blob: b45170acd17380b4540873c4b1f7a92c9404445a [file] [log] [blame]
/*
* Copyright(c) 2021-2023 Qualcomm Innovation Center, Inc. All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, see <http://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <stdint.h>
#include <stdbool.h>
#include <string.h>
#include <limits.h>
int err;
#include "hvx_misc.h"
static void test_load_tmp(void)
{
void *p0 = buffer0;
void *p1 = buffer1;
void *pout = output;
for (int i = 0; i < BUFSIZE; i++) {
/*
* Load into v12 as .tmp, then use it in the next packet
* Should get the new value within the same packet and
* the old value in the next packet
*/
asm("v3 = vmem(%0 + #0)\n\t"
"r1 = #1\n\t"
"v12 = vsplat(r1)\n\t"
"{\n\t"
" v12.tmp = vmem(%1 + #0)\n\t"
" v4.w = vadd(v12.w, v3.w)\n\t"
"}\n\t"
"v4.w = vadd(v4.w, v12.w)\n\t"
"vmem(%2 + #0) = v4\n\t"
: : "r"(p0), "r"(p1), "r"(pout)
: "r1", "v12", "v3", "v4", "v6", "memory");
p0 += sizeof(MMVector);
p1 += sizeof(MMVector);
pout += sizeof(MMVector);
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
expect[i].w[j] = buffer0[i].w[j] + buffer1[i].w[j] + 1;
}
}
check_output_w(__LINE__, BUFSIZE);
}
static void test_load_tmp2(void)
{
void *pout0 = &output[0];
void *pout1 = &output[1];
asm volatile(
"r0 = #0x03030303\n\t"
"v16 = vsplat(r0)\n\t"
"r0 = #0x04040404\n\t"
"v18 = vsplat(r0)\n\t"
"r0 = #0x05050505\n\t"
"v21 = vsplat(r0)\n\t"
"{\n\t"
" v25:24 += vmpyo(v18.w, v14.h)\n\t"
" v15:14.tmp = vcombine(v21, v16)\n\t"
"}\n\t"
"vmem(%0 + #0) = v24\n\t"
"vmem(%1 + #0) = v25\n\t"
: : "r"(pout0), "r"(pout1)
: "r0", "v16", "v18", "v21", "v24", "v25", "memory"
);
for (int i = 0; i < MAX_VEC_SIZE_BYTES / 4; ++i) {
expect[0].w[i] = 0x180c0000;
expect[1].w[i] = 0x000c1818;
}
check_output_w(__LINE__, 2);
}
static void test_load_cur(void)
{
void *p0 = buffer0;
void *pout = output;
for (int i = 0; i < BUFSIZE; i++) {
asm("{\n\t"
" v2.cur = vmem(%0 + #0)\n\t"
" vmem(%1 + #0) = v2\n\t"
"}\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
p0 += sizeof(MMVector);
pout += sizeof(MMVector);
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
expect[i].uw[j] = buffer0[i].uw[j];
}
}
check_output_w(__LINE__, BUFSIZE);
}
static void test_load_aligned(void)
{
/* Aligned loads ignore the low bits of the address */
void *p0 = buffer0;
void *pout = output;
const size_t offset = 13;
p0 += offset; /* Create an unaligned address */
asm("v2 = vmem(%0 + #0)\n\t"
"vmem(%1 + #0) = v2\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
expect[0] = buffer0[0];
check_output_w(__LINE__, 1);
}
static void test_load_unaligned(void)
{
void *p0 = buffer0;
void *pout = output;
const size_t offset = 12;
p0 += offset; /* Create an unaligned address */
asm("v2 = vmemu(%0 + #0)\n\t"
"vmem(%1 + #0) = v2\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
