blob: c7193b41beec0b177dbc75ac0e43fcfea4c82bfb [file] [log] [blame]
// Copyright 2024, Linaro Limited
// Author(s): Manos Pitsidianakis <manos.pitsidianakis@linaro.org>
// SPDX-License-Identifier: GPL-2.0-or-later
use core::{
ffi::{c_int, c_uchar, c_uint, c_void, CStr},
ptr::{addr_of, addr_of_mut, NonNull},
};
use qemu_api::{
bindings::{self, *},
definitions::ObjectImpl,
};
use crate::{
memory_ops::PL011_OPS,
registers::{self, Interrupt},
RegisterOffset,
};
static PL011_ID_ARM: [c_uchar; 8] = [0x11, 0x10, 0x14, 0x00, 0x0d, 0xf0, 0x05, 0xb1];
const DATA_BREAK: u32 = 1 << 10;
/// QEMU sourced constant.
pub const PL011_FIFO_DEPTH: usize = 16_usize;
#[repr(C)]
#[derive(Debug, qemu_api_macros::Object)]
/// PL011 Device Model in QEMU
pub struct PL011State {
pub parent_obj: SysBusDevice,
pub iomem: MemoryRegion,
#[doc(alias = "fr")]
pub flags: registers::Flags,
#[doc(alias = "lcr")]
pub line_control: registers::LineControl,
#[doc(alias = "rsr")]
pub receive_status_error_clear: registers::ReceiveStatusErrorClear,
#[doc(alias = "cr")]
pub control: registers::Control,
pub dmacr: u32,
pub int_enabled: u32,
pub int_level: u32,
pub read_fifo: [u32; PL011_FIFO_DEPTH],
pub ilpr: u32,
pub ibrd: u32,
pub fbrd: u32,
pub ifl: u32,
pub read_pos: usize,
pub read_count: usize,
pub read_trigger: usize,
#[doc(alias = "chr")]
pub char_backend: CharBackend,
/// QEMU interrupts
///
/// ```text
/// * sysbus MMIO region 0: device registers
/// * sysbus IRQ 0: `UARTINTR` (combined interrupt line)
/// * sysbus IRQ 1: `UARTRXINTR` (receive FIFO interrupt line)
/// * sysbus IRQ 2: `UARTTXINTR` (transmit FIFO interrupt line)
/// * sysbus IRQ 3: `UARTRTINTR` (receive timeout interrupt line)
/// * sysbus IRQ 4: `UARTMSINTR` (momem status interrupt line)
/// * sysbus IRQ 5: `UARTEINTR` (error interrupt line)
/// ```
#[doc(alias = "irq")]
pub interrupts: [qemu_irq; 6usize],
#[doc(alias = "clk")]
pub clock: NonNull<Clock>,
#[doc(alias = "migrate_clk")]
pub migrate_clock: bool,
}
impl ObjectImpl for PL011State {
type Class = PL011Class;
const TYPE_INFO: qemu_api::bindings::TypeInfo = qemu_api::type_info! { Self };
const TYPE_NAME: &'static CStr = crate::TYPE_PL011;
const PARENT_TYPE_NAME: Option<&'static CStr> = Some(TYPE_SYS_BUS_DEVICE);
const ABSTRACT: bool = false;
const INSTANCE_INIT: Option<unsafe extern "C" fn(obj: *mut Object)> = Some(pl011_init);
const INSTANCE_POST_INIT: Option<unsafe extern "C" fn(obj: *mut Object)> = None;
const INSTANCE_FINALIZE: Option<unsafe extern "C" fn(obj: *mut Object)> = None;
}
#[repr(C)]
pub struct PL011Class {
_inner: [u8; 0],
}
impl qemu_api::definitions::Class for PL011Class {
const CLASS_INIT: Option<
unsafe extern "C" fn(klass: *mut ObjectClass, data: *mut core::ffi::c_void),
> = Some(crate::device_class::pl011_class_init);
const CLASS_BASE_INIT: Option<
unsafe extern "C" fn(klass: *mut ObjectClass, data: *mut core::ffi::c_void),
> = None;
}
#[used]
pub static CLK_NAME: &CStr = c"clk";
impl PL011State {
/// Initializes a pre-allocated, unitialized instance of `PL011State`.
