| /* |
| * Copyright(c) 2019-2023 Qualcomm Innovation Center, Inc. All Rights Reserved. |
| * |
| * This program is free software; you can redistribute it and/or modify |
| * it under the terms of the GNU General Public License as published by |
| * the Free Software Foundation; either version 2 of the License, or |
| * (at your option) any later version. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License |
| * along with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "iclass.h" |
| #include "attribs.h" |
| #include "genptr.h" |
| #include "decode.h" |
| #include "insn.h" |
| #include "printinsn.h" |
| #include "mmvec/decode_ext_mmvec.h" |
| |
| #define fZXTN(N, M, VAL) ((VAL) & ((1LL << (N)) - 1)) |
| |
| enum { |
| EXT_IDX_noext = 0, |
| EXT_IDX_noext_AFTER = 4, |
| EXT_IDX_mmvec = 4, |
| EXT_IDX_mmvec_AFTER = 8, |
| XX_LAST_EXT_IDX |
| }; |
| |
| /* |
| * Certain operand types represent a non-contiguous set of values. |
| * For example, the compound compare-and-jump instruction can only access |
| * registers R0-R7 and R16-23. |
| * This table represents the mapping from the encoding to the actual values. |
| */ |
| |
| #define DEF_REGMAP(NAME, ELEMENTS, ...) \ |
| static const unsigned int DECODE_REGISTER_##NAME[ELEMENTS] = \ |
| { __VA_ARGS__ }; |
| /* Name Num Table */ |
| DEF_REGMAP(R_16, 16, 0, 1, 2, 3, 4, 5, 6, 7, 16, 17, 18, 19, 20, 21, 22, 23) |
| DEF_REGMAP(R__8, 8, 0, 2, 4, 6, 16, 18, 20, 22) |
| DEF_REGMAP(R_8, 8, 0, 1, 2, 3, 4, 5, 6, 7) |
| |
| #define DECODE_MAPPED_REG(OPNUM, NAME) \ |
| insn->regno[OPNUM] = DECODE_REGISTER_##NAME[insn->regno[OPNUM]]; |
| |
| /* Helper functions for decode_*_generated.c.inc */ |
| #define DECODE_MAPPED(NAME) \ |
| static int decode_mapped_reg_##NAME(DisasContext *ctx, int x) \ |
| { \ |
| return DECODE_REGISTER_##NAME[x]; \ |
| } |
| DECODE_MAPPED(R_16) |
| DECODE_MAPPED(R_8) |
| DECODE_MAPPED(R__8) |
| |
| /* Helper function for decodetree_trans_funcs_generated.c.inc */ |
| static int shift_left(DisasContext *ctx, int x, int n, int immno) |
| { |
| int ret = x; |
| Insn *insn = ctx->insn; |
| if (!insn->extension_valid || |
| insn->which_extended != immno) { |
| ret <<= n; |
| } |
| return ret; |
| } |
| |
| /* Include the generated decoder for 32 bit insn */ |
| #include "decode_normal_generated.c.inc" |
| #include "decode_hvx_generated.c.inc" |
| |
| /* Include the generated decoder for 16 bit insn */ |
| #include "decode_subinsn_a_generated.c.inc" |
| #include "decode_subinsn_l1_generated.c.inc" |
| #include "decode_subinsn_l2_generated.c.inc" |
| #include "decode_subinsn_s1_generated.c.inc" |
| #include "decode_subinsn_s2_generated.c.inc" |
| |
| /* Include the generated helpers for the decoder */ |
| #include "decodetree_trans_funcs_generated.c.inc" |
| |
| void decode_send_insn_to(Packet *packet, int start, int newloc) |
| { |
| Insn tmpinsn; |
| int direction; |
| int i; |
| if (start == newloc) { |
| return; |
| } |
| if (start < newloc) { |
| /* Move towards end */ |
| direction = 1; |
| } else { |
| /* move towards beginning */ |
| direction = -1; |
| } |
| for (i = start; i != newloc; i += direction) { |
