blob: a3222d3a96d426d7471af0c2fb8162217adec5c7 [file] [log] [blame]
/*
* QEMU HPPA hardware system emulator.
* (C) Copyright 2018-2023 Helge Deller <deller@gmx.de>
*
* This work is licensed under the GNU GPL license version 2 or later.
*/
#include "qemu/osdep.h"
#include "qemu/datadir.h"
#include "cpu.h"
#include "elf.h"
#include "hw/loader.h"
#include "qemu/error-report.h"
#include "sysemu/reset.h"
#include "sysemu/sysemu.h"
#include "sysemu/runstate.h"
#include "hw/rtc/mc146818rtc.h"
#include "hw/timer/i8254.h"
#include "hw/char/serial.h"
#include "hw/char/parallel.h"
#include "hw/intc/i8259.h"
#include "hw/input/lasips2.h"
#include "hw/net/lasi_82596.h"
#include "hw/nmi.h"
#include "hw/usb.h"
#include "hw/pci/pci.h"
#include "hw/pci/pci_device.h"
#include "hw/pci-host/astro.h"
#include "hw/pci-host/dino.h"
#include "hw/misc/lasi.h"
#include "hppa_hardware.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "net/net.h"
#include "qemu/log.h"
#define MIN_SEABIOS_HPPA_VERSION 10 /* require at least this fw version */
#define HPA_POWER_BUTTON (FIRMWARE_END - 0x10)
#define enable_lasi_lan() 0
static DeviceState *lasi_dev;
static void hppa_powerdown_req(Notifier *n, void *opaque)
{
hwaddr soft_power_reg = HPA_POWER_BUTTON;
uint32_t val;
val = ldl_be_phys(&address_space_memory, soft_power_reg);
if ((val >> 8) == 0) {
/* immediately shut down when under hardware control */
qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN);
return;
}
/* clear bit 31 to indicate that the power switch was pressed. */
val &= ~1;
stl_be_phys(&address_space_memory, soft_power_reg, val);
}
static Notifier hppa_system_powerdown_notifier = {
.notify = hppa_powerdown_req
};
/* Fallback for unassigned PCI I/O operations. Avoids MCHK. */
static uint64_t ignore_read(void *opaque, hwaddr addr, unsigned size)
{
return 0;
}
static void ignore_write(void *opaque, hwaddr addr, uint64_t v, unsigned size)
{
}
static const MemoryRegionOps hppa_pci_ignore_ops = {
.read = ignore_read,
.write = ignore_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
static ISABus *hppa_isa_bus(hwaddr addr)
{
ISABus *isa_bus;
qemu_irq *isa_irqs;
MemoryRegion *isa_region;
isa_region = g_new(MemoryRegion, 1);
memory_region_init_io(isa_region, NULL, &hppa_pci_ignore_ops,
NULL, "isa-io", 0x800);
memory_region_add_subregion(get_system_memory(), addr, isa_region);
isa_bus = isa_bus_new(NULL, get_system_memory(), isa_region,
&error_abort);
isa_irqs = i8259_init(isa_bus, NULL);
isa_bus_register_input_irqs(isa_bus, isa_irqs);
return isa_bus;
}
/*
* Helper functions to emulate RTC clock and DebugOutputPort
*/
static time_t rtc_ref;
static uint64_t io_cpu_read(void *opaque, hwaddr addr, unsigned size)
{
uint64_t val = 0;
switch (addr) {
case 0: /* RTC clock */
val = time(NULL);
val += rtc_ref;
break;
case 8: /* DebugOutputPort */
return 0xe9; /* readback */
}
return val;
}
static void io_cpu_write(void *opaque, hwaddr addr,
uint64_t val, unsigned size)
{
unsigned char ch;
Chardev *debugout;
switch (addr) {
case 0: /* RTC clock */
rtc_ref = val - time(NULL);
break;
case 8: /* DebugOutputPort */
ch = val;
debugout = serial_hd(0);
if (debugout) {
qemu_chr_fe_write_all(debugout->be, &ch, 1);
} else {
fprintf(stderr, "%c", ch);
}
break;
}
}
static const MemoryRegionOps hppa_io_helper_ops = {
.read = io_cpu_read,
.write = io_cpu_write,
