|  | { | 
|  | NvdimmDsmFuncNoPayloadOut out = { | 
|  | .len = cpu_to_le32(sizeof(out)), | 
|  | .func_ret_status = cpu_to_le32(func_ret_status), | 
|  | }; | 
|  | cpu_physical_memory_write(dsm_mem_addr, &out, sizeof(out)); | 
|  | } | 
|  |  | 
|  | #define NVDIMM_DSM_RET_STATUS_SUCCESS        0 /* Success */ | 
|  | #define NVDIMM_DSM_RET_STATUS_UNSUPPORT      1 /* Not Supported */ | 
|  | #define NVDIMM_DSM_RET_STATUS_NOMEMDEV       2 /* Non-Existing Memory Device */ | 
|  | #define NVDIMM_DSM_RET_STATUS_INVALID        3 /* Invalid Input Parameters */ | 
|  | #define NVDIMM_DSM_RET_STATUS_FIT_CHANGED    0x100 /* FIT Changed */ | 
|  |  | 
|  | #define NVDIMM_QEMU_RSVD_HANDLE_ROOT         0x10000 | 
|  |  | 
|  | /* Read FIT data, defined in docs/specs/acpi_nvdimm.txt. */ | 
|  | static void nvdimm_dsm_func_read_fit(NVDIMMState *state, NvdimmDsmIn *in, | 
|  | hwaddr dsm_mem_addr) | 
|  | { | 
|  | NvdimmFitBuffer *fit_buf = &state->fit_buf; | 
|  | NvdimmFuncReadFITIn *read_fit; | 
|  | NvdimmFuncReadFITOut *read_fit_out; | 
|  | GArray *fit; | 
|  | uint32_t read_len = 0, func_ret_status; | 
|  | int size; | 
|  |  | 
|  | read_fit = (NvdimmFuncReadFITIn *)in->arg3; | 
|  | read_fit->offset = le32_to_cpu(read_fit->offset); | 
|  |  | 
|  | fit = fit_buf->fit; | 
|  |  | 
|  | trace_acpi_nvdimm_read_fit(read_fit->offset, fit->len, | 
|  | fit_buf->dirty ? "Yes" : "No"); | 
|  |  | 
|  | if (read_fit->offset > fit->len) { | 
|  | func_ret_status = NVDIMM_DSM_RET_STATUS_INVALID; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* It is the first time to read FIT. */ | 
|  | if (!read_fit->offset) { | 
|  | fit_buf->dirty = false; | 
|  | } else if (fit_buf->dirty) { /* FIT has been changed during RFIT. */ | 
|  | func_ret_status = NVDIMM_DSM_RET_STATUS_FIT_CHANGED; | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | func_ret_status = NVDIMM_DSM_RET_STATUS_SUCCESS; | 
|  | read_len = MIN(fit->len - read_fit->offset, | 
|  | NVDIMM_DSM_MEMORY_SIZE - sizeof(NvdimmFuncReadFITOut)); | 
|  |  | 
|  | exit: | 
|  | size = sizeof(NvdimmFuncReadFITOut) + read_len; | 
|  | read_fit_out = g_malloc(size); | 
|  |  | 
|  | read_fit_out->len = cpu_to_le32(size); | 
|  | read_fit_out->func_ret_status = cpu_to_le32(func_ret_status); | 
|  | memcpy(read_fit_out->fit, fit->data + read_fit->offset, read_len); | 
|  |  | 
|  | cpu_physical_memory_write(dsm_mem_addr, read_fit_out, size); | 
|  |  | 
|  | g_free(read_fit_out); | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvdimm_dsm_handle_reserved_root_method(NVDIMMState *state, | 
|  | NvdimmDsmIn *in, hwaddr dsm_mem_addr) | 
|  | { | 
|  | switch (in->function) { | 
|  | case 0x0: | 
|  | nvdimm_dsm_function0(0x1 | 1 << 1 /* Read FIT */, dsm_mem_addr); | 
|  | return; | 
|  | case 0x1 /* Read FIT */: | 
|  | nvdimm_dsm_func_read_fit(state, in, dsm_mem_addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); | 
|  | } | 
|  |  | 
|  | static void nvdimm_dsm_root(NvdimmDsmIn *in, hwaddr dsm_mem_addr) | 
|  | { | 
|  | /* | 
|  | * function 0 is called to inquire which functions are supported by | 
|  | * OSPM | 
|  | */ | 
|  | if (!in->function) { | 
|  | nvdimm_dsm_function0(0 /* No function supported other than | 
|  | function 0 */, dsm_mem_addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* No function except function 0 is supported yet. */ | 
|  | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * the max transfer size is the max size transferred by both a | 
|  | * 'Get Namespace Label Data' function and a 'Set Namespace Label Data' | 
|  | * function. | 
|  | */ | 
|  | static uint32_t nvdimm_get_max_xfer_label_size(void) | 
|  | { | 
|  | uint32_t max_get_size, max_set_size, dsm_memory_size; | 
|  |  | 
|  | dsm_memory_size = NVDIMM_DSM_MEMORY_SIZE; | 
|  |  | 
|  | /* | 
|  | * the max data ACPI can read one time which is transferred by | 
|  | * the response of 'Get Namespace Label Data' function. | 
|  | */ | 
|  | max_get_size = dsm_memory_size - sizeof(NvdimmFuncGetLabelDataOut); | 
|  |  | 
|  | /* | 
|  | * the max data ACPI can write one time which is transferred by | 
|  | * 'Set Namespace Label Data' function. | 
|  | */ | 
|  | max_set_size = dsm_memory_size - offsetof(NvdimmDsmIn, arg3) - | 
|  | sizeof(NvdimmFuncSetLabelDataIn); | 
|  |  | 
|  | return MIN(max_get_size, max_set_size); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DSM Spec Rev1 4.4 Get Namespace Label Size (Function Index 4). | 
|  | * | 
|  | * It gets the size of Namespace Label data area and the max data size | 
|  | * that Get/Set Namespace Label Data functions can transfer. | 