| tmpinsn = packet->insn[i]; |
| packet->insn[i] = packet->insn[i + direction]; |
| packet->insn[i + direction] = tmpinsn; |
| } |
| } |
| |
| /* Fill newvalue registers with the correct regno */ |
| static void |
| decode_fill_newvalue_regno(Packet *packet) |
| { |
| int i, use_regidx, offset, def_idx, dst_idx; |
| |
| for (i = 1; i < packet->num_insns; i++) { |
| if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE) && |
| !GET_ATTRIB(packet->insn[i].opcode, A_EXTENSION)) { |
| |
| g_assert(packet->insn[i].new_read_idx != -1); |
| use_regidx = packet->insn[i].new_read_idx; |
| |
| /* |
| * What's encoded at the N-field is the offset to who's producing |
| * the value. Shift off the LSB which indicates odd/even register, |
| * then walk backwards and skip over the constant extenders. |
| */ |
| offset = packet->insn[i].regno[use_regidx] >> 1; |
| def_idx = i - offset; |
| for (int j = 0; j < offset; j++) { |
| if (GET_ATTRIB(packet->insn[i - j - 1].opcode, A_IT_EXTENDER)) { |
| def_idx--; |
| } |
| } |
| |
| /* |
| * Check for a badly encoded N-field which points to an instruction |
| * out-of-range |
| */ |
| g_assert(!((def_idx < 0) || (def_idx > (packet->num_insns - 1)))); |
| |
| /* Now patch up the consumer with the register number */ |
| g_assert(packet->insn[def_idx].dest_idx != -1); |
| dst_idx = packet->insn[def_idx].dest_idx; |
| packet->insn[i].regno[use_regidx] = |
| packet->insn[def_idx].regno[dst_idx]; |
| /* |
| * We need to remember who produces this value to later |
| * check if it was dynamically cancelled |
| */ |
| packet->insn[i].new_value_producer_slot = |
| packet->insn[def_idx].slot; |
| } |
| } |
| } |
| |
| /* Split CJ into a compare and a jump */ |
| static void decode_split_cmpjump(Packet *pkt) |
| { |
| int last, i; |
| int numinsns = pkt->num_insns; |
| |
| /* |
| * First, split all compare-jumps. |
| * The compare is sent to the end as a new instruction. |
| * Do it this way so we don't reorder dual jumps. Those need to stay in |
| * original order. |
| */ |
| for (i = 0; i < numinsns; i++) { |
| /* It's a cmp-jump */ |
| if (GET_ATTRIB(pkt->insn[i].opcode, A_NEWCMPJUMP)) { |
| last = pkt->num_insns; |
| pkt->insn[last] = pkt->insn[i]; /* copy the instruction */ |
| pkt->insn[last].part1 = true; /* last insn does the CMP */ |
| pkt->insn[i].part1 = false; /* existing insn does the JUMP */ |
| pkt->num_insns++; |
| } |
| } |
| |
| /* Now re-shuffle all the compares back to the beginning */ |
| for (i = 0; i < pkt->num_insns; i++) { |
| if (pkt->insn[i].part1) { |
| decode_send_insn_to(pkt, i, 0); |
| } |
| } |
| } |
| |
| static bool decode_opcode_can_jump(int opcode) |
| { |
| if ((GET_ATTRIB(opcode, A_JUMP)) || |
| (GET_ATTRIB(opcode, A_CALL)) || |
| (opcode == J2_trap0) || |
| (opcode == J2_pause)) { |
| /* Exception to A_JUMP attribute */ |
| if (opcode == J4_hintjumpr) { |
| return false; |
| } |
| return true; |
| } |
| |
| return false; |
| } |
| |
| static bool decode_opcode_ends_loop(int opcode) |
| { |
| return GET_ATTRIB(opcode, A_HWLOOP0_END) || |
| GET_ATTRIB(opcode, A_HWLOOP1_END); |
| } |
| |