.endianness = DEVICE_BIG_ENDIAN,
.valid = {
.min_access_size = 1,
.max_access_size = 8,
},
.impl = {
.min_access_size = 1,
.max_access_size = 8,
},
};
typedef uint64_t TranslateFn(void *opaque, uint64_t addr);
static uint64_t linux_kernel_virt_to_phys(void *opaque, uint64_t addr)
{
addr &= (0x10000000 - 1);
return addr;
}
static uint64_t translate_pa10(void *dummy, uint64_t addr)
{
return (uint32_t)addr;
}
static uint64_t translate_pa20(void *dummy, uint64_t addr)
{
return hppa_abs_to_phys_pa2_w0(addr);
}
static HPPACPU *cpu[HPPA_MAX_CPUS];
static uint64_t firmware_entry;
static void fw_cfg_boot_set(void *opaque, const char *boot_device,
Error **errp)
{
fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
}
static FWCfgState *create_fw_cfg(MachineState *ms, PCIBus *pci_bus,
hwaddr addr)
{
FWCfgState *fw_cfg;
uint64_t val;
const char qemu_version[] = QEMU_VERSION;
MachineClass *mc = MACHINE_GET_CLASS(ms);
int btlb_entries = HPPA_BTLB_ENTRIES(&cpu[0]->env);
int len;
fw_cfg = fw_cfg_init_mem(addr, addr + 4);
fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, ms->smp.cpus);
fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, HPPA_MAX_CPUS);
fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, ms->ram_size);
val = cpu_to_le64(MIN_SEABIOS_HPPA_VERSION);
fw_cfg_add_file(fw_cfg, "/etc/firmware-min-version",
g_memdup(&val, sizeof(val)), sizeof(val));
val = cpu_to_le64(HPPA_TLB_ENTRIES - btlb_entries);
fw_cfg_add_file(fw_cfg, "/etc/cpu/tlb_entries",
g_memdup(&val, sizeof(val)), sizeof(val));
val = cpu_to_le64(btlb_entries);
fw_cfg_add_file(fw_cfg, "/etc/cpu/btlb_entries",
g_memdup(&val, sizeof(val)), sizeof(val));
len = strlen(mc->name) + 1;
fw_cfg_add_file(fw_cfg, "/etc/hppa/machine",
g_memdup(mc->name, len), len);
val = cpu_to_le64(HPA_POWER_BUTTON);
fw_cfg_add_file(fw_cfg, "/etc/hppa/power-button-addr",
g_memdup(&val, sizeof(val)), sizeof(val));
val = cpu_to_le64(CPU_HPA + 16);
fw_cfg_add_file(fw_cfg, "/etc/hppa/rtc-addr",
g_memdup(&val, sizeof(val)), sizeof(val));
val = cpu_to_le64(CPU_HPA + 24);
fw_cfg_add_file(fw_cfg, "/etc/hppa/DebugOutputPort",
g_memdup(&val, sizeof(val)), sizeof(val));
fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, ms->boot_config.order[0]);
qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
fw_cfg_add_file(fw_cfg, "/etc/qemu-version",
g_memdup(qemu_version, sizeof(qemu_version)),
sizeof(qemu_version));
fw_cfg_add_extra_pci_roots(pci_bus, fw_cfg);
return fw_cfg;
}
static LasiState *lasi_init(void)
{
DeviceState *dev;
dev = qdev_new(TYPE_LASI_CHIP);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
return LASI_CHIP(dev);
}
static DinoState *dino_init(MemoryRegion *addr_space)
{
DeviceState *dev;
dev = qdev_new(TYPE_DINO_PCI_HOST_BRIDGE);
object_property_set_link(OBJECT(dev), "memory-as", OBJECT(addr_space),
&error_fatal);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
return DINO_PCI_HOST_BRIDGE(dev);
}
/*
* Step 1: Create CPUs and Memory
*/
static TranslateFn *machine_HP_common_init_cpus(MachineState *machine)
{
MemoryRegion *addr_space = get_system_memory();
unsigned int smp_cpus = machine->smp.cpus;
TranslateFn *translate;
MemoryRegion *cpu_region;
/* Create CPUs. */
for (unsigned int i = 0; i < smp_cpus; i++) {
cpu[i] = HPPA_CPU(cpu_create(machine->cpu_type));
}
/*
* For now, treat address layout as if PSW_W is clear.
