| /* |
| * M-profile MVE Operations |
| * |
| * Copyright (c) 2021 Linaro, Ltd. |
| * |
| * This library is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU Lesser General Public |
| * License as published by the Free Software Foundation; either |
| * version 2.1 of the License, or (at your option) any later version. |
| * |
| * This library is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
| * Lesser General Public License for more details. |
| * |
| * You should have received a copy of the GNU Lesser General Public |
| * License along with this library; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qemu/int128.h" |
| #include "cpu.h" |
| #include "internals.h" |
| #include "vec_internal.h" |
| #include "exec/helper-proto.h" |
| #include "exec/cpu_ldst.h" |
| #include "exec/exec-all.h" |
| #include "tcg/tcg.h" |
| |
| static uint16_t mve_element_mask(CPUARMState *env) |
| { |
| /* |
| * Return the mask of which elements in the MVE vector should be |
| * updated. This is a combination of multiple things: |
| * (1) by default, we update every lane in the vector |
| * (2) VPT predication stores its state in the VPR register; |
| * (3) low-overhead-branch tail predication will mask out part |
| * the vector on the final iteration of the loop |
| * (4) if EPSR.ECI is set then we must execute only some beats |
| * of the insn |
| * We combine all these into a 16-bit result with the same semantics |
| * as VPR.P0: 0 to mask the lane, 1 if it is active. |
| * 8-bit vector ops will look at all bits of the result; |
| * 16-bit ops will look at bits 0, 2, 4, ...; |
| * 32-bit ops will look at bits 0, 4, 8 and 12. |
| * Compare pseudocode GetCurInstrBeat(), though that only returns |
| * the 4-bit slice of the mask corresponding to a single beat. |
| */ |
| uint16_t mask = FIELD_EX32(env->v7m.vpr, V7M_VPR, P0); |
| |
| if (!(env->v7m.vpr & R_V7M_VPR_MASK01_MASK)) { |
| mask |= 0xff; |
| } |
| if (!(env->v7m.vpr & R_V7M_VPR_MASK23_MASK)) { |
| mask |= 0xff00; |
| } |
| |
| if (env->v7m.ltpsize < 4 && |
| env->regs[14] <= (1 << (4 - env->v7m.ltpsize))) { |
| /* |
| * Tail predication active, and this is the last loop iteration. |
| * The element size is (1 << ltpsize), and we only want to process |
| * loopcount elements, so we want to retain the least significant |
| * (loopcount * esize) predicate bits and zero out bits above that. |
| */ |
| int masklen = env->regs[14] << env->v7m.ltpsize; |
| assert(masklen <= 16); |
| mask &= MAKE_64BIT_MASK(0, masklen); |
| } |
| |
| if ((env->condexec_bits & 0xf) == 0) { |
| /* |
| * ECI bits indicate which beats are already executed; |
| * we handle this by effectively predicating them out. |
| */ |
| int eci = env->condexec_bits >> 4; |
| switch (eci) { |
| case ECI_NONE: |
| break; |
| case ECI_A0: |
| mask &= 0xfff0; |
| break; |
| case ECI_A0A1: |
| mask &= 0xff00; |
| break; |
| case ECI_A0A1A2: |
| case ECI_A0A1A2B0: |
| mask &= 0xf000; |
| break; |
| default: |
| g_assert_not_reached(); |
| } |
| } |
| |
| return mask; |
| } |
| |
| static void mve_advance_vpt(CPUARMState *env) |
| { |
| /* Advance the VPT and ECI state if necessary */ |
| uint32_t vpr = env->v7m.vpr; |