memcpy(expect, &buffer0[0].ub[offset], sizeof(MMVector));
check_output_w(__LINE__, 1);
}
static void test_store_aligned(void)
{
/* Aligned stores ignore the low bits of the address */
void *p0 = buffer0;
void *pout = output;
const size_t offset = 13;
pout += offset; /* Create an unaligned address */
asm("v2 = vmem(%0 + #0)\n\t"
"vmem(%1 + #0) = v2\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
expect[0] = buffer0[0];
check_output_w(__LINE__, 1);
}
static void test_store_unaligned(void)
{
void *p0 = buffer0;
void *pout = output;
const size_t offset = 12;
pout += offset; /* Create an unaligned address */
asm("v2 = vmem(%0 + #0)\n\t"
"vmemu(%1 + #0) = v2\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
memcpy(expect, buffer0, 2 * sizeof(MMVector));
memcpy(&expect[0].ub[offset], buffer0, sizeof(MMVector));
check_output_w(__LINE__, 2);
}
static void test_masked_store(bool invert)
{
void *p0 = buffer0;
void *pmask = mask;
void *pout = output;
memset(expect, 0xff, sizeof(expect));
memset(output, 0xff, sizeof(expect));
for (int i = 0; i < BUFSIZE; i++) {
if (invert) {
asm("r4 = #0\n\t"
"v4 = vsplat(r4)\n\t"
"v5 = vmem(%0 + #0)\n\t"
"q0 = vcmp.eq(v4.w, v5.w)\n\t"
"v5 = vmem(%1)\n\t"
"if (!q0) vmem(%2) = v5\n\t" /* Inverted test */
: : "r"(pmask), "r"(p0), "r"(pout)
: "r4", "v4", "v5", "q0", "memory");
} else {
asm("r4 = #0\n\t"
"v4 = vsplat(r4)\n\t"
"v5 = vmem(%0 + #0)\n\t"
"q0 = vcmp.eq(v4.w, v5.w)\n\t"
"v5 = vmem(%1)\n\t"
"if (q0) vmem(%2) = v5\n\t" /* Non-inverted test */
: : "r"(pmask), "r"(p0), "r"(pout)
: "r4", "v4", "v5", "q0", "memory");
}
p0 += sizeof(MMVector);
pmask += sizeof(MMVector);
pout += sizeof(MMVector);
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
if (invert) {
if (i + j % MASKMOD != 0) {
expect[i].w[j] = buffer0[i].w[j];
}
} else {
if (i + j % MASKMOD == 0) {
expect[i].w[j] = buffer0[i].w[j];
}
}
}
}
check_output_w(__LINE__, BUFSIZE);
}
static void test_new_value_store(void)
{
void *p0 = buffer0;
void *pout = output;
asm("{\n\t"
" v2 = vmem(%0 + #0)\n\t"
" vmem(%1 + #0) = v2.new\n\t"
"}\n\t"
: : "r"(p0), "r"(pout) : "v2", "memory");
expect[0] = buffer0[0];
check_output_w(__LINE__, 1);
}
static void test_max_temps()
{
void *p0 = buffer0;
void *pout = output;
asm("v0 = vmem(%0 + #0)\n\t"
"v1 = vmem(%0 + #1)\n\t"
"v2 = vmem(%0 + #2)\n\t"
"v3 = vmem(%0 + #3)\n\t"
"v4 = vmem(%0 + #4)\n\t"
"{\n\t"
" v1:0.w = vadd(v3:2.w, v1:0.w)\n\t"
" v2.b = vshuffe(v3.b, v2.b)\n\t"
" v3.w = vadd(v1.w, v4.w)\n\t"
" v4.tmp = vmem(%0 + #5)\n\t"
"}\n\t"
"vmem(%1 + #0) = v0\n\t"
"vmem(%1 + #1) = v1\n\t"
"vmem(%1 + #2) = v2\n\t"
"vmem(%1 + #3) = v3\n\t"
"vmem(%1 + #4) = v4\n\t"
: : "r"(p0), "r"(pout) : "memory");
/* The first two vectors come from the vadd-pair instruction */