|  | */ | 
|  | static void nvdimm_dsm_label_size(NVDIMMDevice *nvdimm, hwaddr dsm_mem_addr) | 
|  | { | 
|  | NvdimmFuncGetLabelSizeOut label_size_out = { | 
|  | .len = cpu_to_le32(sizeof(label_size_out)), | 
|  | }; | 
|  | uint32_t label_size, mxfer; | 
|  |  | 
|  | label_size = nvdimm->label_size; | 
|  | mxfer = nvdimm_get_max_xfer_label_size(); | 
|  |  | 
|  | trace_acpi_nvdimm_label_info(label_size, mxfer); | 
|  |  | 
|  | label_size_out.func_ret_status = cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); | 
|  | label_size_out.label_size = cpu_to_le32(label_size); | 
|  | label_size_out.max_xfer = cpu_to_le32(mxfer); | 
|  |  | 
|  | cpu_physical_memory_write(dsm_mem_addr, &label_size_out, | 
|  | sizeof(label_size_out)); | 
|  | } | 
|  |  | 
|  | static uint32_t nvdimm_rw_label_data_check(NVDIMMDevice *nvdimm, | 
|  | uint32_t offset, uint32_t length, | 
|  | bool is_write) | 
|  | { | 
|  | uint32_t ret = NVDIMM_DSM_RET_STATUS_INVALID; | 
|  |  | 
|  | if (offset + length < offset) { | 
|  | trace_acpi_nvdimm_label_overflow(offset, length); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (nvdimm->label_size < offset + length) { | 
|  | trace_acpi_nvdimm_label_oversize(offset + length, nvdimm->label_size); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (length > nvdimm_get_max_xfer_label_size()) { | 
|  | trace_acpi_nvdimm_label_xfer_exceed(length, | 
|  | nvdimm_get_max_xfer_label_size()); | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | if (is_write && nvdimm->readonly) { | 
|  | return NVDIMM_DSM_RET_STATUS_UNSUPPORT; | 
|  | } | 
|  |  | 
|  | return NVDIMM_DSM_RET_STATUS_SUCCESS; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DSM Spec Rev1 4.5 Get Namespace Label Data (Function Index 5). | 
|  | */ | 
|  | static void nvdimm_dsm_get_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, | 
|  | hwaddr dsm_mem_addr) | 
|  | { | 
|  | NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); | 
|  | NvdimmFuncGetLabelDataIn *get_label_data; | 
|  | NvdimmFuncGetLabelDataOut *get_label_data_out; | 
|  | uint32_t status; | 
|  | int size; | 
|  |  | 
|  | get_label_data = (NvdimmFuncGetLabelDataIn *)in->arg3; | 
|  | get_label_data->offset = le32_to_cpu(get_label_data->offset); | 
|  | get_label_data->length = le32_to_cpu(get_label_data->length); | 
|  |  | 
|  | trace_acpi_nvdimm_read_label(get_label_data->offset, | 
|  | get_label_data->length); | 
|  |  | 
|  | status = nvdimm_rw_label_data_check(nvdimm, get_label_data->offset, | 
|  | get_label_data->length, false); | 
|  | if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { | 
|  | nvdimm_dsm_no_payload(status, dsm_mem_addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | size = sizeof(*get_label_data_out) + get_label_data->length; | 
|  | assert(size <= NVDIMM_DSM_MEMORY_SIZE); | 
|  | get_label_data_out = g_malloc(size); | 
|  |  | 
|  | get_label_data_out->len = cpu_to_le32(size); | 
|  | get_label_data_out->func_ret_status = | 
|  | cpu_to_le32(NVDIMM_DSM_RET_STATUS_SUCCESS); | 
|  | nvc->read_label_data(nvdimm, get_label_data_out->out_buf, | 
|  | get_label_data->length, get_label_data->offset); | 
|  |  | 
|  | cpu_physical_memory_write(dsm_mem_addr, get_label_data_out, size); | 
|  | g_free(get_label_data_out); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * DSM Spec Rev1 4.6 Set Namespace Label Data (Function Index 6). | 
|  | */ | 
|  | static void nvdimm_dsm_set_label_data(NVDIMMDevice *nvdimm, NvdimmDsmIn *in, | 
|  | hwaddr dsm_mem_addr) | 
|  | { | 
|  | NVDIMMClass *nvc = NVDIMM_GET_CLASS(nvdimm); | 
|  | NvdimmFuncSetLabelDataIn *set_label_data; | 
|  | uint32_t status; | 
|  |  | 
|  | set_label_data = (NvdimmFuncSetLabelDataIn *)in->arg3; | 
|  |  | 
|  | set_label_data->offset = le32_to_cpu(set_label_data->offset); | 
|  | set_label_data->length = le32_to_cpu(set_label_data->length); | 
|  |  | 
|  | trace_acpi_nvdimm_write_label(set_label_data->offset, | 
|  | set_label_data->length); | 
|  |  | 
|  | status = nvdimm_rw_label_data_check(nvdimm, set_label_data->offset, | 
|  | set_label_data->length, true); | 
|  | if (status != NVDIMM_DSM_RET_STATUS_SUCCESS) { | 
|  | nvdimm_dsm_no_payload(status, dsm_mem_addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | assert(offsetof(NvdimmDsmIn, arg3) + sizeof(*set_label_data) + | 
|  | set_label_data->length <= NVDIMM_DSM_MEMORY_SIZE); | 
|  |  | 
|  | nvc->write_label_data(nvdimm, set_label_data->in_buf, | 
|  | set_label_data->length, set_label_data->offset); | 
|  | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_SUCCESS, dsm_mem_addr); | 