| unsigned mask01, mask23; |
| |
| if ((env->condexec_bits & 0xf) == 0) { |
| env->condexec_bits = (env->condexec_bits == (ECI_A0A1A2B0 << 4)) ? |
| (ECI_A0 << 4) : (ECI_NONE << 4); |
| } |
| |
| if (!(vpr & (R_V7M_VPR_MASK01_MASK | R_V7M_VPR_MASK23_MASK))) { |
| /* VPT not enabled, nothing to do */ |
| return; |
| } |
| |
| mask01 = FIELD_EX32(vpr, V7M_VPR, MASK01); |
| mask23 = FIELD_EX32(vpr, V7M_VPR, MASK23); |
| if (mask01 > 8) { |
| /* high bit set, but not 0b1000: invert the relevant half of P0 */ |
| vpr ^= 0xff; |
| } |
| if (mask23 > 8) { |
| /* high bit set, but not 0b1000: invert the relevant half of P0 */ |
| vpr ^= 0xff00; |
| } |
| vpr = FIELD_DP32(vpr, V7M_VPR, MASK01, mask01 << 1); |
| vpr = FIELD_DP32(vpr, V7M_VPR, MASK23, mask23 << 1); |
| env->v7m.vpr = vpr; |
| } |
| |
| |
| #define DO_VLDR(OP, MSIZE, LDTYPE, ESIZE, TYPE) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \ |
| { \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned b, e; \ |
| /* \ |
| * R_SXTM allows the dest reg to become UNKNOWN for abandoned \ |
| * beats so we don't care if we update part of the dest and \ |
| * then take an exception. \ |
| */ \ |
| for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \ |
| if (mask & (1 << b)) { \ |
| d[H##ESIZE(e)] = cpu_##LDTYPE##_data_ra(env, addr, GETPC()); \ |
| } \ |
| addr += MSIZE; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_VSTR(OP, MSIZE, STTYPE, ESIZE, TYPE) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, uint32_t addr) \ |
| { \ |
| TYPE *d = vd; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned b, e; \ |
| for (b = 0, e = 0; b < 16; b += ESIZE, e++) { \ |
| if (mask & (1 << b)) { \ |
| cpu_##STTYPE##_data_ra(env, addr, d[H##ESIZE(e)], GETPC()); \ |
| } \ |
| addr += MSIZE; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| DO_VLDR(vldrb, 1, ldub, 1, uint8_t) |
| DO_VLDR(vldrh, 2, lduw, 2, uint16_t) |
| DO_VLDR(vldrw, 4, ldl, 4, uint32_t) |
| |
| DO_VSTR(vstrb, 1, stb, 1, uint8_t) |
| DO_VSTR(vstrh, 2, stw, 2, uint16_t) |
| DO_VSTR(vstrw, 4, stl, 4, uint32_t) |
| |
| DO_VLDR(vldrb_sh, 1, ldsb, 2, int16_t) |
| DO_VLDR(vldrb_sw, 1, ldsb, 4, int32_t) |
| DO_VLDR(vldrb_uh, 1, ldub, 2, uint16_t) |
| DO_VLDR(vldrb_uw, 1, ldub, 4, uint32_t) |
| DO_VLDR(vldrh_sw, 2, ldsw, 4, int32_t) |
| DO_VLDR(vldrh_uw, 2, lduw, 4, uint32_t) |
| |
| DO_VSTR(vstrb_h, 1, stb, 2, int16_t) |
| DO_VSTR(vstrb_w, 1, stb, 4, int32_t) |
| DO_VSTR(vstrh_w, 2, stw, 4, int32_t) |
| |
| #undef DO_VLDR |
| #undef DO_VSTR |
| |
| /* |
| * The mergemask(D, R, M) macro performs the operation "*D = R" but |
| * storing only the bytes which correspond to 1 bits in M, |
| * leaving other bytes in *D unchanged. We use _Generic |
| * to select the correct implementation based on the type of D. |
| */ |
| |
| static void mergemask_ub(uint8_t *d, uint8_t r, uint16_t mask) |
| { |
| if (mask & 1) { |
| *d = r; |
| } |
| } |
| |
| static void mergemask_sb(int8_t *d, int8_t r, uint16_t mask) |
| { |
| mergemask_ub((uint8_t *)d, r, mask); |
| } |
| |
| static void mergemask_uh(uint16_t *d, uint16_t r, uint16_t mask) |
| { |
| uint16_t bmask = expand_pred_b_data[mask & 3]; |