| /* Set the is_* fields in each instruction */ |
| static void decode_set_insn_attr_fields(Packet *pkt) |
| { |
| int i; |
| int numinsns = pkt->num_insns; |
| uint16_t opcode; |
| |
| pkt->pkt_has_cof = false; |
| pkt->pkt_has_multi_cof = false; |
| pkt->pkt_has_endloop = false; |
| pkt->pkt_has_dczeroa = false; |
| |
| for (i = 0; i < numinsns; i++) { |
| opcode = pkt->insn[i].opcode; |
| if (pkt->insn[i].part1) { |
| continue; /* Skip compare of cmp-jumps */ |
| } |
| |
| if (GET_ATTRIB(opcode, A_DCZEROA)) { |
| pkt->pkt_has_dczeroa = true; |
| } |
| |
| if (GET_ATTRIB(opcode, A_STORE)) { |
| if (GET_ATTRIB(opcode, A_SCALAR_STORE) && |
| !GET_ATTRIB(opcode, A_MEMSIZE_0B)) { |
| if (pkt->insn[i].slot == 0) { |
| pkt->pkt_has_store_s0 = true; |
| } else { |
| pkt->pkt_has_store_s1 = true; |
| } |
| } |
| } |
| |
| if (decode_opcode_can_jump(opcode)) { |
| if (pkt->pkt_has_cof) { |
| pkt->pkt_has_multi_cof = true; |
| } |
| pkt->pkt_has_cof = true; |
| } |
| |
| pkt->insn[i].is_endloop = decode_opcode_ends_loop(opcode); |
| |
| pkt->pkt_has_endloop |= pkt->insn[i].is_endloop; |
| |
| if (pkt->pkt_has_endloop) { |
| if (pkt->pkt_has_cof) { |
| pkt->pkt_has_multi_cof = true; |
| } |
| pkt->pkt_has_cof = true; |
| } |
| } |
| } |
| |
| /* |
| * Shuffle for execution |
| * Move stores to end (in same order as encoding) |
| * Move compares to beginning (for use by .new insns) |
| */ |
| static void decode_shuffle_for_execution(Packet *packet) |
| { |
| bool changed = false; |
| int i; |
| bool flag; /* flag means we've seen a non-memory instruction */ |
| int n_mems; |
| int last_insn = packet->num_insns - 1; |
| |
| /* |
| * Skip end loops, somehow an end loop is getting in and messing |
| * up the order |
| */ |
| if (decode_opcode_ends_loop(packet->insn[last_insn].opcode)) { |
| last_insn--; |
| } |
| |
| do { |
| changed = false; |
| /* |
| * Stores go last, must not reorder. |
| * Cannot shuffle stores past loads, either. |
| * Iterate backwards. If we see a non-memory instruction, |
| * then a store, shuffle the store to the front. Don't shuffle |
| * stores wrt each other or a load. |
| */ |
| for (flag = false, n_mems = 0, i = last_insn; i >= 0; i--) { |
| int opcode = packet->insn[i].opcode; |
| |
| if (flag && GET_ATTRIB(opcode, A_STORE)) { |
| decode_send_insn_to(packet, i, last_insn - n_mems); |
| n_mems++; |
| changed = true; |
| } else if (GET_ATTRIB(opcode, A_STORE)) { |
| n_mems++; |
| } else if (GET_ATTRIB(opcode, A_LOAD)) { |
| /* |
| * Don't set flag, since we don't want to shuffle a |
| * store past a load |
| */ |
| n_mems++; |
| } else if (GET_ATTRIB(opcode, A_DOTNEWVALUE)) { |
| /* |
| * Don't set flag, since we don't want to shuffle past |
| * a .new value |
| */ |
| } else { |
| flag = true; |
| } |
| } |
| |
| if (changed) { |
| continue; |
| } |
| /* Compares go first, may be reordered wrt each other */ |
| for (flag = false, i = 0; i < last_insn + 1; i++) { |
| int opcode = packet->insn[i].opcode; |
| |
| if (packet->insn[i].has_pred_dest && |
| GET_ATTRIB(opcode, A_STORE) == 0) { |
| /* This should be a compare (not a store conditional) */ |
| if (flag) { |