|  | } | 
|  |  | 
|  | static void nvdimm_dsm_device(NvdimmDsmIn *in, hwaddr dsm_mem_addr) | 
|  | { | 
|  | NVDIMMDevice *nvdimm = nvdimm_get_device_by_handle(in->handle); | 
|  |  | 
|  | /* See the comments in nvdimm_dsm_root(). */ | 
|  | if (!in->function) { | 
|  | uint32_t supported_func = 0; | 
|  |  | 
|  | if (nvdimm && nvdimm->label_size) { | 
|  | supported_func |= 0x1 /* Bit 0 indicates whether there is | 
|  | support for any functions other | 
|  | than function 0. */ | | 
|  | 1 << 4 /* Get Namespace Label Size */ | | 
|  | 1 << 5 /* Get Namespace Label Data */ | | 
|  | 1 << 6 /* Set Namespace Label Data */; | 
|  | } | 
|  | nvdimm_dsm_function0(supported_func, dsm_mem_addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | if (!nvdimm) { | 
|  | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_NOMEMDEV, | 
|  | dsm_mem_addr); | 
|  | return; | 
|  | } | 
|  |  | 
|  | /* Encode DSM function according to DSM Spec Rev1. */ | 
|  | switch (in->function) { | 
|  | case 4 /* Get Namespace Label Size */: | 
|  | if (nvdimm->label_size) { | 
|  | nvdimm_dsm_label_size(nvdimm, dsm_mem_addr); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case 5 /* Get Namespace Label Data */: | 
|  | if (nvdimm->label_size) { | 
|  | nvdimm_dsm_get_label_data(nvdimm, in, dsm_mem_addr); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | case 0x6 /* Set Namespace Label Data */: | 
|  | if (nvdimm->label_size) { | 
|  | nvdimm_dsm_set_label_data(nvdimm, in, dsm_mem_addr); | 
|  | return; | 
|  | } | 
|  | break; | 
|  | } | 
|  |  | 
|  | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); | 
|  | } | 
|  |  | 
|  | static uint64_t | 
|  | nvdimm_dsm_read(void *opaque, hwaddr addr, unsigned size) | 
|  | { | 
|  | trace_acpi_nvdimm_read_io_port(); | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static void | 
|  | nvdimm_dsm_write(void *opaque, hwaddr addr, uint64_t val, unsigned size) | 
|  | { | 
|  | NVDIMMState *state = opaque; | 
|  | NvdimmDsmIn *in; | 
|  | hwaddr dsm_mem_addr = val; | 
|  |  | 
|  | trace_acpi_nvdimm_dsm_mem_addr(dsm_mem_addr); | 
|  |  | 
|  | /* | 
|  | * The DSM memory is mapped to guest address space so an evil guest | 
|  | * can change its content while we are doing DSM emulation. Avoid | 
|  | * this by copying DSM memory to QEMU local memory. | 
|  | */ | 
|  | in = g_new(NvdimmDsmIn, 1); | 
|  | cpu_physical_memory_read(dsm_mem_addr, in, sizeof(*in)); | 
|  |  | 
|  | in->revision = le32_to_cpu(in->revision); | 
|  | in->function = le32_to_cpu(in->function); | 
|  | in->handle = le32_to_cpu(in->handle); | 
|  |  | 
|  | trace_acpi_nvdimm_dsm_info(in->revision, in->handle, in->function); | 
|  |  | 
|  | if (in->revision != 0x1 /* Currently we only support DSM Spec Rev1. */) { | 
|  | trace_acpi_nvdimm_invalid_revision(in->revision); | 
|  | nvdimm_dsm_no_payload(NVDIMM_DSM_RET_STATUS_UNSUPPORT, dsm_mem_addr); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | if (in->handle == NVDIMM_QEMU_RSVD_HANDLE_ROOT) { | 
|  | nvdimm_dsm_handle_reserved_root_method(state, in, dsm_mem_addr); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | /* Handle 0 is reserved for NVDIMM Root Device. */ | 
|  | if (!in->handle) { | 
|  | nvdimm_dsm_root(in, dsm_mem_addr); | 
|  | goto exit; | 
|  | } | 
|  |  | 
|  | nvdimm_dsm_device(in, dsm_mem_addr); | 
|  |  | 
|  | exit: | 
|  | g_free(in); | 
|  | } | 
|  |  | 
|  | static const MemoryRegionOps nvdimm_dsm_ops = { | 
|  | .read = nvdimm_dsm_read, | 
|  | .write = nvdimm_dsm_write, | 
|  | .endianness = DEVICE_LITTLE_ENDIAN, | 
|  | .valid = { | 
|  | .min_access_size = 4, | 
|  | .max_access_size = 4, | 
|  | }, | 
|  | }; | 
|  |  | 
|  | void nvdimm_acpi_plug_cb(HotplugHandler *hotplug_dev, DeviceState *dev) | 
|  | { | 
|  | if (dev->hotplugged) { | 
|  | acpi_send_event(DEVICE(hotplug_dev), ACPI_NVDIMM_HOTPLUG_STATUS); | 
|  | } | 
|  | } | 
|  |  | 
|  | void nvdimm_init_acpi_state(NVDIMMState *state, MemoryRegion *io, | 
|  | struct AcpiGenericAddress dsm_io, | 
|  | FWCfgState *fw_cfg, Object *owner) | 
|  | { | 
|  | state->dsm_io = dsm_io; | 
|  | memory_region_init_io(&state->io_mr, owner, &nvdimm_dsm_ops, state, | 
|  | "nvdimm-acpi-io", dsm_io.bit_width >> 3); | 
|  | memory_region_add_subregion(io, dsm_io.address, &state->io_mr); | 
|  |  | 
|  | state->dsm_mem = g_array_new(false, true /* clear */, 1); | 
|  | acpi_data_push(state->dsm_mem, sizeof(NvdimmDsmIn)); | 
|  | fw_cfg_add_file(fw_cfg, NVDIMM_DSM_MEM_FILE, state->dsm_mem->data, | 
|  | state->dsm_mem->len); | 
|  |  | 