| *d = (*d & ~bmask) | (r & bmask); |
| } |
| |
| static void mergemask_sh(int16_t *d, int16_t r, uint16_t mask) |
| { |
| mergemask_uh((uint16_t *)d, r, mask); |
| } |
| |
| static void mergemask_uw(uint32_t *d, uint32_t r, uint16_t mask) |
| { |
| uint32_t bmask = expand_pred_b_data[mask & 0xf]; |
| *d = (*d & ~bmask) | (r & bmask); |
| } |
| |
| static void mergemask_sw(int32_t *d, int32_t r, uint16_t mask) |
| { |
| mergemask_uw((uint32_t *)d, r, mask); |
| } |
| |
| static void mergemask_uq(uint64_t *d, uint64_t r, uint16_t mask) |
| { |
| uint64_t bmask = expand_pred_b_data[mask & 0xff]; |
| *d = (*d & ~bmask) | (r & bmask); |
| } |
| |
| static void mergemask_sq(int64_t *d, int64_t r, uint16_t mask) |
| { |
| mergemask_uq((uint64_t *)d, r, mask); |
| } |
| |
| #define mergemask(D, R, M) \ |
| _Generic(D, \ |
| uint8_t *: mergemask_ub, \ |
| int8_t *: mergemask_sb, \ |
| uint16_t *: mergemask_uh, \ |
| int16_t *: mergemask_sh, \ |
| uint32_t *: mergemask_uw, \ |
| int32_t *: mergemask_sw, \ |
| uint64_t *: mergemask_uq, \ |
| int64_t *: mergemask_sq)(D, R, M) |
| |
| void HELPER(mve_vdup)(CPUARMState *env, void *vd, uint32_t val) |
| { |
| /* |
| * The generated code already replicated an 8 or 16 bit constant |
| * into the 32-bit value, so we only need to write the 32-bit |
| * value to all elements of the Qreg, allowing for predication. |
| */ |
| uint32_t *d = vd; |
| uint16_t mask = mve_element_mask(env); |
| unsigned e; |
| for (e = 0; e < 16 / 4; e++, mask >>= 4) { |
| mergemask(&d[H4(e)], val, mask); |
| } |
| mve_advance_vpt(env); |
| } |
| |
| #define DO_1OP(OP, ESIZE, TYPE, FN) \ |
| void HELPER(mve_##OP)(CPUARMState *env, void *vd, void *vm) \ |
| { \ |
| TYPE *d = vd, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], FN(m[H##ESIZE(e)]), mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_CLS_B(N) (clrsb32(N) - 24) |
| #define DO_CLS_H(N) (clrsb32(N) - 16) |
| |
| DO_1OP(vclsb, 1, int8_t, DO_CLS_B) |
| DO_1OP(vclsh, 2, int16_t, DO_CLS_H) |
| DO_1OP(vclsw, 4, int32_t, clrsb32) |
| |
| #define DO_CLZ_B(N) (clz32(N) - 24) |
| #define DO_CLZ_H(N) (clz32(N) - 16) |
| |
| DO_1OP(vclzb, 1, uint8_t, DO_CLZ_B) |
| DO_1OP(vclzh, 2, uint16_t, DO_CLZ_H) |
| DO_1OP(vclzw, 4, uint32_t, clz32) |
| |
| DO_1OP(vrev16b, 2, uint16_t, bswap16) |
| DO_1OP(vrev32b, 4, uint32_t, bswap32) |
| DO_1OP(vrev32h, 4, uint32_t, hswap32) |
| DO_1OP(vrev64b, 8, uint64_t, bswap64) |
| DO_1OP(vrev64h, 8, uint64_t, hswap64) |
| DO_1OP(vrev64w, 8, uint64_t, wswap64) |
| |
| #define DO_NOT(N) (~(N)) |
| |
| DO_1OP(vmvn, 8, uint64_t, DO_NOT) |
| |
| #define DO_ABS(N) ((N) < 0 ? -(N) : (N)) |
| #define DO_FABSH(N) ((N) & dup_const(MO_16, 0x7fff)) |
| #define DO_FABSS(N) ((N) & dup_const(MO_32, 0x7fffffff)) |
| |
| DO_1OP(vabsb, 1, int8_t, DO_ABS) |
| DO_1OP(vabsh, 2, int16_t, DO_ABS) |
| DO_1OP(vabsw, 4, int32_t, DO_ABS) |
| |
| /* We can do these 64 bits at a time */ |
| DO_1OP(vfabsh, 8, uint64_t, DO_FABSH) |
| DO_1OP(vfabss, 8, uint64_t, DO_FABSS) |
| |
| #define DO_NEG(N) (-(N)) |
| #define DO_FNEGH(N) ((N) ^ dup_const(MO_16, 0x8000)) |
| #define DO_FNEGS(N) ((N) ^ dup_const(MO_32, 0x80000000)) |
| |
| DO_1OP(vnegb, 1, int8_t, DO_NEG) |