* TODO: create a proper hppa64 board model and load elf64 firmware.
*/
if (hppa_is_pa20(&cpu[0]->env)) {
translate = translate_pa20;
} else {
translate = translate_pa10;
}
for (unsigned int i = 0; i < smp_cpus; i++) {
g_autofree char *name = g_strdup_printf("cpu%u-io-eir", i);
cpu_region = g_new(MemoryRegion, 1);
memory_region_init_io(cpu_region, OBJECT(cpu[i]), &hppa_io_eir_ops,
cpu[i], name, 4);
memory_region_add_subregion(addr_space,
translate(NULL, CPU_HPA + i * 0x1000),
cpu_region);
}
/* RTC and DebugOutputPort on CPU #0 */
cpu_region = g_new(MemoryRegion, 1);
memory_region_init_io(cpu_region, OBJECT(cpu[0]), &hppa_io_helper_ops,
cpu[0], "cpu0-io-rtc", 2 * sizeof(uint64_t));
memory_region_add_subregion(addr_space, translate(NULL, CPU_HPA + 16),
cpu_region);
/* Main memory region. */
if (machine->ram_size > 3 * GiB) {
error_report("RAM size is currently restricted to 3GB");
exit(EXIT_FAILURE);
}
memory_region_add_subregion_overlap(addr_space, 0, machine->ram, -1);
return translate;
}
/*
* Last creation step: Add SCSI discs, NICs, graphics & load firmware
*/
static void machine_HP_common_init_tail(MachineState *machine, PCIBus *pci_bus,
TranslateFn *translate)
{
const char *kernel_filename = machine->kernel_filename;
const char *kernel_cmdline = machine->kernel_cmdline;
const char *initrd_filename = machine->initrd_filename;
MachineClass *mc = MACHINE_GET_CLASS(machine);
DeviceState *dev;
PCIDevice *pci_dev;
char *firmware_filename;
uint64_t firmware_low, firmware_high;
long size;
uint64_t kernel_entry = 0, kernel_low, kernel_high;
MemoryRegion *addr_space = get_system_memory();
MemoryRegion *rom_region;
long i;
unsigned int smp_cpus = machine->smp.cpus;
SysBusDevice *s;
/* SCSI disk setup. */
dev = DEVICE(pci_create_simple(pci_bus, -1, "lsi53c895a"));
lsi53c8xx_handle_legacy_cmdline(dev);
/* Graphics setup. */
if (machine->enable_graphics && vga_interface_type != VGA_NONE) {
vga_interface_created = true;
dev = qdev_new("artist");
s = SYS_BUS_DEVICE(dev);
sysbus_realize_and_unref(s, &error_fatal);
sysbus_mmio_map(s, 0, translate(NULL, LASI_GFX_HPA));
sysbus_mmio_map(s, 1, translate(NULL, ARTIST_FB_ADDR));
}
/* Network setup. */
if (enable_lasi_lan()) {
lasi_82596_init(addr_space, translate(NULL, LASI_LAN_HPA),
qdev_get_gpio_in(lasi_dev, LASI_IRQ_LAN_HPA));
}
for (i = 0; i < nb_nics; i++) {
if (!enable_lasi_lan()) {
pci_nic_init_nofail(&nd_table[i], pci_bus, mc->default_nic, NULL);
}
}
/* BMC board: HP Powerbar SP2 Diva (with console only) */
pci_dev = pci_new(-1, "pci-serial");
if (!lasi_dev) {
/* bind default keyboard/serial to Diva card */
qdev_prop_set_chr(DEVICE(pci_dev), "chardev", serial_hd(0));
}
qdev_prop_set_uint8(DEVICE(pci_dev), "prog_if", 0);
pci_realize_and_unref(pci_dev, pci_bus, &error_fatal);
pci_config_set_vendor_id(pci_dev->config, PCI_VENDOR_ID_HP);
pci_config_set_device_id(pci_dev->config, 0x1048);
pci_set_word(&pci_dev->config[PCI_SUBSYSTEM_VENDOR_ID], PCI_VENDOR_ID_HP);
pci_set_word(&pci_dev->config[PCI_SUBSYSTEM_ID], 0x1227); /* Powerbar */