|  | nvdimm_init_fit_buffer(&state->fit_buf); | 
|  | } | 
|  |  | 
|  | #define NVDIMM_COMMON_DSM       "NCAL" | 
|  | #define NVDIMM_ACPI_MEM_ADDR    "MEMA" | 
|  |  | 
|  | #define NVDIMM_DSM_MEMORY       "NRAM" | 
|  | #define NVDIMM_DSM_IOPORT       "NPIO" | 
|  |  | 
|  | #define NVDIMM_DSM_NOTIFY       "NTFI" | 
|  | #define NVDIMM_DSM_HANDLE       "HDLE" | 
|  | #define NVDIMM_DSM_REVISION     "REVS" | 
|  | #define NVDIMM_DSM_FUNCTION     "FUNC" | 
|  | #define NVDIMM_DSM_ARG3         "FARG" | 
|  |  | 
|  | #define NVDIMM_DSM_OUT_BUF_SIZE "RLEN" | 
|  | #define NVDIMM_DSM_OUT_BUF      "ODAT" | 
|  |  | 
|  | #define NVDIMM_DSM_RFIT_STATUS  "RSTA" | 
|  |  | 
|  | #define NVDIMM_QEMU_RSVD_UUID   "648B9CF2-CDA1-4312-8AD9-49C4AF32BD62" | 
|  | #define NVDIMM_DEVICE_DSM_UUID  "4309AC30-0D11-11E4-9191-0800200C9A66" | 
|  |  | 
|  | static void nvdimm_build_common_dsm(Aml *dev, | 
|  | NVDIMMState *nvdimm_state) | 
|  | { | 
|  | Aml *method, *ifctx, *function, *handle, *uuid, *dsm_mem, *elsectx2; | 
|  | Aml *elsectx, *unsupport, *unpatched, *expected_uuid, *uuid_invalid; | 
|  | Aml *pckg, *pckg_index, *pckg_buf, *field, *dsm_out_buf, *dsm_out_buf_size; | 
|  | Aml *whilectx, *offset; | 
|  | uint8_t byte_list[1]; | 
|  | AmlRegionSpace rs; | 
|  |  | 
|  | method = aml_method(NVDIMM_COMMON_DSM, 5, AML_SERIALIZED); | 
|  | uuid = aml_arg(0); | 
|  | function = aml_arg(2); | 
|  | handle = aml_arg(4); | 
|  | dsm_mem = aml_local(6); | 
|  | dsm_out_buf = aml_local(7); | 
|  |  | 
|  | aml_append(method, aml_store(aml_name(NVDIMM_ACPI_MEM_ADDR), dsm_mem)); | 
|  |  | 
|  | if (nvdimm_state->dsm_io.space_id == AML_AS_SYSTEM_IO) { | 
|  | rs = AML_SYSTEM_IO; | 
|  | } else { | 
|  | rs = AML_SYSTEM_MEMORY; | 
|  | } | 
|  |  | 
|  | /* map DSM memory and IO into ACPI namespace. */ | 
|  | aml_append(method, aml_operation_region(NVDIMM_DSM_IOPORT, rs, | 
|  | aml_int(nvdimm_state->dsm_io.address), | 
|  | nvdimm_state->dsm_io.bit_width >> 3)); | 
|  | aml_append(method, aml_operation_region(NVDIMM_DSM_MEMORY, | 
|  | AML_SYSTEM_MEMORY, dsm_mem, sizeof(NvdimmDsmIn))); | 
|  |  | 
|  | /* | 
|  | * DSM notifier: | 
|  | * NVDIMM_DSM_NOTIFY: write the address of DSM memory and notify QEMU to | 
|  | *                    emulate the access. | 
|  | * | 
|  | * It is the IO port so that accessing them will cause VM-exit, the | 
|  | * control will be transferred to QEMU. | 
|  | */ | 
|  | field = aml_field(NVDIMM_DSM_IOPORT, AML_DWORD_ACC, AML_NOLOCK, | 
|  | AML_PRESERVE); | 
|  | aml_append(field, aml_named_field(NVDIMM_DSM_NOTIFY, | 
|  | nvdimm_state->dsm_io.bit_width)); | 
|  | aml_append(method, field); | 
|  |  | 
|  | /* | 
|  | * DSM input: | 
|  | * NVDIMM_DSM_HANDLE: store device's handle, it's zero if the _DSM call | 
|  | *                    happens on NVDIMM Root Device. | 
|  | * NVDIMM_DSM_REVISION: store the Arg1 of _DSM call. | 
|  | * NVDIMM_DSM_FUNCTION: store the Arg2 of _DSM call. | 
|  | * NVDIMM_DSM_ARG3: store the Arg3 of _DSM call which is a Package | 
|  | *                  containing function-specific arguments. | 
|  | * | 
|  | * They are RAM mapping on host so that these accesses never cause | 
|  | * VM-EXIT. | 
|  | */ | 
|  | field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, | 
|  | AML_PRESERVE); | 
|  | aml_append(field, aml_named_field(NVDIMM_DSM_HANDLE, | 
|  | sizeof(typeof_field(NvdimmDsmIn, handle)) * BITS_PER_BYTE)); | 
|  | aml_append(field, aml_named_field(NVDIMM_DSM_REVISION, | 
|  | sizeof(typeof_field(NvdimmDsmIn, revision)) * BITS_PER_BYTE)); | 
|  | aml_append(field, aml_named_field(NVDIMM_DSM_FUNCTION, | 
|  | sizeof(typeof_field(NvdimmDsmIn, function)) * BITS_PER_BYTE)); | 
|  | aml_append(field, aml_named_field(NVDIMM_DSM_ARG3, | 
|  | (sizeof(NvdimmDsmIn) - offsetof(NvdimmDsmIn, arg3)) * BITS_PER_BYTE)); | 
|  | aml_append(method, field); | 
|  |  | 
|  | /* | 
|  | * DSM output: | 
|  | * NVDIMM_DSM_OUT_BUF_SIZE: the size of the buffer filled by QEMU. | 
|  | * NVDIMM_DSM_OUT_BUF: the buffer QEMU uses to store the result. | 
|  | * | 
|  | * Since the page is reused by both input and out, the input data | 
|  | * will be lost after storing new result into ODAT so we should fetch | 
|  | * all the input data before writing the result. | 
|  | */ | 
|  | field = aml_field(NVDIMM_DSM_MEMORY, AML_DWORD_ACC, AML_NOLOCK, | 
|  | AML_PRESERVE); | 
|  | aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF_SIZE, | 
|  | sizeof(typeof_field(NvdimmDsmOut, len)) * BITS_PER_BYTE)); | 
|  | aml_append(field, aml_named_field(NVDIMM_DSM_OUT_BUF, | 