| decode_send_insn_to(packet, i, 0); |
| changed = true; |
| continue; |
| } |
| } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P3) && |
| !decode_opcode_ends_loop(packet->insn[i].opcode)) { |
| /* |
| * spNloop instruction |
| * Don't reorder endloops; they are not valid for .new uses, |
| * and we want to match HW |
| */ |
| if (flag) { |
| decode_send_insn_to(packet, i, 0); |
| changed = true; |
| continue; |
| } |
| } else if (GET_ATTRIB(opcode, A_IMPLICIT_WRITES_P0) && |
| !GET_ATTRIB(opcode, A_NEWCMPJUMP)) { |
| if (flag) { |
| decode_send_insn_to(packet, i, 0); |
| changed = true; |
| continue; |
| } |
| } else { |
| flag = true; |
| } |
| } |
| if (changed) { |
| continue; |
| } |
| } while (changed); |
| |
| /* |
| * If we have a .new register compare/branch, move that to the very |
| * very end, past stores |
| */ |
| for (i = 0; i < last_insn; i++) { |
| if (GET_ATTRIB(packet->insn[i].opcode, A_DOTNEWVALUE)) { |
| decode_send_insn_to(packet, i, last_insn); |
| break; |
| } |
| } |
| } |
| |
| static void |
| apply_extender(Packet *pkt, int i, uint32_t extender) |
| { |
| int immed_num; |
| uint32_t base_immed; |
| |
| immed_num = pkt->insn[i].which_extended; |
| base_immed = pkt->insn[i].immed[immed_num]; |
| |
| pkt->insn[i].immed[immed_num] = extender | fZXTN(6, 32, base_immed); |
| } |
| |
| static void decode_apply_extenders(Packet *packet) |
| { |
| int i; |
| for (i = 0; i < packet->num_insns; i++) { |
| if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) { |
| packet->insn[i + 1].extension_valid = true; |
| apply_extender(packet, i + 1, packet->insn[i].immed[0]); |
| } |
| } |
| } |
| |
| static void decode_remove_extenders(Packet *packet) |
| { |
| int i, j; |
| for (i = 0; i < packet->num_insns; i++) { |
| if (GET_ATTRIB(packet->insn[i].opcode, A_IT_EXTENDER)) { |
| /* Remove this one by moving the remaining instructions down */ |
| for (j = i; |
| (j < packet->num_insns - 1) && (j < INSTRUCTIONS_MAX - 1); |
| j++) { |
| packet->insn[j] = packet->insn[j + 1]; |
| } |
| packet->num_insns--; |
| } |
| } |
| } |
| |
| static SlotMask get_valid_slots(const Packet *pkt, unsigned int slot) |
| { |
| if (GET_ATTRIB(pkt->insn[slot].opcode, A_EXTENSION)) { |
| return mmvec_ext_decode_find_iclass_slots(pkt->insn[slot].opcode); |
| } else { |
| return find_iclass_slots(pkt->insn[slot].opcode, |
| pkt->insn[slot].iclass); |
| } |
| } |
| |
| /* |
| * Section 10.3 of the Hexagon V73 Programmer's Reference Manual |
| * |
| * A duplex is encoded as a 32-bit instruction with bits [15:14] set to 00. |
| * The sub-instructions that comprise a duplex are encoded as 13-bit fields |
| * in the duplex. |
| * |
| * Per table 10-4, the 4-bit duplex iclass is encoded in bits 31:29, 13 |
| */ |
| static uint32_t get_duplex_iclass(uint32_t encoding) |
| { |
| uint32_t iclass = extract32(encoding, 13, 1); |
| iclass = deposit32(iclass, 1, 3, extract32(encoding, 29, 3)); |
| return iclass; |
| } |
| |
| /* |
| * Per table 10-5, the duplex ICLASS field values that specify the group of |
| * each sub-instruction in a duplex |
| * |
| * This table points to the decode instruction for each entry in the table |