///
/// # Safety
///
/// `self` must point to a correctly sized and aligned location for the
/// `PL011State` type. It must not be called more than once on the same
/// location/instance. All its fields are expected to hold unitialized
/// values with the sole exception of `parent_obj`.
pub unsafe fn init(&mut self) {
let dev = addr_of_mut!(*self).cast::<DeviceState>();
// SAFETY:
//
// self and self.iomem are guaranteed to be valid at this point since callers
// must make sure the `self` reference is valid.
unsafe {
memory_region_init_io(
addr_of_mut!(self.iomem),
addr_of_mut!(*self).cast::<Object>(),
&PL011_OPS,
addr_of_mut!(*self).cast::<c_void>(),
Self::TYPE_INFO.name,
0x1000,
);
let sbd = addr_of_mut!(*self).cast::<SysBusDevice>();
sysbus_init_mmio(sbd, addr_of_mut!(self.iomem));
for irq in self.interrupts.iter_mut() {
sysbus_init_irq(sbd, irq);
}
}
// SAFETY:
//
// self.clock is not initialized at this point; but since `NonNull<_>` is Copy,
// we can overwrite the undefined value without side effects. This is
// safe since all PL011State instances are created by QOM code which
// calls this function to initialize the fields; therefore no code is
// able to access an invalid self.clock value.
unsafe {
self.clock = NonNull::new(qdev_init_clock_in(
dev,
CLK_NAME.as_ptr(),
None, /* pl011_clock_update */
addr_of_mut!(*self).cast::<c_void>(),
ClockEvent::ClockUpdate.0,
))
.unwrap();
}
}
pub fn read(
&mut self,
offset: hwaddr,
_size: core::ffi::c_uint,
) -> std::ops::ControlFlow<u64, u64> {
use RegisterOffset::*;
std::ops::ControlFlow::Break(match RegisterOffset::try_from(offset) {
Err(v) if (0x3f8..0x400).contains(&v) => {
u64::from(PL011_ID_ARM[((offset - 0xfe0) >> 2) as usize])
}
Err(_) => {
// qemu_log_mask(LOG_GUEST_ERROR, "pl011_read: Bad offset 0x%x\n", (int)offset);
0
}
Ok(DR) => {
// s->flags &= ~PL011_FLAG_RXFF;
self.flags.set_receive_fifo_full(false);
let c = self.read_fifo[self.read_pos];
if self.read_count > 0 {
self.read_count -= 1;
self.read_pos = (self.read_pos + 1) & (self.fifo_depth() - 1);
}
if self.read_count == 0 {
// self.flags |= PL011_FLAG_RXFE;
self.flags.set_receive_fifo_empty(true);
}
if self.read_count + 1 == self.read_trigger {
//self.int_level &= ~ INT_RX;
self.int_level &= !registers::INT_RX;
}
// Update error bits.
self.receive_status_error_clear = c.to_be_bytes()[3].into();
self.update();
// Must call qemu_chr_fe_accept_input, so return Continue:
return std::ops::ControlFlow::Continue(c.into());
}
Ok(RSR) => u8::from(self.receive_status_error_clear).into(),
Ok(FR) => u16::from(self.flags).into(),
Ok(FBRD) => self.fbrd.into(),
Ok(ILPR) => self.ilpr.into(),
Ok(IBRD) => self.ibrd.into(),
Ok(LCR_H) => u16::from(self.line_control).into(),
Ok(CR) => {
// We exercise our self-control.