|  | (sizeof(NvdimmDsmOut) - offsetof(NvdimmDsmOut, data)) * BITS_PER_BYTE)); | 
|  | aml_append(method, field); | 
|  |  | 
|  | /* | 
|  | * do not support any method if DSM memory address has not been | 
|  | * patched. | 
|  | */ | 
|  | unpatched = aml_equal(dsm_mem, aml_int(0x0)); | 
|  |  | 
|  | expected_uuid = aml_local(0); | 
|  |  | 
|  | ifctx = aml_if(aml_equal(handle, aml_int(0x0))); | 
|  | aml_append(ifctx, aml_store( | 
|  | aml_touuid("2F10E7A4-9E91-11E4-89D3-123B93F75CBA") | 
|  | /* UUID for NVDIMM Root Device */, expected_uuid)); | 
|  | aml_append(method, ifctx); | 
|  | elsectx = aml_else(); | 
|  | ifctx = aml_if(aml_equal(handle, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT))); | 
|  | aml_append(ifctx, aml_store(aml_touuid(NVDIMM_QEMU_RSVD_UUID | 
|  | /* UUID for QEMU internal use */), expected_uuid)); | 
|  | aml_append(elsectx, ifctx); | 
|  | elsectx2 = aml_else(); | 
|  | aml_append(elsectx2, aml_store(aml_touuid(NVDIMM_DEVICE_DSM_UUID) | 
|  | /* UUID for NVDIMM Devices */, expected_uuid)); | 
|  | aml_append(elsectx, elsectx2); | 
|  | aml_append(method, elsectx); | 
|  |  | 
|  | uuid_invalid = aml_lnot(aml_equal(uuid, expected_uuid)); | 
|  |  | 
|  | unsupport = aml_if(aml_lor(unpatched, uuid_invalid)); | 
|  |  | 
|  | /* | 
|  | * function 0 is called to inquire what functions are supported by | 
|  | * OSPM | 
|  | */ | 
|  | ifctx = aml_if(aml_equal(function, aml_int(0))); | 
|  | byte_list[0] = 0 /* No function Supported */; | 
|  | aml_append(ifctx, aml_return(aml_buffer(1, byte_list))); | 
|  | aml_append(unsupport, ifctx); | 
|  |  | 
|  | /* No function is supported yet. */ | 
|  | byte_list[0] = NVDIMM_DSM_RET_STATUS_UNSUPPORT; | 
|  | aml_append(unsupport, aml_return(aml_buffer(1, byte_list))); | 
|  | aml_append(method, unsupport); | 
|  |  | 
|  | /* | 
|  | * The HDLE indicates the DSM function is issued from which device, | 
|  | * it reserves 0 for root device and is the handle for NVDIMM devices. | 
|  | * See the comments in nvdimm_slot_to_handle(). | 
|  | */ | 
|  | aml_append(method, aml_store(handle, aml_name(NVDIMM_DSM_HANDLE))); | 
|  | aml_append(method, aml_store(aml_arg(1), aml_name(NVDIMM_DSM_REVISION))); | 
|  | aml_append(method, aml_store(function, aml_name(NVDIMM_DSM_FUNCTION))); | 
|  |  | 
|  | /* | 
|  | * The fourth parameter (Arg3) of _DSM is a package which contains | 
|  | * a buffer, the layout of the buffer is specified by UUID (Arg0), | 
|  | * Revision ID (Arg1) and Function Index (Arg2) which are documented | 
|  | * in the DSM Spec. | 
|  | */ | 
|  | pckg = aml_arg(3); | 
|  | ifctx = aml_if(aml_land(aml_equal(aml_object_type(pckg), | 
|  | aml_int(4 /* Package */)) /* It is a Package? */, | 
|  | aml_equal(aml_sizeof(pckg), aml_int(1)) /* 1 element? */)); | 
|  |  | 
|  | pckg_index = aml_local(2); | 
|  | pckg_buf = aml_local(3); | 
|  | aml_append(ifctx, aml_store(aml_index(pckg, aml_int(0)), pckg_index)); | 
|  | aml_append(ifctx, aml_store(aml_derefof(pckg_index), pckg_buf)); | 
|  | aml_append(ifctx, aml_store(pckg_buf, aml_name(NVDIMM_DSM_ARG3))); | 
|  | aml_append(method, ifctx); | 
|  |  | 
|  | /* | 
|  | * tell QEMU about the real address of DSM memory, then QEMU | 
|  | * gets the control and fills the result in DSM memory. | 
|  | */ | 
|  | aml_append(method, aml_store(dsm_mem, aml_name(NVDIMM_DSM_NOTIFY))); | 
|  |  | 
|  | dsm_out_buf_size = aml_local(1); | 
|  | /* RLEN is not included in the payload returned to guest. */ | 
|  | aml_append(method, aml_subtract(aml_name(NVDIMM_DSM_OUT_BUF_SIZE), | 
|  | aml_int(4), dsm_out_buf_size)); | 
|  |  | 
|  | /* | 
|  | * As per ACPI spec 6.3, Table 19-419 Object Conversion Rules, if | 
|  | * the Buffer Field <= to the size of an Integer (in bits), it will | 
|  | * be treated as an integer. Moreover, the integer size depends on | 
|  | * DSDT tables revision number. If revision number is < 2, integer | 
|  | * size is 32 bits, otherwise it is 64 bits. | 
|  | * Because of this CreateField() cannot be used if RLEN < Integer Size. | 
|  | * | 
|  | * Also please note that APCI ASL operator SizeOf() doesn't support | 
|  | * Integer and there isn't any other way to figure out the Integer | 
|  | * size. Hence we assume 8 byte as Integer size and if RLEN < 8 bytes, | 
|  | * build dsm_out_buf byte by byte. | 
|  | */ | 
|  | ifctx = aml_if(aml_lless(dsm_out_buf_size, aml_int(8))); | 
|  | offset = aml_local(2); | 
|  | aml_append(ifctx, aml_store(aml_int(0), offset)); | 
|  | aml_append(ifctx, aml_name_decl("TBUF", aml_buffer(1, NULL))); | 
|  | aml_append(ifctx, aml_store(aml_buffer(0, NULL), dsm_out_buf)); | 