| */ |
| typedef bool (*subinsn_decode_func)(DisasContext *ctx, uint16_t insn); |
| typedef struct { |
| subinsn_decode_func decode_slot0_subinsn; |
| subinsn_decode_func decode_slot1_subinsn; |
| } subinsn_decode_groups; |
| |
| static const subinsn_decode_groups decode_groups[16] = { |
| [0x0] = { decode_subinsn_l1, decode_subinsn_l1 }, |
| [0x1] = { decode_subinsn_l2, decode_subinsn_l1 }, |
| [0x2] = { decode_subinsn_l2, decode_subinsn_l2 }, |
| [0x3] = { decode_subinsn_a, decode_subinsn_a }, |
| [0x4] = { decode_subinsn_l1, decode_subinsn_a }, |
| [0x5] = { decode_subinsn_l2, decode_subinsn_a }, |
| [0x6] = { decode_subinsn_s1, decode_subinsn_a }, |
| [0x7] = { decode_subinsn_s2, decode_subinsn_a }, |
| [0x8] = { decode_subinsn_s1, decode_subinsn_l1 }, |
| [0x9] = { decode_subinsn_s1, decode_subinsn_l2 }, |
| [0xa] = { decode_subinsn_s1, decode_subinsn_s1 }, |
| [0xb] = { decode_subinsn_s2, decode_subinsn_s1 }, |
| [0xc] = { decode_subinsn_s2, decode_subinsn_l1 }, |
| [0xd] = { decode_subinsn_s2, decode_subinsn_l2 }, |
| [0xe] = { decode_subinsn_s2, decode_subinsn_s2 }, |
| [0xf] = { NULL, NULL }, /* Reserved */ |
| }; |
| |
| static uint16_t get_slot0_subinsn(uint32_t encoding) |
| { |
| return extract32(encoding, 0, 13); |
| } |
| |
| static uint16_t get_slot1_subinsn(uint32_t encoding) |
| { |
| return extract32(encoding, 16, 13); |
| } |
| |
| static unsigned int |
| decode_insns(DisasContext *ctx, Insn *insn, uint32_t encoding) |
| { |
| if (parse_bits(encoding) != 0) { |
| if (decode_normal(ctx, encoding) || |
| decode_hvx(ctx, encoding)) { |
| insn->generate = opcode_genptr[insn->opcode]; |
| insn->iclass = iclass_bits(encoding); |
| return 1; |
| } |
| g_assert_not_reached(); |
| } else { |
| uint32_t iclass = get_duplex_iclass(encoding); |
| unsigned int slot0_subinsn = get_slot0_subinsn(encoding); |
| unsigned int slot1_subinsn = get_slot1_subinsn(encoding); |
| subinsn_decode_func decode_slot0_subinsn = |
| decode_groups[iclass].decode_slot0_subinsn; |
| subinsn_decode_func decode_slot1_subinsn = |
| decode_groups[iclass].decode_slot1_subinsn; |
| |
| /* The slot1 subinsn needs to be in the packet first */ |
| if (decode_slot1_subinsn(ctx, slot1_subinsn)) { |
| insn->generate = opcode_genptr[insn->opcode]; |
| insn->iclass = iclass_bits(encoding); |
| ctx->insn = ++insn; |
| if (decode_slot0_subinsn(ctx, slot0_subinsn)) { |
| insn->generate = opcode_genptr[insn->opcode]; |
| insn->iclass = iclass_bits(encoding); |
| return 2; |
| } |
| } |
| g_assert_not_reached(); |
| } |
| } |
| |
| static void decode_add_endloop_insn(Insn *insn, int loopnum) |
| { |
| if (loopnum == 10) { |
| insn->opcode = J2_endloop01; |
| insn->generate = opcode_genptr[J2_endloop01]; |
| } else if (loopnum == 1) { |
| insn->opcode = J2_endloop1; |
| insn->generate = opcode_genptr[J2_endloop1]; |
| } else if (loopnum == 0) { |
| insn->opcode = J2_endloop0; |
| insn->generate = opcode_genptr[J2_endloop0]; |
| } else { |
| g_assert_not_reached(); |
| } |
| } |
| |
| static bool decode_parsebits_is_loopend(uint32_t encoding32) |
| { |
| uint32_t bits = parse_bits(encoding32); |