for (int i = 0; i < MAX_VEC_SIZE_BYTES / 4; i++) {
expect[0].w[i] = buffer0[0].w[i] + buffer0[2].w[i];
expect[1].w[i] = buffer0[1].w[i] + buffer0[3].w[i];
}
/* The third vector comes from the vshuffe instruction */
for (int i = 0; i < MAX_VEC_SIZE_BYTES / 2; i++) {
expect[2].uh[i] = (buffer0[2].uh[i] & 0xff) |
(buffer0[3].uh[i] & 0xff) << 8;
}
/* The fourth vector comes from the vadd-single instruction */
for (int i = 0; i < MAX_VEC_SIZE_BYTES / 4; i++) {
expect[3].w[i] = buffer0[1].w[i] + buffer0[5].w[i];
}
/*
* The fifth vector comes from the load to v4
* make sure the .tmp is dropped
*/
expect[4] = buffer0[4];
check_output_b(__LINE__, 5);
}
TEST_VEC_OP2(vadd_w, vadd, .w, w, 4, +)
TEST_VEC_OP2(vadd_h, vadd, .h, h, 2, +)
TEST_VEC_OP2(vadd_b, vadd, .b, b, 1, +)
TEST_VEC_OP2(vsub_w, vsub, .w, w, 4, -)
TEST_VEC_OP2(vsub_h, vsub, .h, h, 2, -)
TEST_VEC_OP2(vsub_b, vsub, .b, b, 1, -)
TEST_VEC_OP2(vxor, vxor, , d, 8, ^)
TEST_VEC_OP2(vand, vand, , d, 8, &)
TEST_VEC_OP2(vor, vor, , d, 8, |)
TEST_VEC_OP1(vnot, vnot, , d, 8, ~)
TEST_PRED_OP2(pred_or, or, |, "")
TEST_PRED_OP2(pred_or_n, or, |, "!")
TEST_PRED_OP2(pred_and, and, &, "")
TEST_PRED_OP2(pred_and_n, and, &, "!")
TEST_PRED_OP2(pred_xor, xor, ^, "")
static void test_vadduwsat(void)
{
/*
* Test for saturation by adding two numbers that add to more than UINT_MAX
* and make sure the result saturates to UINT_MAX
*/
const uint32_t x = 0xffff0000;
const uint32_t y = 0x000fffff;
memset(expect, 0x12, sizeof(MMVector));
memset(output, 0x34, sizeof(MMVector));
asm volatile ("v10 = vsplat(%0)\n\t"
"v11 = vsplat(%1)\n\t"
"v21.uw = vadd(v11.uw, v10.uw):sat\n\t"
"vmem(%2+#0) = v21\n\t"
: /* no outputs */
: "r"(x), "r"(y), "r"(output)
: "v10", "v11", "v21", "memory");
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
expect[0].uw[j] = UINT_MAX;
}
check_output_w(__LINE__, 1);
}
static void test_vsubuwsat_dv(void)
{
/*
* Test for saturation by subtracting two numbers where the result is
* negative and make sure the result saturates to zero
*
* vsubuwsat_dv operates on an HVX register pair, so we'll have a
* pair of subtractions
* w - x < 0
* y - z < 0
*/
const uint32_t w = 0x000000b7;
const uint32_t x = 0xffffff4e;
const uint32_t y = 0x31fe88e7;
const uint32_t z = 0x7fffff79;
memset(expect, 0x12, sizeof(MMVector) * 2);
memset(output, 0x34, sizeof(MMVector) * 2);
asm volatile ("v16 = vsplat(%0)\n\t"
"v17 = vsplat(%1)\n\t"
"v26 = vsplat(%2)\n\t"
"v27 = vsplat(%3)\n\t"
"v25:24.uw = vsub(v17:16.uw, v27:26.uw):sat\n\t"
"vmem(%4+#0) = v24\n\t"
"vmem(%4+#1) = v25\n\t"
: /* no outputs */
: "r"(w), "r"(y), "r"(x), "r"(z), "r"(output)
: "v16", "v17", "v24", "v25", "v26", "v27", "memory");
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
expect[0].uw[j] = 0x00000000;
expect[1].uw[j] = 0x00000000;
}