u16::from(self.control).into()
}
Ok(FLS) => self.ifl.into(),
Ok(IMSC) => self.int_enabled.into(),
Ok(RIS) => self.int_level.into(),
Ok(MIS) => u64::from(self.int_level & self.int_enabled),
Ok(ICR) => {
// "The UARTICR Register is the interrupt clear register and is write-only"
// Source: ARM DDI 0183G 3.3.13 Interrupt Clear Register, UARTICR
0
}
Ok(DMACR) => self.dmacr.into(),
})
}
pub fn write(&mut self, offset: hwaddr, value: u64) {
// eprintln!("write offset {offset} value {value}");
use RegisterOffset::*;
let value: u32 = value as u32;
match RegisterOffset::try_from(offset) {
Err(_bad_offset) => {
eprintln!("write bad offset {offset} value {value}");
}
Ok(DR) => {
// ??? Check if transmitter is enabled.
let ch: u8 = value as u8;
// XXX this blocks entire thread. Rewrite to use
// qemu_chr_fe_write and background I/O callbacks
// SAFETY: self.char_backend is a valid CharBackend instance after it's been
// initialized in realize().
unsafe {
qemu_chr_fe_write_all(addr_of_mut!(self.char_backend), &ch, 1);
}
self.loopback_tx(value);
self.int_level |= registers::INT_TX;
self.update();
}
Ok(RSR) => {
self.receive_status_error_clear = 0.into();
}
Ok(FR) => {
// flag writes are ignored
}
Ok(ILPR) => {
self.ilpr = value;
}
Ok(IBRD) => {
self.ibrd = value;
}
Ok(FBRD) => {
self.fbrd = value;
}
Ok(LCR_H) => {
let value = value as u16;
let new_val: registers::LineControl = value.into();
// Reset the FIFO state on FIFO enable or disable
if bool::from(self.line_control.fifos_enabled())
^ bool::from(new_val.fifos_enabled())
{
self.reset_fifo();
}
if self.line_control.send_break() ^ new_val.send_break() {
let mut break_enable: c_int = new_val.send_break().into();
// SAFETY: self.char_backend is a valid CharBackend instance after it's been
// initialized in realize().
unsafe {
qemu_chr_fe_ioctl(
addr_of_mut!(self.char_backend),
CHR_IOCTL_SERIAL_SET_BREAK as i32,
addr_of_mut!(break_enable).cast::<c_void>(),
);
}
self.loopback_break(break_enable > 0);
}
self.line_control = new_val;
self.set_read_trigger();
}
Ok(CR) => {
// ??? Need to implement the enable bit.
let value = value as u16;
self.control = value.into();
self.loopback_mdmctrl();
}
Ok(FLS) => {
self.ifl = value;
self.set_read_trigger();
}
Ok(IMSC) => {
self.int_enabled = value;
self.update();
}
Ok(RIS) => {}
Ok(MIS) => {}
Ok(ICR) => {
self.int_level &= !value;
self.update();
}
Ok(DMACR) => {
self.dmacr = value;
if value & 3 > 0 {
// qemu_log_mask(LOG_UNIMP, "pl011: DMA not implemented\n");
eprintln!("pl011: DMA not implemented");
}
}
}
}
#[inline]
fn loopback_tx(&mut self, value: u32) {
if !self.loopback_enabled() {
return;
}
// Caveat:
//
// In real hardware, TX loopback happens at the serial-bit level
// and then reassembled by the RX logics back into bytes and placed
// into the RX fifo. That is, loopback happens after TX fifo.
//
// Because the real hardware TX fifo is time-drained at the frame
// rate governed by the configured serial format, some loopback
// bytes in TX fifo may still be able to get into the RX fifo
// that could be full at times while being drained at software
// pace.
//
// In such scenario, the RX draining pace is the major factor
// deciding which loopback bytes get into the RX fifo, unless
// hardware flow-control is enabled.
//
// For simplicity, the above described is not emulated.
self.put_fifo(value);
}
fn loopback_mdmctrl(&mut self) {
if !self.loopback_enabled() {
return;
}
/*
* Loopback software-driven modem control outputs to modem status inputs:
* FR.RI <= CR.Out2
* FR.DCD <= CR.Out1
* FR.CTS <= CR.RTS
* FR.DSR <= CR.DTR
*
* The loopback happens immediately even if this call is triggered
* by setting only CR.LBE.