| DO_1OP(vnegh, 2, int16_t, DO_NEG) |
| DO_1OP(vnegw, 4, int32_t, DO_NEG) |
| |
| /* We can do these 64 bits at a time */ |
| DO_1OP(vfnegh, 8, uint64_t, DO_FNEGH) |
| DO_1OP(vfnegs, 8, uint64_t, DO_FNEGS) |
| |
| #define DO_2OP(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, \ |
| void *vd, void *vn, void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], \ |
| FN(n[H##ESIZE(e)], m[H##ESIZE(e)]), mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* provide unsigned 2-op helpers for all sizes */ |
| #define DO_2OP_U(OP, FN) \ |
| DO_2OP(OP##b, 1, uint8_t, FN) \ |
| DO_2OP(OP##h, 2, uint16_t, FN) \ |
| DO_2OP(OP##w, 4, uint32_t, FN) |
| |
| /* provide signed 2-op helpers for all sizes */ |
| #define DO_2OP_S(OP, FN) \ |
| DO_2OP(OP##b, 1, int8_t, FN) \ |
| DO_2OP(OP##h, 2, int16_t, FN) \ |
| DO_2OP(OP##w, 4, int32_t, FN) |
| |
| /* |
| * "Long" operations where two half-sized inputs (taken from either the |
| * top or the bottom of the input vector) produce a double-width result. |
| * Here ESIZE, TYPE are for the input, and LESIZE, LTYPE for the output. |
| */ |
| #define DO_2OP_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ |
| { \ |
| LTYPE *d = vd; \ |
| TYPE *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned le; \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], \ |
| m[H##ESIZE(le * 2 + TOP)]); \ |
| mergemask(&d[H##LESIZE(le)], r, mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_2OP_SAT(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, void *vm) \ |
| { \ |
| TYPE *d = vd, *n = vn, *m = vm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| bool qc = false; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| bool sat = false; \ |
| TYPE r = FN(n[H##ESIZE(e)], m[H##ESIZE(e)], &sat); \ |
| mergemask(&d[H##ESIZE(e)], r, mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_AND(N, M) ((N) & (M)) |
| #define DO_BIC(N, M) ((N) & ~(M)) |
| #define DO_ORR(N, M) ((N) | (M)) |
| #define DO_ORN(N, M) ((N) | ~(M)) |
| #define DO_EOR(N, M) ((N) ^ (M)) |
| |
| DO_2OP(vand, 8, uint64_t, DO_AND) |
| DO_2OP(vbic, 8, uint64_t, DO_BIC) |
| DO_2OP(vorr, 8, uint64_t, DO_ORR) |
| DO_2OP(vorn, 8, uint64_t, DO_ORN) |
| DO_2OP(veor, 8, uint64_t, DO_EOR) |
| |
| #define DO_ADD(N, M) ((N) + (M)) |
| #define DO_SUB(N, M) ((N) - (M)) |
| #define DO_MUL(N, M) ((N) * (M)) |
| |
| DO_2OP_U(vadd, DO_ADD) |
| DO_2OP_U(vsub, DO_SUB) |
| DO_2OP_U(vmul, DO_MUL) |
| |
| DO_2OP_L(vmullbsb, 0, 1, int8_t, 2, int16_t, DO_MUL) |
| DO_2OP_L(vmullbsh, 0, 2, int16_t, 4, int32_t, DO_MUL) |
| DO_2OP_L(vmullbsw, 0, 4, int32_t, 8, int64_t, DO_MUL) |
| DO_2OP_L(vmullbub, 0, 1, uint8_t, 2, uint16_t, DO_MUL) |
| DO_2OP_L(vmullbuh, 0, 2, uint16_t, 4, uint32_t, DO_MUL) |
| DO_2OP_L(vmullbuw, 0, 4, uint32_t, 8, uint64_t, DO_MUL) |
| |
| DO_2OP_L(vmulltsb, 1, 1, int8_t, 2, int16_t, DO_MUL) |
| DO_2OP_L(vmulltsh, 1, 2, int16_t, 4, int32_t, DO_MUL) |
| DO_2OP_L(vmulltsw, 1, 4, int32_t, 8, int64_t, DO_MUL) |
| DO_2OP_L(vmulltub, 1, 1, uint8_t, 2, uint16_t, DO_MUL) |
| DO_2OP_L(vmulltuh, 1, 2, uint16_t, 4, uint32_t, DO_MUL) |
| DO_2OP_L(vmulltuw, 1, 4, uint32_t, 8, uint64_t, DO_MUL) |
| |
| /* |