/* create a second serial PCI card when running Astro */
if (!lasi_dev) {
pci_dev = pci_new(-1, "pci-serial-4x");
qdev_prop_set_chr(DEVICE(pci_dev), "chardev1", serial_hd(1));
qdev_prop_set_chr(DEVICE(pci_dev), "chardev2", serial_hd(2));
qdev_prop_set_chr(DEVICE(pci_dev), "chardev3", serial_hd(3));
qdev_prop_set_chr(DEVICE(pci_dev), "chardev4", serial_hd(4));
pci_realize_and_unref(pci_dev, pci_bus, &error_fatal);
}
/* create USB OHCI controller for USB keyboard & mouse on Astro machines */
if (!lasi_dev && machine->enable_graphics) {
pci_create_simple(pci_bus, -1, "pci-ohci");
usb_create_simple(usb_bus_find(-1), "usb-kbd");
usb_create_simple(usb_bus_find(-1), "usb-mouse");
}
/* register power switch emulation */
qemu_register_powerdown_notifier(&hppa_system_powerdown_notifier);
/* fw_cfg configuration interface */
create_fw_cfg(machine, pci_bus, translate(NULL, FW_CFG_IO_BASE));
/* Load firmware. Given that this is not "real" firmware,
but one explicitly written for the emulation, we might as
well load it directly from an ELF image. */
firmware_filename = qemu_find_file(QEMU_FILE_TYPE_BIOS,
machine->firmware ?: "hppa-firmware.img");
if (firmware_filename == NULL) {
error_report("no firmware provided");
exit(1);
}
size = load_elf(firmware_filename, NULL, translate, NULL,
&firmware_entry, &firmware_low, &firmware_high, NULL,
true, EM_PARISC, 0, 0);
if (size < 0) {
error_report("could not load firmware '%s'", firmware_filename);
exit(1);
}
qemu_log_mask(CPU_LOG_PAGE, "Firmware loaded at 0x%08" PRIx64
"-0x%08" PRIx64 ", entry at 0x%08" PRIx64 ".\n",
firmware_low, firmware_high, firmware_entry);
if (firmware_low < translate(NULL, FIRMWARE_START) ||
firmware_high >= translate(NULL, FIRMWARE_END)) {
error_report("Firmware overlaps with memory or IO space");
exit(1);
}
g_free(firmware_filename);
rom_region = g_new(MemoryRegion, 1);
memory_region_init_ram(rom_region, NULL, "firmware",
(FIRMWARE_END - FIRMWARE_START), &error_fatal);
memory_region_add_subregion(addr_space,
translate(NULL, FIRMWARE_START), rom_region);
/* Load kernel */
if (kernel_filename) {
size = load_elf(kernel_filename, NULL, linux_kernel_virt_to_phys,
NULL, &kernel_entry, &kernel_low, &kernel_high, NULL,
true, EM_PARISC, 0, 0);
kernel_entry = linux_kernel_virt_to_phys(NULL, kernel_entry);
if (size < 0) {
error_report("could not load kernel '%s'", kernel_filename);
exit(1);
}
qemu_log_mask(CPU_LOG_PAGE, "Kernel loaded at 0x%08" PRIx64
"-0x%08" PRIx64 ", entry at 0x%08" PRIx64
", size %" PRIu64 " kB\n",
kernel_low, kernel_high, kernel_entry, size / KiB);
if (kernel_cmdline) {
cpu[0]->env.gr[24] = 0x4000;
pstrcpy_targphys("cmdline", cpu[0]->env.gr[24],
TARGET_PAGE_SIZE, kernel_cmdline);
}
if (initrd_filename) {
ram_addr_t initrd_base;
int64_t initrd_size;
initrd_size = get_image_size(initrd_filename);
if (initrd_size < 0) {
error_report("could not load initial ram disk '%s'",
initrd_filename);
exit(1);
}
/* Load the initrd image high in memory.
Mirror the algorithm used by palo:
(1) Due to sign-extension problems and PDC,
put the initrd no higher than 1G.