| return bits == 0x2; |
| } |
| |
| static bool has_valid_slot_assignment(Packet *pkt) |
| { |
| int used_slots = 0; |
| for (int i = 0; i < pkt->num_insns; i++) { |
| int slot_mask; |
| Insn *insn = &pkt->insn[i]; |
| if (decode_opcode_ends_loop(insn->opcode)) { |
| /* We overload slot 0 for endloop. */ |
| continue; |
| } |
| slot_mask = 1 << insn->slot; |
| if (used_slots & slot_mask) { |
| return false; |
| } |
| used_slots |= slot_mask; |
| } |
| return true; |
| } |
| |
| static bool |
| decode_set_slot_number(Packet *pkt) |
| { |
| int slot; |
| int i; |
| bool hit_mem_insn = false; |
| bool hit_duplex = false; |
| bool slot0_found = false; |
| bool slot1_found = false; |
| int slot1_iidx = 0; |
| |
| /* |
| * The slots are encoded in reverse order |
| * For each instruction, count down until you find a suitable slot |
| */ |
| for (i = 0, slot = 3; i < pkt->num_insns; i++) { |
| SlotMask valid_slots = get_valid_slots(pkt, i); |
| |
| while (!(valid_slots & (1 << slot))) { |
| slot--; |
| } |
| pkt->insn[i].slot = slot; |
| if (slot) { |
| /* I've assigned the slot, now decrement it for the next insn */ |
| slot--; |
| } |
| } |
| |
| /* Fix the exceptions - mem insns to slot 0,1 */ |
| for (i = pkt->num_insns - 1; i >= 0; i--) { |
| /* First memory instruction always goes to slot 0 */ |
| if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) || |
| GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) && |
| !hit_mem_insn) { |
| hit_mem_insn = true; |
| pkt->insn[i].slot = 0; |
| continue; |
| } |
| |
| /* Next memory instruction always goes to slot 1 */ |
| if ((GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE) || |
| GET_ATTRIB(pkt->insn[i].opcode, A_MEMLIKE_PACKET_RULES)) && |
| hit_mem_insn) { |
| pkt->insn[i].slot = 1; |
| } |
| } |
| |
| /* Fix the exceptions - duplex always slot 0,1 */ |
| for (i = pkt->num_insns - 1; i >= 0; i--) { |
| /* First subinsn always goes to slot 0 */ |
| if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && !hit_duplex) { |
| hit_duplex = true; |
| pkt->insn[i].slot = 0; |
| continue; |
| } |
| |
| /* Next subinsn always goes to slot 1 */ |
| if (GET_ATTRIB(pkt->insn[i].opcode, A_SUBINSN) && hit_duplex) { |
| pkt->insn[i].slot = 1; |
| } |
| } |
| |
| /* Fix the exceptions - slot 1 is never empty, always aligns to slot 0 */ |
| for (i = pkt->num_insns - 1; i >= 0; i--) { |
| /* Is slot0 used? */ |
| if (pkt->insn[i].slot == 0) { |
| bool is_endloop = (pkt->insn[i].opcode == J2_endloop01); |
| is_endloop |= (pkt->insn[i].opcode == J2_endloop0); |
| is_endloop |= (pkt->insn[i].opcode == J2_endloop1); |
| |
| /* |
| * Make sure it's not endloop since, we're overloading |
| * slot0 for endloop |
| */ |
| if (!is_endloop) { |
| slot0_found = true; |
| } |
| } |
| /* Is slot1 used? */ |
| if (pkt->insn[i].slot == 1) { |
| slot1_found = true; |
| slot1_iidx = i; |
| } |
| } |
| /* Is slot0 empty and slot1 used? */ |
| if ((!slot0_found) && slot1_found) { |
| /* Then push it to slot0 */ |
| pkt->insn[slot1_iidx].slot = 0; |
| } |
| |
| return has_valid_slot_assignment(pkt); |
| } |
| |
| /* |
| * decode_packet |