| * Because the computation type is at least twice as large as required, |
| * these work for both signed and unsigned source types. |
| */ |
| static inline uint8_t do_mulh_b(int32_t n, int32_t m) |
| { |
| return (n * m) >> 8; |
| } |
| |
| static inline uint16_t do_mulh_h(int32_t n, int32_t m) |
| { |
| return (n * m) >> 16; |
| } |
| |
| static inline uint32_t do_mulh_w(int64_t n, int64_t m) |
| { |
| return (n * m) >> 32; |
| } |
| |
| static inline uint8_t do_rmulh_b(int32_t n, int32_t m) |
| { |
| return (n * m + (1U << 7)) >> 8; |
| } |
| |
| static inline uint16_t do_rmulh_h(int32_t n, int32_t m) |
| { |
| return (n * m + (1U << 15)) >> 16; |
| } |
| |
| static inline uint32_t do_rmulh_w(int64_t n, int64_t m) |
| { |
| return (n * m + (1U << 31)) >> 32; |
| } |
| |
| DO_2OP(vmulhsb, 1, int8_t, do_mulh_b) |
| DO_2OP(vmulhsh, 2, int16_t, do_mulh_h) |
| DO_2OP(vmulhsw, 4, int32_t, do_mulh_w) |
| DO_2OP(vmulhub, 1, uint8_t, do_mulh_b) |
| DO_2OP(vmulhuh, 2, uint16_t, do_mulh_h) |
| DO_2OP(vmulhuw, 4, uint32_t, do_mulh_w) |
| |
| DO_2OP(vrmulhsb, 1, int8_t, do_rmulh_b) |
| DO_2OP(vrmulhsh, 2, int16_t, do_rmulh_h) |
| DO_2OP(vrmulhsw, 4, int32_t, do_rmulh_w) |
| DO_2OP(vrmulhub, 1, uint8_t, do_rmulh_b) |
| DO_2OP(vrmulhuh, 2, uint16_t, do_rmulh_h) |
| DO_2OP(vrmulhuw, 4, uint32_t, do_rmulh_w) |
| |
| #define DO_MAX(N, M) ((N) >= (M) ? (N) : (M)) |
| #define DO_MIN(N, M) ((N) >= (M) ? (M) : (N)) |
| |
| DO_2OP_S(vmaxs, DO_MAX) |
| DO_2OP_U(vmaxu, DO_MAX) |
| DO_2OP_S(vmins, DO_MIN) |
| DO_2OP_U(vminu, DO_MIN) |
| |
| #define DO_ABD(N, M) ((N) >= (M) ? (N) - (M) : (M) - (N)) |
| |
| DO_2OP_S(vabds, DO_ABD) |
| DO_2OP_U(vabdu, DO_ABD) |
| |
| static inline uint32_t do_vhadd_u(uint32_t n, uint32_t m) |
| { |
| return ((uint64_t)n + m) >> 1; |
| } |
| |
| static inline int32_t do_vhadd_s(int32_t n, int32_t m) |
| { |
| return ((int64_t)n + m) >> 1; |
| } |
| |
| static inline uint32_t do_vhsub_u(uint32_t n, uint32_t m) |
| { |
| return ((uint64_t)n - m) >> 1; |
| } |
| |
| static inline int32_t do_vhsub_s(int32_t n, int32_t m) |
| { |
| return ((int64_t)n - m) >> 1; |
| } |
| |
| DO_2OP_S(vhadds, do_vhadd_s) |
| DO_2OP_U(vhaddu, do_vhadd_u) |
| DO_2OP_S(vhsubs, do_vhsub_s) |
| DO_2OP_U(vhsubu, do_vhsub_u) |
| |
| static inline int32_t do_sat_bhw(int64_t val, int64_t min, int64_t max, bool *s) |
| { |
| if (val > max) { |
| *s = true; |
| return max; |
| } else if (val < min) { |
| *s = true; |
| return min; |
| } |
| return val; |
| } |
| |
| #define DO_SQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, INT8_MIN, INT8_MAX, s) |
| #define DO_SQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, INT16_MIN, INT16_MAX, s) |
| #define DO_SQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, INT32_MIN, INT32_MAX, s) |
| |
| #define DO_UQADD_B(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT8_MAX, s) |
| #define DO_UQADD_H(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT16_MAX, s) |
| #define DO_UQADD_W(n, m, s) do_sat_bhw((int64_t)n + m, 0, UINT32_MAX, s) |
| |
| #define DO_SQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, INT8_MIN, INT8_MAX, s) |
| #define DO_SQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, INT16_MIN, INT16_MAX, s) |