(2) Reserve 64k for stack. */
initrd_base = MIN(machine->ram_size, 1 * GiB);
initrd_base = initrd_base - 64 * KiB;
initrd_base = (initrd_base - initrd_size) & TARGET_PAGE_MASK;
if (initrd_base < kernel_high) {
error_report("kernel and initial ram disk too large!");
exit(1);
}
load_image_targphys(initrd_filename, initrd_base, initrd_size);
cpu[0]->env.gr[23] = initrd_base;
cpu[0]->env.gr[22] = initrd_base + initrd_size;
}
}
if (!kernel_entry) {
/* When booting via firmware, tell firmware if we want interactive
* mode (kernel_entry=1), and to boot from CD (gr[24]='d')
* or hard disc * (gr[24]='c').
*/
kernel_entry = machine->boot_config.has_menu ? machine->boot_config.menu : 0;
cpu[0]->env.gr[24] = machine->boot_config.order[0];
}
/* We jump to the firmware entry routine and pass the
* various parameters in registers. After firmware initialization,
* firmware will start the Linux kernel with ramdisk and cmdline.
*/
cpu[0]->env.gr[26] = machine->ram_size;
cpu[0]->env.gr[25] = kernel_entry;
/* tell firmware how many SMP CPUs to present in inventory table */
cpu[0]->env.gr[21] = smp_cpus;
/* tell firmware fw_cfg port */
cpu[0]->env.gr[19] = FW_CFG_IO_BASE;
}
/*
* Create HP B160L workstation
*/
static void machine_HP_B160L_init(MachineState *machine)
{
DeviceState *dev, *dino_dev;
MemoryRegion *addr_space = get_system_memory();
TranslateFn *translate;
ISABus *isa_bus;
PCIBus *pci_bus;
/* Create CPUs and RAM. */
translate = machine_HP_common_init_cpus(machine);
if (hppa_is_pa20(&cpu[0]->env)) {
error_report("The HP B160L workstation requires a 32-bit "
"CPU. Use '-machine C3700' instead.");
exit(1);
}
/* Init Lasi chip */
lasi_dev = DEVICE(lasi_init());
memory_region_add_subregion(addr_space, translate(NULL, LASI_HPA),
sysbus_mmio_get_region(
SYS_BUS_DEVICE(lasi_dev), 0));
/* Init Dino (PCI host bus chip). */
dino_dev = DEVICE(dino_init(addr_space));
memory_region_add_subregion(addr_space, translate(NULL, DINO_HPA),
sysbus_mmio_get_region(
SYS_BUS_DEVICE(dino_dev), 0));
pci_bus = PCI_BUS(qdev_get_child_bus(dino_dev, "pci"));
assert(pci_bus);
/* Create ISA bus, needed for PS/2 kbd/mouse port emulation */
isa_bus = hppa_isa_bus(translate(NULL, IDE_HPA));
assert(isa_bus);
/* Serial ports: Lasi and Dino use a 7.272727 MHz clock. */
serial_mm_init(addr_space, translate(NULL, LASI_UART_HPA + 0x800), 0,
qdev_get_gpio_in(lasi_dev, LASI_IRQ_UART_HPA), 7272727 / 16,
serial_hd(0), DEVICE_BIG_ENDIAN);
serial_mm_init(addr_space, translate(NULL, DINO_UART_HPA + 0x800), 0,
qdev_get_gpio_in(dino_dev, DINO_IRQ_RS232INT), 7272727 / 16,
serial_hd(1), DEVICE_BIG_ENDIAN);
/* Parallel port */
parallel_mm_init(addr_space, translate(NULL, LASI_LPT_HPA + 0x800), 0,
qdev_get_gpio_in(lasi_dev, LASI_IRQ_LAN_HPA),
parallel_hds[0]);
/* PS/2 Keyboard/Mouse */
dev = qdev_new(TYPE_LASIPS2);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
sysbus_connect_irq(SYS_BUS_DEVICE(dev), 0,
qdev_get_gpio_in(lasi_dev, LASI_IRQ_PS2KBD_HPA));
memory_region_add_subregion(addr_space,
translate(NULL, LASI_PS2KBD_HPA),
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
0));
memory_region_add_subregion(addr_space,
translate(NULL, LASI_PS2KBD_HPA + 0x100),
sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