|  |  | 
|  | whilectx = aml_while(aml_lless(offset, dsm_out_buf_size)); | 
|  | /* Copy 1 byte at offset from ODAT to temporary buffer(TBUF). */ | 
|  | aml_append(whilectx, aml_store(aml_derefof(aml_index( | 
|  | aml_name(NVDIMM_DSM_OUT_BUF), offset)), | 
|  | aml_index(aml_name("TBUF"), aml_int(0)))); | 
|  | aml_append(whilectx, aml_concatenate(dsm_out_buf, aml_name("TBUF"), | 
|  | dsm_out_buf)); | 
|  | aml_append(whilectx, aml_increment(offset)); | 
|  | aml_append(ifctx, whilectx); | 
|  |  | 
|  | aml_append(ifctx, aml_return(dsm_out_buf)); | 
|  | aml_append(method, ifctx); | 
|  |  | 
|  | /* If RLEN >= Integer size, just use CreateField() operator */ | 
|  | aml_append(method, aml_store(aml_shiftleft(dsm_out_buf_size, aml_int(3)), | 
|  | dsm_out_buf_size)); | 
|  | aml_append(method, aml_create_field(aml_name(NVDIMM_DSM_OUT_BUF), | 
|  | aml_int(0), dsm_out_buf_size, "OBUF")); | 
|  | aml_append(method, aml_return(aml_name("OBUF"))); | 
|  |  | 
|  | aml_append(dev, method); | 
|  | } | 
|  |  | 
|  | static void nvdimm_build_device_dsm(Aml *dev, uint32_t handle) | 
|  | { | 
|  | Aml *method; | 
|  |  | 
|  | method = aml_method("_DSM", 4, AML_NOTSERIALIZED); | 
|  | aml_append(method, aml_return(aml_call5(NVDIMM_COMMON_DSM, aml_arg(0), | 
|  | aml_arg(1), aml_arg(2), aml_arg(3), | 
|  | aml_int(handle)))); | 
|  | aml_append(dev, method); | 
|  | } | 
|  |  | 
|  | static void nvdimm_build_fit(Aml *dev) | 
|  | { | 
|  | Aml *method, *pkg, *buf, *buf_size, *offset, *call_result; | 
|  | Aml *whilectx, *ifcond, *ifctx, *elsectx, *fit; | 
|  |  | 
|  | buf = aml_local(0); | 
|  | buf_size = aml_local(1); | 
|  | fit = aml_local(2); | 
|  |  | 
|  | aml_append(dev, aml_name_decl(NVDIMM_DSM_RFIT_STATUS, aml_int(0))); | 
|  |  | 
|  | /* build helper function, RFIT. */ | 
|  | method = aml_method("RFIT", 1, AML_SERIALIZED); | 
|  | aml_append(method, aml_name_decl("OFST", aml_int(0))); | 
|  |  | 
|  | /* prepare input package. */ | 
|  | pkg = aml_package(1); | 
|  | aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); | 
|  | aml_append(pkg, aml_name("OFST")); | 
|  |  | 
|  | /* call Read_FIT function. */ | 
|  | call_result = aml_call5(NVDIMM_COMMON_DSM, | 
|  | aml_touuid(NVDIMM_QEMU_RSVD_UUID), | 
|  | aml_int(1) /* Revision 1 */, | 
|  | aml_int(0x1) /* Read FIT */, | 
|  | pkg, aml_int(NVDIMM_QEMU_RSVD_HANDLE_ROOT)); | 
|  | aml_append(method, aml_store(call_result, buf)); | 
|  |  | 
|  | /* handle _DSM result. */ | 
|  | aml_append(method, aml_create_dword_field(buf, | 
|  | aml_int(0) /* offset at byte 0 */, "STAU")); | 
|  |  | 
|  | aml_append(method, aml_store(aml_name("STAU"), | 
|  | aml_name(NVDIMM_DSM_RFIT_STATUS))); | 
|  |  | 
|  | /* if something is wrong during _DSM. */ | 
|  | ifcond = aml_equal(aml_int(NVDIMM_DSM_RET_STATUS_SUCCESS), | 
|  | aml_name("STAU")); | 
|  | ifctx = aml_if(aml_lnot(ifcond)); | 
|  | aml_append(ifctx, aml_return(aml_buffer(0, NULL))); | 
|  | aml_append(method, ifctx); | 
|  |  | 
|  | aml_append(method, aml_store(aml_sizeof(buf), buf_size)); | 
|  | aml_append(method, aml_subtract(buf_size, | 
|  | aml_int(4) /* the size of "STAU" */, | 
|  | buf_size)); | 
|  |  | 
|  | /* if we read the end of fit. */ | 
|  | ifctx = aml_if(aml_equal(buf_size, aml_int(0))); | 
|  | aml_append(ifctx, aml_return(aml_buffer(0, NULL))); | 
|  | aml_append(method, ifctx); | 
|  |  | 
|  | aml_append(method, aml_create_field(buf, | 
|  | aml_int(4 * BITS_PER_BYTE), /* offset at byte 4.*/ | 
|  | aml_shiftleft(buf_size, aml_int(3)), "BUFF")); | 
|  | aml_append(method, aml_return(aml_name("BUFF"))); | 
|  | aml_append(dev, method); | 
|  |  | 
|  | /* build _FIT. */ | 
|  | method = aml_method("_FIT", 0, AML_SERIALIZED); | 
|  | offset = aml_local(3); | 
|  |  | 
|  | aml_append(method, aml_store(aml_buffer(0, NULL), fit)); | 
|  | aml_append(method, aml_store(aml_int(0), offset)); | 
|  |  | 
|  | whilectx = aml_while(aml_int(1)); | 
|  | aml_append(whilectx, aml_store(aml_call1("RFIT", offset), buf)); | 
|  | aml_append(whilectx, aml_store(aml_sizeof(buf), buf_size)); | 
|  |  | 
|  | /* | 
|  | * if fit buffer was changed during RFIT, read from the beginning | 
|  | * again. | 
|  | */ | 
|  | ifctx = aml_if(aml_equal(aml_name(NVDIMM_DSM_RFIT_STATUS), | 
|  | aml_int(NVDIMM_DSM_RET_STATUS_FIT_CHANGED))); | 
|  | aml_append(ifctx, aml_store(aml_buffer(0, NULL), fit)); | 
|  | aml_append(ifctx, aml_store(aml_int(0), offset)); | 
|  | aml_append(whilectx, ifctx); | 
|  |  | 
|  | elsectx = aml_else(); | 
|  |  | 
|  | /* finish fit read if no data is read out. */ | 