| #define DO_SQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, INT32_MIN, INT32_MAX, s) |
| |
| #define DO_UQSUB_B(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT8_MAX, s) |
| #define DO_UQSUB_H(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT16_MAX, s) |
| #define DO_UQSUB_W(n, m, s) do_sat_bhw((int64_t)n - m, 0, UINT32_MAX, s) |
| |
| /* |
| * For QDMULH and QRDMULH we simplify "double and shift by esize" into |
| * "shift by esize-1", adjusting the QRDMULH rounding constant to match. |
| */ |
| #define DO_QDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m) >> 7, \ |
| INT8_MIN, INT8_MAX, s) |
| #define DO_QDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m) >> 15, \ |
| INT16_MIN, INT16_MAX, s) |
| #define DO_QDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m) >> 31, \ |
| INT32_MIN, INT32_MAX, s) |
| |
| #define DO_QRDMULH_B(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 6)) >> 7, \ |
| INT8_MIN, INT8_MAX, s) |
| #define DO_QRDMULH_H(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 14)) >> 15, \ |
| INT16_MIN, INT16_MAX, s) |
| #define DO_QRDMULH_W(n, m, s) do_sat_bhw(((int64_t)n * m + (1 << 30)) >> 31, \ |
| INT32_MIN, INT32_MAX, s) |
| |
| DO_2OP_SAT(vqdmulhb, 1, int8_t, DO_QDMULH_B) |
| DO_2OP_SAT(vqdmulhh, 2, int16_t, DO_QDMULH_H) |
| DO_2OP_SAT(vqdmulhw, 4, int32_t, DO_QDMULH_W) |
| |
| DO_2OP_SAT(vqrdmulhb, 1, int8_t, DO_QRDMULH_B) |
| DO_2OP_SAT(vqrdmulhh, 2, int16_t, DO_QRDMULH_H) |
| DO_2OP_SAT(vqrdmulhw, 4, int32_t, DO_QRDMULH_W) |
| |
| #define DO_2OP_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| TYPE *d = vd, *n = vn; \ |
| TYPE m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m), mask); \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| #define DO_2OP_SAT_SCALAR(OP, ESIZE, TYPE, FN) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| TYPE *d = vd, *n = vn; \ |
| TYPE m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| bool qc = false; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| bool sat = false; \ |
| mergemask(&d[H##ESIZE(e)], FN(n[H##ESIZE(e)], m, &sat), \ |
| mask); \ |
| qc |= sat & mask & 1; \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| /* provide unsigned 2-op scalar helpers for all sizes */ |
| #define DO_2OP_SCALAR_U(OP, FN) \ |
| DO_2OP_SCALAR(OP##b, 1, uint8_t, FN) \ |
| DO_2OP_SCALAR(OP##h, 2, uint16_t, FN) \ |
| DO_2OP_SCALAR(OP##w, 4, uint32_t, FN) |
| #define DO_2OP_SCALAR_S(OP, FN) \ |
| DO_2OP_SCALAR(OP##b, 1, int8_t, FN) \ |
| DO_2OP_SCALAR(OP##h, 2, int16_t, FN) \ |
| DO_2OP_SCALAR(OP##w, 4, int32_t, FN) |
| |
| DO_2OP_SCALAR_U(vadd_scalar, DO_ADD) |
| DO_2OP_SCALAR_U(vsub_scalar, DO_SUB) |
| DO_2OP_SCALAR_U(vmul_scalar, DO_MUL) |
| DO_2OP_SCALAR_S(vhadds_scalar, do_vhadd_s) |
| DO_2OP_SCALAR_U(vhaddu_scalar, do_vhadd_u) |
| DO_2OP_SCALAR_S(vhsubs_scalar, do_vhsub_s) |
| DO_2OP_SCALAR_U(vhsubu_scalar, do_vhsub_u) |
| |
| DO_2OP_SAT_SCALAR(vqaddu_scalarb, 1, uint8_t, DO_UQADD_B) |
| DO_2OP_SAT_SCALAR(vqaddu_scalarh, 2, uint16_t, DO_UQADD_H) |
| DO_2OP_SAT_SCALAR(vqaddu_scalarw, 4, uint32_t, DO_UQADD_W) |
| DO_2OP_SAT_SCALAR(vqadds_scalarb, 1, int8_t, DO_SQADD_B) |