*
* CTS/RTS updates due to enabled hardware flow controls are not
* dealt with here.
*/
//fr = s->flags & ~(PL011_FLAG_RI | PL011_FLAG_DCD |
// PL011_FLAG_DSR | PL011_FLAG_CTS);
//fr |= (cr & CR_OUT2) ? PL011_FLAG_RI : 0;
//fr |= (cr & CR_OUT1) ? PL011_FLAG_DCD : 0;
//fr |= (cr & CR_RTS) ? PL011_FLAG_CTS : 0;
//fr |= (cr & CR_DTR) ? PL011_FLAG_DSR : 0;
//
self.flags.set_ring_indicator(self.control.out_2());
self.flags.set_data_carrier_detect(self.control.out_1());
self.flags.set_clear_to_send(self.control.request_to_send());
self.flags
.set_data_set_ready(self.control.data_transmit_ready());
// Change interrupts based on updated FR
let mut il = self.int_level;
il &= !Interrupt::MS;
//il |= (fr & PL011_FLAG_DSR) ? INT_DSR : 0;
//il |= (fr & PL011_FLAG_DCD) ? INT_DCD : 0;
//il |= (fr & PL011_FLAG_CTS) ? INT_CTS : 0;
//il |= (fr & PL011_FLAG_RI) ? INT_RI : 0;
if self.flags.data_set_ready() {
il |= Interrupt::DSR as u32;
}
if self.flags.data_carrier_detect() {
il |= Interrupt::DCD as u32;
}
if self.flags.clear_to_send() {
il |= Interrupt::CTS as u32;
}
if self.flags.ring_indicator() {
il |= Interrupt::RI as u32;
}
self.int_level = il;
self.update();
}
fn loopback_break(&mut self, enable: bool) {
if enable {
self.loopback_tx(DATA_BREAK);
}
}
fn set_read_trigger(&mut self) {
self.read_trigger = 1;
}
pub fn realize(&mut self) {
// SAFETY: self.char_backend has the correct size and alignment for a
// CharBackend object, and its callbacks are of the correct types.
unsafe {
qemu_chr_fe_set_handlers(
addr_of_mut!(self.char_backend),
Some(pl011_can_receive),
Some(pl011_receive),
Some(pl011_event),
None,
addr_of_mut!(*self).cast::<c_void>(),
core::ptr::null_mut(),
true,
);
}
}
pub fn reset(&mut self) {
self.line_control.reset();
self.receive_status_error_clear.reset();
self.dmacr = 0;
self.int_enabled = 0;
self.int_level = 0;
self.ilpr = 0;
self.ibrd = 0;
self.fbrd = 0;
self.read_trigger = 1;
self.ifl = 0x12;
self.control.reset();
self.flags = 0.into();
self.reset_fifo();
}
pub fn reset_fifo(&mut self) {
self.read_count = 0;
self.read_pos = 0;
/* Reset FIFO flags */
self.flags.reset();
}
pub fn can_receive(&self) -> bool {
// trace_pl011_can_receive(s->lcr, s->read_count, r);
self.read_count < self.fifo_depth()
}
pub fn event(&mut self, event: QEMUChrEvent) {
if event == bindings::QEMUChrEvent::CHR_EVENT_BREAK && !self.fifo_enabled() {
self.put_fifo(DATA_BREAK);
self.receive_status_error_clear.set_break_error(true);
}
}
#[inline]
pub fn fifo_enabled(&self) -> bool {
matches!(self.line_control.fifos_enabled(), registers::Mode::FIFO)
}
#[inline]
pub fn loopback_enabled(&self) -> bool {
self.control.enable_loopback()
}
#[inline]
pub fn fifo_depth(&self) -> usize {
// Note: FIFO depth is expected to be power-of-2
if self.fifo_enabled() {
return PL011_FIFO_DEPTH;
}
1
}
pub fn put_fifo(&mut self, value: c_uint) {
let depth = self.fifo_depth();
assert!(depth > 0);
let slot = (self.read_pos + self.read_count) & (depth - 1);
self.read_fifo[slot] = value;
self.read_count += 1;
// s->flags &= ~PL011_FLAG_RXFE;
self.flags.set_receive_fifo_empty(false);
if self.read_count == depth {
//s->flags |= PL011_FLAG_RXFF;
self.flags.set_receive_fifo_full(true);
}
if self.read_count == self.read_trigger {
self.int_level |= registers::INT_RX;
self.update();
}
}
pub fn update(&self) {
let flags = self.int_level & self.int_enabled;
for (irq, i) in self.interrupts.iter().zip(IRQMASK) {
// SAFETY: self.interrupts have been initialized in init().