|  | ifctx = aml_if(aml_equal(buf_size, aml_int(0))); | 
|  | aml_append(ifctx, aml_return(fit)); | 
|  | aml_append(elsectx, ifctx); | 
|  |  | 
|  | /* update the offset. */ | 
|  | aml_append(elsectx, aml_add(offset, buf_size, offset)); | 
|  | /* append the data we read out to the fit buffer. */ | 
|  | aml_append(elsectx, aml_concatenate(fit, buf, fit)); | 
|  | aml_append(whilectx, elsectx); | 
|  | aml_append(method, whilectx); | 
|  |  | 
|  | aml_append(dev, method); | 
|  | } | 
|  |  | 
|  | static void nvdimm_build_nvdimm_devices(Aml *root_dev, uint32_t ram_slots) | 
|  | { | 
|  | uint32_t slot; | 
|  | Aml *method, *pkg, *field, *com_call; | 
|  |  | 
|  | for (slot = 0; slot < ram_slots; slot++) { | 
|  | uint32_t handle = nvdimm_slot_to_handle(slot); | 
|  | Aml *nvdimm_dev; | 
|  |  | 
|  | nvdimm_dev = aml_device("NV%02X", slot); | 
|  |  | 
|  | /* | 
|  | * ACPI 6.0: 9.20 NVDIMM Devices: | 
|  | * | 
|  | * _ADR object that is used to supply OSPM with unique address | 
|  | * of the NVDIMM device. This is done by returning the NFIT Device | 
|  | * handle that is used to identify the associated entries in ACPI | 
|  | * table NFIT or _FIT. | 
|  | */ | 
|  | aml_append(nvdimm_dev, aml_name_decl("_ADR", aml_int(handle))); | 
|  |  | 
|  | /* | 
|  | * ACPI v6.4: Section 6.5.10 NVDIMM Label Methods | 
|  | */ | 
|  | /* _LSI */ | 
|  | method = aml_method("_LSI", 0, AML_SERIALIZED); | 
|  | com_call = aml_call5(NVDIMM_COMMON_DSM, | 
|  | aml_touuid(NVDIMM_DEVICE_DSM_UUID), | 
|  | aml_int(1), aml_int(4), aml_int(0), | 
|  | aml_int(handle)); | 
|  | aml_append(method, aml_store(com_call, aml_local(0))); | 
|  |  | 
|  | aml_append(method, aml_create_dword_field(aml_local(0), | 
|  | aml_int(0), "STTS")); | 
|  | aml_append(method, aml_create_dword_field(aml_local(0), aml_int(4), | 
|  | "SLSA")); | 
|  | aml_append(method, aml_create_dword_field(aml_local(0), aml_int(8), | 
|  | "MAXT")); | 
|  |  | 
|  | pkg = aml_package(3); | 
|  | aml_append(pkg, aml_name("STTS")); | 
|  | aml_append(pkg, aml_name("SLSA")); | 
|  | aml_append(pkg, aml_name("MAXT")); | 
|  | aml_append(method, aml_store(pkg, aml_local(1))); | 
|  | aml_append(method, aml_return(aml_local(1))); | 
|  |  | 
|  | aml_append(nvdimm_dev, method); | 
|  |  | 
|  | /* _LSR */ | 
|  | method = aml_method("_LSR", 2, AML_SERIALIZED); | 
|  | aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL))); | 
|  |  | 
|  | aml_append(method, aml_create_dword_field(aml_name("INPT"), | 
|  | aml_int(0), "OFST")); | 
|  | aml_append(method, aml_create_dword_field(aml_name("INPT"), | 
|  | aml_int(4), "LEN")); | 
|  | aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); | 
|  | aml_append(method, aml_store(aml_arg(1), aml_name("LEN"))); | 
|  |  | 
|  | pkg = aml_package(1); | 
|  | aml_append(pkg, aml_name("INPT")); | 
|  | aml_append(method, aml_store(pkg, aml_local(0))); | 
|  |  | 
|  | com_call = aml_call5(NVDIMM_COMMON_DSM, | 
|  | aml_touuid(NVDIMM_DEVICE_DSM_UUID), | 
|  | aml_int(1), aml_int(5), aml_local(0), | 
|  | aml_int(handle)); | 
|  | aml_append(method, aml_store(com_call, aml_local(3))); | 
|  | field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS"); | 
|  | aml_append(method, field); | 
|  | field = aml_create_field(aml_local(3), aml_int(32), | 
|  | aml_shiftleft(aml_name("LEN"), aml_int(3)), | 
|  | "LDAT"); | 
|  | aml_append(method, field); | 
|  | aml_append(method, aml_name_decl("LSA", aml_buffer(0, NULL))); | 
|  | aml_append(method, aml_to_buffer(aml_name("LDAT"), aml_name("LSA"))); | 
|  |  | 
|  | pkg = aml_package(2); | 
|  | aml_append(pkg, aml_name("STTS")); | 
|  | aml_append(pkg, aml_name("LSA")); | 
|  |  | 
|  | aml_append(method, aml_store(pkg, aml_local(1))); | 
|  | aml_append(method, aml_return(aml_local(1))); | 
|  |  | 
|  | aml_append(nvdimm_dev, method); | 
|  |  | 
|  | /* _LSW */ | 
|  | method = aml_method("_LSW", 3, AML_SERIALIZED); | 
|  | aml_append(method, aml_store(aml_arg(2), aml_local(2))); | 
|  | aml_append(method, aml_name_decl("INPT", aml_buffer(8, NULL))); | 
|  | field = aml_create_dword_field(aml_name("INPT"), | 
|  | aml_int(0), "OFST"); | 
|  | aml_append(method, field); | 
|  | field = aml_create_dword_field(aml_name("INPT"), | 
|  | aml_int(4), "TLEN"); | 
|  | aml_append(method, field); | 
|  | aml_append(method, aml_store(aml_arg(0), aml_name("OFST"))); | 
|  | aml_append(method, aml_store(aml_arg(1), aml_name("TLEN"))); | 
|  |  | 
|  | aml_append(method, aml_concatenate(aml_name("INPT"), aml_local(2), | 
|  | aml_name("INPT"))); | 
|  | pkg = aml_package(1); | 