| DO_2OP_SAT_SCALAR(vqadds_scalarh, 2, int16_t, DO_SQADD_H) |
| DO_2OP_SAT_SCALAR(vqadds_scalarw, 4, int32_t, DO_SQADD_W) |
| |
| DO_2OP_SAT_SCALAR(vqsubu_scalarb, 1, uint8_t, DO_UQSUB_B) |
| DO_2OP_SAT_SCALAR(vqsubu_scalarh, 2, uint16_t, DO_UQSUB_H) |
| DO_2OP_SAT_SCALAR(vqsubu_scalarw, 4, uint32_t, DO_UQSUB_W) |
| DO_2OP_SAT_SCALAR(vqsubs_scalarb, 1, int8_t, DO_SQSUB_B) |
| DO_2OP_SAT_SCALAR(vqsubs_scalarh, 2, int16_t, DO_SQSUB_H) |
| DO_2OP_SAT_SCALAR(vqsubs_scalarw, 4, int32_t, DO_SQSUB_W) |
| |
| DO_2OP_SAT_SCALAR(vqdmulh_scalarb, 1, int8_t, DO_QDMULH_B) |
| DO_2OP_SAT_SCALAR(vqdmulh_scalarh, 2, int16_t, DO_QDMULH_H) |
| DO_2OP_SAT_SCALAR(vqdmulh_scalarw, 4, int32_t, DO_QDMULH_W) |
| DO_2OP_SAT_SCALAR(vqrdmulh_scalarb, 1, int8_t, DO_QRDMULH_B) |
| DO_2OP_SAT_SCALAR(vqrdmulh_scalarh, 2, int16_t, DO_QRDMULH_H) |
| DO_2OP_SAT_SCALAR(vqrdmulh_scalarw, 4, int32_t, DO_QRDMULH_W) |
| |
| /* |
| * Long saturating scalar ops. As with DO_2OP_L, TYPE and H are for the |
| * input (smaller) type and LESIZE, LTYPE, LH for the output (long) type. |
| * SATMASK specifies which bits of the predicate mask matter for determining |
| * whether to propagate a saturation indication into FPSCR.QC -- for |
| * the 16x16->32 case we must check only the bit corresponding to the T or B |
| * half that we used, but for the 32x32->64 case we propagate if the mask |
| * bit is set for either half. |
| */ |
| #define DO_2OP_SAT_SCALAR_L(OP, TOP, ESIZE, TYPE, LESIZE, LTYPE, FN, SATMASK) \ |
| void HELPER(glue(mve_, OP))(CPUARMState *env, void *vd, void *vn, \ |
| uint32_t rm) \ |
| { \ |
| LTYPE *d = vd; \ |
| TYPE *n = vn; \ |
| TYPE m = rm; \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned le; \ |
| bool qc = false; \ |
| for (le = 0; le < 16 / LESIZE; le++, mask >>= LESIZE) { \ |
| bool sat = false; \ |
| LTYPE r = FN((LTYPE)n[H##ESIZE(le * 2 + TOP)], m, &sat); \ |
| mergemask(&d[H##LESIZE(le)], r, mask); \ |
| qc |= sat && (mask & SATMASK); \ |
| } \ |
| if (qc) { \ |
| env->vfp.qc[0] = qc; \ |
| } \ |
| mve_advance_vpt(env); \ |
| } |
| |
| static inline int32_t do_qdmullh(int16_t n, int16_t m, bool *sat) |
| { |
| int64_t r = ((int64_t)n * m) * 2; |
| return do_sat_bhw(r, INT32_MIN, INT32_MAX, sat); |
| } |
| |
| static inline int64_t do_qdmullw(int32_t n, int32_t m, bool *sat) |
| { |
| /* The multiply can't overflow, but the doubling might */ |
| int64_t r = (int64_t)n * m; |
| if (r > INT64_MAX / 2) { |
| *sat = true; |
| return INT64_MAX; |
| } else if (r < INT64_MIN / 2) { |
| *sat = true; |
| return INT64_MIN; |
| } else { |
| return r * 2; |
| } |
| } |
| |
| #define SATMASK16B 1 |
| #define SATMASK16T (1 << 2) |
| #define SATMASK32 ((1 << 4) | 1) |
| |
| DO_2OP_SAT_SCALAR_L(vqdmullb_scalarh, 0, 2, int16_t, 4, int32_t, \ |
| do_qdmullh, SATMASK16B) |
| DO_2OP_SAT_SCALAR_L(vqdmullb_scalarw, 0, 4, int32_t, 8, int64_t, \ |
| do_qdmullw, SATMASK32) |
| DO_2OP_SAT_SCALAR_L(vqdmullt_scalarh, 1, 2, int16_t, 4, int32_t, \ |
| do_qdmullh, SATMASK16T) |
| DO_2OP_SAT_SCALAR_L(vqdmullt_scalarw, 1, 4, int32_t, 8, int64_t, \ |
| do_qdmullw, SATMASK32) |
| |
| static inline uint32_t do_vbrsrb(uint32_t n, uint32_t m) |
| { |
| m &= 0xff; |
| if (m == 0) { |