unsafe { qemu_set_irq(*irq, i32::from(flags & i != 0)) };
}
}
}
/// Which bits in the interrupt status matter for each outbound IRQ line ?
pub const IRQMASK: [u32; 6] = [
/* combined IRQ */
Interrupt::E
| Interrupt::MS
| Interrupt::RT as u32
| Interrupt::TX as u32
| Interrupt::RX as u32,
Interrupt::RX as u32,
Interrupt::TX as u32,
Interrupt::RT as u32,
Interrupt::MS,
Interrupt::E,
];
/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer, that has
/// the same size as [`PL011State`]. We also expect the device is
/// readable/writeable from one thread at any time.
#[no_mangle]
pub unsafe extern "C" fn pl011_can_receive(opaque: *mut c_void) -> c_int {
unsafe {
debug_assert!(!opaque.is_null());
let state = NonNull::new_unchecked(opaque.cast::<PL011State>());
state.as_ref().can_receive().into()
}
}
/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer, that has
/// the same size as [`PL011State`]. We also expect the device is
/// readable/writeable from one thread at any time.
///
/// The buffer and size arguments must also be valid.
#[no_mangle]
pub unsafe extern "C" fn pl011_receive(
opaque: *mut core::ffi::c_void,
buf: *const u8,
size: core::ffi::c_int,
) {
unsafe {
debug_assert!(!opaque.is_null());
let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>());
if state.as_ref().loopback_enabled() {
return;
}
if size > 0 {
debug_assert!(!buf.is_null());
state.as_mut().put_fifo(c_uint::from(buf.read_volatile()))
}
}
}
/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer, that has
/// the same size as [`PL011State`]. We also expect the device is
/// readable/writeable from one thread at any time.
#[no_mangle]
pub unsafe extern "C" fn pl011_event(opaque: *mut core::ffi::c_void, event: QEMUChrEvent) {
unsafe {
debug_assert!(!opaque.is_null());
let mut state = NonNull::new_unchecked(opaque.cast::<PL011State>());
state.as_mut().event(event)
}
}
/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer for `chr`.
#[no_mangle]
pub unsafe extern "C" fn pl011_create(
addr: u64,
irq: qemu_irq,
chr: *mut Chardev,
) -> *mut DeviceState {
unsafe {
let dev: *mut DeviceState = qdev_new(PL011State::TYPE_INFO.name);
let sysbus: *mut SysBusDevice = dev.cast::<SysBusDevice>();
qdev_prop_set_chr(dev, bindings::TYPE_CHARDEV.as_ptr(), chr);
sysbus_realize_and_unref(sysbus, addr_of!(error_fatal) as *mut *mut Error);
sysbus_mmio_map(sysbus, 0, addr);
sysbus_connect_irq(sysbus, 0, irq);
dev
}
}
/// # Safety
///
/// We expect the FFI user of this function to pass a valid pointer, that has
/// the same size as [`PL011State`]. We also expect the device is
/// readable/writeable from one thread at any time.
#[no_mangle]
pub unsafe extern "C" fn pl011_init(obj: *mut Object) {
unsafe {
debug_assert!(!obj.is_null());
let mut state = NonNull::new_unchecked(obj.cast::<PL011State>());
state.as_mut().init();
}
}