| * Decodes packet with given words |
| * Returns 0 on insufficient words, |
| * or number of words used on success |
| */ |
| |
| int decode_packet(DisasContext *ctx, int max_words, const uint32_t *words, |
| Packet *pkt, bool disas_only) |
| { |
| int num_insns = 0; |
| int words_read = 0; |
| bool end_of_packet = false; |
| int new_insns = 0; |
| int i; |
| uint32_t encoding32; |
| |
| /* Initialize */ |
| memset(pkt, 0, sizeof(*pkt)); |
| /* Try to build packet */ |
| while (!end_of_packet && (words_read < max_words)) { |
| Insn *insn = &pkt->insn[num_insns]; |
| ctx->insn = insn; |
| encoding32 = words[words_read]; |
| end_of_packet = is_packet_end(encoding32); |
| new_insns = decode_insns(ctx, insn, encoding32); |
| g_assert(new_insns > 0); |
| /* |
| * If we saw an extender, mark next word extended so immediate |
| * decode works |
| */ |
| if (pkt->insn[num_insns].opcode == A4_ext) { |
| pkt->insn[num_insns + 1].extension_valid = true; |
| } |
| num_insns += new_insns; |
| words_read++; |
| } |
| |
| pkt->num_insns = num_insns; |
| if (!end_of_packet) { |
| /* Ran out of words! */ |
| return 0; |
| } |
| pkt->encod_pkt_size_in_bytes = words_read * 4; |
| pkt->pkt_has_hvx = false; |
| for (i = 0; i < num_insns; i++) { |
| pkt->pkt_has_hvx |= |
| GET_ATTRIB(pkt->insn[i].opcode, A_CVI); |
| } |
| |
| /* |
| * Check for :endloop in the parse bits |
| * Section 10.6 of the Programmer's Reference describes the encoding |
| * The end of hardware loop 0 can be encoded with 2 words |
| * The end of hardware loop 1 needs 3 words |
| */ |
| if ((words_read == 2) && (decode_parsebits_is_loopend(words[0]))) { |
| decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0); |
| } |
| if (words_read >= 3) { |
| bool has_loop0, has_loop1; |
| has_loop0 = decode_parsebits_is_loopend(words[0]); |
| has_loop1 = decode_parsebits_is_loopend(words[1]); |
| if (has_loop0 && has_loop1) { |
| decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 10); |
| } else if (has_loop1) { |
| decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 1); |
| } else if (has_loop0) { |
| decode_add_endloop_insn(&pkt->insn[pkt->num_insns++], 0); |
| } |
| } |
| |
| decode_apply_extenders(pkt); |
| if (!disas_only) { |
| decode_remove_extenders(pkt); |
| if (!decode_set_slot_number(pkt)) { |
| /* Invalid packet */ |
| return 0; |
| } |
| } |
| decode_fill_newvalue_regno(pkt); |
| |
| if (pkt->pkt_has_hvx) { |
| mmvec_ext_decode_checks(pkt, disas_only); |
| } |
| |
| if (!disas_only) { |
| decode_shuffle_for_execution(pkt); |
| decode_split_cmpjump(pkt); |
| decode_set_insn_attr_fields(pkt); |
| } |
| |
| return words_read; |
| } |
| |
| /* Used for "-d in_asm" logging */ |
| int disassemble_hexagon(uint32_t *words, int nwords, bfd_vma pc, |
| GString *buf) |
| { |
| DisasContext ctx; |
| Packet pkt; |
| |
| memset(&ctx, 0, sizeof(DisasContext)); |
| ctx.pkt = &pkt; |
| |
| if (decode_packet(&ctx, nwords, words, &pkt, true) > 0) { |
| snprint_a_pkt_disas(buf, &pkt, words, pc); |
| return pkt.encod_pkt_size_in_bytes; |
| } else { |
| g_string_assign(buf, "<invalid>"); |
| return 0; |
| } |
| } |