|  | aml_append(pkg, aml_name("INPT")); | 
|  | aml_append(method, aml_store(pkg, aml_local(0))); | 
|  | com_call = aml_call5(NVDIMM_COMMON_DSM, | 
|  | aml_touuid(NVDIMM_DEVICE_DSM_UUID), | 
|  | aml_int(1), aml_int(6), aml_local(0), | 
|  | aml_int(handle)); | 
|  | aml_append(method, aml_store(com_call, aml_local(3))); | 
|  | field = aml_create_dword_field(aml_local(3), aml_int(0), "STTS"); | 
|  | aml_append(method, field); | 
|  | aml_append(method, aml_return(aml_name("STTS"))); | 
|  |  | 
|  | aml_append(nvdimm_dev, method); | 
|  |  | 
|  | nvdimm_build_device_dsm(nvdimm_dev, handle); | 
|  | aml_append(root_dev, nvdimm_dev); | 
|  | } | 
|  | } | 
|  |  | 
|  | static void nvdimm_build_ssdt(GArray *table_offsets, GArray *table_data, | 
|  | BIOSLinker *linker, | 
|  | NVDIMMState *nvdimm_state, | 
|  | uint32_t ram_slots, const char *oem_id) | 
|  | { | 
|  | int mem_addr_offset; | 
|  | Aml *ssdt, *sb_scope, *dev; | 
|  | AcpiTable table = { .sig = "SSDT", .rev = 1, | 
|  | .oem_id = oem_id, .oem_table_id = "NVDIMM" }; | 
|  |  | 
|  | acpi_add_table(table_offsets, table_data); | 
|  |  | 
|  | acpi_table_begin(&table, table_data); | 
|  | ssdt = init_aml_allocator(); | 
|  | sb_scope = aml_scope("\\_SB"); | 
|  |  | 
|  | dev = aml_device("NVDR"); | 
|  |  | 
|  | /* | 
|  | * ACPI 6.0: 9.20 NVDIMM Devices: | 
|  | * | 
|  | * The ACPI Name Space device uses _HID of ACPI0012 to identify the root | 
|  | * NVDIMM interface device. Platform firmware is required to contain one | 
|  | * such device in _SB scope if NVDIMMs support is exposed by platform to | 
|  | * OSPM. | 
|  | * For each NVDIMM present or intended to be supported by platform, | 
|  | * platform firmware also exposes an ACPI Namespace Device under the | 
|  | * root device. | 
|  | */ | 
|  | aml_append(dev, aml_name_decl("_HID", aml_string("ACPI0012"))); | 
|  |  | 
|  | nvdimm_build_common_dsm(dev, nvdimm_state); | 
|  |  | 
|  | /* 0 is reserved for root device. */ | 
|  | nvdimm_build_device_dsm(dev, 0); | 
|  | nvdimm_build_fit(dev); | 
|  |  | 
|  | nvdimm_build_nvdimm_devices(dev, ram_slots); | 
|  |  | 
|  | aml_append(sb_scope, dev); | 
|  | aml_append(ssdt, sb_scope); | 
|  |  | 
|  | /* copy AML table into ACPI tables blob and patch header there */ | 
|  | g_array_append_vals(table_data, ssdt->buf->data, ssdt->buf->len); | 
|  | mem_addr_offset = build_append_named_dword(table_data, | 
|  | NVDIMM_ACPI_MEM_ADDR); | 
|  |  | 
|  | bios_linker_loader_alloc(linker, | 
|  | NVDIMM_DSM_MEM_FILE, nvdimm_state->dsm_mem, | 
|  | sizeof(NvdimmDsmIn), false /* high memory */); | 
|  | bios_linker_loader_add_pointer(linker, | 
|  | ACPI_BUILD_TABLE_FILE, mem_addr_offset, sizeof(uint32_t), | 
|  | NVDIMM_DSM_MEM_FILE, 0); | 
|  | free_aml_allocator(); | 
|  | /* | 
|  | * must be executed as the last so that pointer patching command above | 
|  | * would be executed by guest before it recalculated checksum which were | 
|  | * scheduled by acpi_table_end() | 
|  | */ | 
|  | acpi_table_end(linker, &table); | 
|  | } | 
|  |  | 
|  | void nvdimm_build_srat(GArray *table_data) | 
|  | { | 
|  | GSList *device_list, *list = nvdimm_get_device_list(); | 
|  |  | 
|  | for (device_list = list; device_list; device_list = device_list->next) { | 
|  | DeviceState *dev = device_list->data; | 
|  | Object *obj = OBJECT(dev); | 
|  | uint64_t addr, size; | 
|  | int node; | 
|  |  | 
|  | node = object_property_get_int(obj, PC_DIMM_NODE_PROP, &error_abort); | 
|  | addr = object_property_get_uint(obj, PC_DIMM_ADDR_PROP, &error_abort); | 
|  | size = object_property_get_uint(obj, PC_DIMM_SIZE_PROP, &error_abort); | 
|  |  | 
|  | build_srat_memory(table_data, addr, size, node, | 
|  | MEM_AFFINITY_ENABLED | MEM_AFFINITY_NON_VOLATILE); | 
|  | } | 
|  | g_slist_free(list); | 
|  | } | 
|  |  | 
|  | void nvdimm_build_acpi(GArray *table_offsets, GArray *table_data, | 
|  | BIOSLinker *linker, NVDIMMState *state, | 
|  | uint32_t ram_slots, const char *oem_id, | 
|  | const char *oem_table_id) | 
|  | { | 
|  | GSList *device_list; | 
|  |  | 
|  | /* no nvdimm device can be plugged. */ | 
|  | if (!ram_slots) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | nvdimm_build_ssdt(table_offsets, table_data, linker, state, | 
|  | ram_slots, oem_id); | 
|  |  | 
|  | device_list = nvdimm_get_device_list(); | 
|  | /* no NVDIMM device is plugged. */ | 
|  | if (!device_list) { | 
|  | return; | 
|  | } | 
|  |  | 
|  | nvdimm_build_nfit(state, table_offsets, table_data, linker, | 
|  | oem_id, oem_table_id); | 
|  | g_slist_free(device_list); | 
|  | } |