check_output_w(__LINE__, 2);
}
static void test_load_tmp_predicated(void)
{
void *p0 = buffer0;
void *p1 = buffer1;
void *pout = output;
bool pred = true;
for (int i = 0; i < BUFSIZE; i++) {
/*
* Load into v12 as .tmp with a predicate
* When the predicate is true, we get the vector from buffer1[i]
* When the predicate is false, we get a vector of all 1's
* Regardless of the predicate, the next packet should have
* a vector of all 1's
*/
asm("v3 = vmem(%0 + #0)\n\t"
"r1 = #1\n\t"
"v12 = vsplat(r1)\n\t"
"p1 = !cmp.eq(%3, #0)\n\t"
"{\n\t"
" if (p1) v12.tmp = vmem(%1 + #0)\n\t"
" v4.w = vadd(v12.w, v3.w)\n\t"
"}\n\t"
"v4.w = vadd(v4.w, v12.w)\n\t"
"vmem(%2 + #0) = v4\n\t"
: : "r"(p0), "r"(p1), "r"(pout), "r"(pred)
: "r1", "p1", "v12", "v3", "v4", "v6", "memory");
p0 += sizeof(MMVector);
p1 += sizeof(MMVector);
pout += sizeof(MMVector);
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
expect[i].w[j] =
pred ? buffer0[i].w[j] + buffer1[i].w[j] + 1
: buffer0[i].w[j] + 2;
}
pred = !pred;
}
check_output_w(__LINE__, BUFSIZE);
}
static void test_load_cur_predicated(void)
{
bool pred = true;
for (int i = 0; i < BUFSIZE; i++) {
asm volatile("p0 = !cmp.eq(%3, #0)\n\t"
"v3 = vmem(%0+#0)\n\t"
/*
* Preload v4 to make sure that the assignment from the
* packet below is not being ignored when pred is false.
*/
"r0 = #0x01237654\n\t"
"v4 = vsplat(r0)\n\t"
"{\n\t"
" if (p0) v3.cur = vmem(%1+#0)\n\t"
" v4 = v3\n\t"
"}\n\t"
"vmem(%2+#0) = v4\n\t"
:
: "r"(&buffer0[i]), "r"(&buffer1[i]),
"r"(&output[i]), "r"(pred)
: "r0", "p0", "v3", "v4", "memory");
expect[i] = pred ? buffer1[i] : buffer0[i];
pred = !pred;
}
check_output_w(__LINE__, BUFSIZE);
}
static void test_vcombine(void)
{
for (int i = 0; i < BUFSIZE / 2; i++) {
asm volatile("v2 = vsplat(%0)\n\t"
"v3 = vsplat(%1)\n\t"
"v3:2 = vcombine(v2, v3)\n\t"
"vmem(%2+#0) = v2\n\t"
"vmem(%2+#1) = v3\n\t"
:
: "r"(2 * i), "r"(2 * i + 1), "r"(&output[2 * i])
: "v2", "v3", "memory");
for (int j = 0; j < MAX_VEC_SIZE_BYTES / 4; j++) {
expect[2 * i].w[j] = 2 * i + 1;
expect[2 * i + 1].w[j] = 2 * i;
}
}
check_output_w(__LINE__, BUFSIZE);
}
int main()
{
init_buffers();
test_load_tmp();
test_load_tmp2();
test_load_cur();
test_load_aligned();
test_load_unaligned();
test_store_aligned();
test_store_unaligned();
test_masked_store(false);
test_masked_store(true);
test_new_value_store();
test_max_temps();
test_vadd_w();
test_vadd_h();
test_vadd_b();
test_vsub_w();
test_vsub_h();
test_vsub_b();
test_vxor();
test_vand();
test_vor();
test_vnot();
test_pred_or(false);
test_pred_or_n(true);
test_pred_and(false);
test_pred_and_n(true);
test_pred_xor(false);
test_vadduwsat();
test_vsubuwsat_dv();
test_load_tmp_predicated();
test_load_cur_predicated();
test_vcombine();
puts(err ? "FAIL" : "PASS");
return err ? 1 : 0;
}