| return 0; |
| } |
| n = revbit8(n); |
| if (m < 8) { |
| n >>= 8 - m; |
| } |
| return n; |
| } |
| |
| static inline uint32_t do_vbrsrh(uint32_t n, uint32_t m) |
| { |
| m &= 0xff; |
| if (m == 0) { |
| return 0; |
| } |
| n = revbit16(n); |
| if (m < 16) { |
| n >>= 16 - m; |
| } |
| return n; |
| } |
| |
| static inline uint32_t do_vbrsrw(uint32_t n, uint32_t m) |
| { |
| m &= 0xff; |
| if (m == 0) { |
| return 0; |
| } |
| n = revbit32(n); |
| if (m < 32) { |
| n >>= 32 - m; |
| } |
| return n; |
| } |
| |
| DO_2OP_SCALAR(vbrsrb, 1, uint8_t, do_vbrsrb) |
| DO_2OP_SCALAR(vbrsrh, 2, uint16_t, do_vbrsrh) |
| DO_2OP_SCALAR(vbrsrw, 4, uint32_t, do_vbrsrw) |
| |
| /* |
| * Multiply add long dual accumulate ops. |
| */ |
| #define DO_LDAV(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC) \ |
| uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ |
| void *vm, uint64_t a) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *n = vn, *m = vm; \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if (mask & 1) { \ |
| if (e & 1) { \ |
| a ODDACC \ |
| (int64_t)n[H##ESIZE(e - 1 * XCHG)] * m[H##ESIZE(e)]; \ |
| } else { \ |
| a EVENACC \ |
| (int64_t)n[H##ESIZE(e + 1 * XCHG)] * m[H##ESIZE(e)]; \ |
| } \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return a; \ |
| } |
| |
| DO_LDAV(vmlaldavsh, 2, int16_t, false, +=, +=) |
| DO_LDAV(vmlaldavxsh, 2, int16_t, true, +=, +=) |
| DO_LDAV(vmlaldavsw, 4, int32_t, false, +=, +=) |
| DO_LDAV(vmlaldavxsw, 4, int32_t, true, +=, +=) |
| |
| DO_LDAV(vmlaldavuh, 2, uint16_t, false, +=, +=) |
| DO_LDAV(vmlaldavuw, 4, uint32_t, false, +=, +=) |
| |
| DO_LDAV(vmlsldavsh, 2, int16_t, false, +=, -=) |
| DO_LDAV(vmlsldavxsh, 2, int16_t, true, +=, -=) |
| DO_LDAV(vmlsldavsw, 4, int32_t, false, +=, -=) |
| DO_LDAV(vmlsldavxsw, 4, int32_t, true, +=, -=) |
| |
| /* |
| * Rounding multiply add long dual accumulate high: we must keep |
| * a 72-bit internal accumulator value and return the top 64 bits. |
| */ |
| #define DO_LDAVH(OP, ESIZE, TYPE, XCHG, EVENACC, ODDACC, TO128) \ |
| uint64_t HELPER(glue(mve_, OP))(CPUARMState *env, void *vn, \ |
| void *vm, uint64_t a) \ |
| { \ |
| uint16_t mask = mve_element_mask(env); \ |
| unsigned e; \ |
| TYPE *n = vn, *m = vm; \ |
| Int128 acc = int128_lshift(TO128(a), 8); \ |
| for (e = 0; e < 16 / ESIZE; e++, mask >>= ESIZE) { \ |
| if (mask & 1) { \ |
| if (e & 1) { \ |
| acc = ODDACC(acc, TO128(n[H##ESIZE(e - 1 * XCHG)] * \ |
| m[H##ESIZE(e)])); \ |
| } else { \ |
| acc = EVENACC(acc, TO128(n[H##ESIZE(e + 1 * XCHG)] * \ |
| m[H##ESIZE(e)])); \ |
| } \ |
| acc = int128_add(acc, int128_make64(1 << 7)); \ |
| } \ |
| } \ |
| mve_advance_vpt(env); \ |
| return int128_getlo(int128_rshift(acc, 8)); \ |
| } |
| |
| DO_LDAVH(vrmlaldavhsw, 4, int32_t, false, int128_add, int128_add, int128_makes64) |
| DO_LDAVH(vrmlaldavhxsw, 4, int32_t, true, int128_add, int128_add, int128_makes64) |
| |
| DO_LDAVH(vrmlaldavhuw, 4, uint32_t, false, int128_add, int128_add, int128_make64) |
| |
| DO_LDAVH(vrmlsldavhsw, 4, int32_t, false, int128_add, int128_sub, int128_makes64) |
| DO_LDAVH(vrmlsldavhxsw, 4, int32_t, true, int128_add, int128_sub, int128_makes64) |