1));
/* Add SCSI discs, NICs, graphics & load firmware */
machine_HP_common_init_tail(machine, pci_bus, translate);
}
static AstroState *astro_init(void)
{
DeviceState *dev;
dev = qdev_new(TYPE_ASTRO_CHIP);
sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
return ASTRO_CHIP(dev);
}
/*
* Create HP C3700 workstation
*/
static void machine_HP_C3700_init(MachineState *machine)
{
PCIBus *pci_bus;
AstroState *astro;
DeviceState *astro_dev;
MemoryRegion *addr_space = get_system_memory();
TranslateFn *translate;
/* Create CPUs and RAM. */
translate = machine_HP_common_init_cpus(machine);
if (!hppa_is_pa20(&cpu[0]->env)) {
error_report("The HP C3000 workstation requires a 64-bit CPU. "
"Use '-machine B160L' instead.");
exit(1);
}
/* Init Astro and the Elroys (PCI host bus chips). */
astro = astro_init();
astro_dev = DEVICE(astro);
memory_region_add_subregion(addr_space, translate(NULL, ASTRO_HPA),
sysbus_mmio_get_region(
SYS_BUS_DEVICE(astro_dev), 0));
pci_bus = PCI_BUS(qdev_get_child_bus(DEVICE(astro->elroy[0]), "pci"));
assert(pci_bus);
/* Add SCSI discs, NICs, graphics & load firmware */
machine_HP_common_init_tail(machine, pci_bus, translate);
}
static void hppa_machine_reset(MachineState *ms, ShutdownCause reason)
{
unsigned int smp_cpus = ms->smp.cpus;
int i;
qemu_devices_reset(reason);
/* Start all CPUs at the firmware entry point.
* Monarch CPU will initialize firmware, secondary CPUs
* will enter a small idle loop and wait for rendevouz. */
for (i = 0; i < smp_cpus; i++) {
CPUState *cs = CPU(cpu[i]);
cpu_set_pc(cs, firmware_entry);
cpu[i]->env.psw = PSW_Q;
cpu[i]->env.gr[5] = CPU_HPA + i * 0x1000;
cs->exception_index = -1;
cs->halted = 0;
}
/* already initialized by machine_hppa_init()? */
if (cpu[0]->env.gr[26] == ms->ram_size) {
return;
}
cpu[0]->env.gr[26] = ms->ram_size;
cpu[0]->env.gr[25] = 0; /* no firmware boot menu */
cpu[0]->env.gr[24] = 'c';
/* gr22/gr23 unused, no initrd while reboot. */
cpu[0]->env.gr[21] = smp_cpus;
/* tell firmware fw_cfg port */
cpu[0]->env.gr[19] = FW_CFG_IO_BASE;
}
static void hppa_nmi(NMIState *n, int cpu_index, Error **errp)
{
CPUState *cs;
CPU_FOREACH(cs) {
cpu_interrupt(cs, CPU_INTERRUPT_NMI);
}
}
static const char *HP_B160L_machine_valid_cpu_types[] = {
TYPE_HPPA_CPU,
NULL
};
static void HP_B160L_machine_init_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
mc->desc = "HP B160L workstation";
mc->default_cpu_type = TYPE_HPPA_CPU;
mc->valid_cpu_types = HP_B160L_machine_valid_cpu_types;
mc->init = machine_HP_B160L_init;
mc->reset = hppa_machine_reset;
mc->block_default_type = IF_SCSI;
mc->max_cpus = HPPA_MAX_CPUS;
mc->default_cpus = 1;
mc->is_default = true;
mc->default_ram_size = 512 * MiB;
mc->default_boot_order = "cd";
mc->default_ram_id = "ram";
mc->default_nic = "tulip";
nc->nmi_monitor_handler = hppa_nmi;
}
static const TypeInfo HP_B160L_machine_init_typeinfo = {
.name = MACHINE_TYPE_NAME("B160L"),
.parent = TYPE_MACHINE,
.class_init = HP_B160L_machine_init_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_NMI },
{ }
},
};
static const char *HP_C3700_machine_valid_cpu_types[] = {
TYPE_HPPA64_CPU,
NULL
};
static void HP_C3700_machine_init_class_init(ObjectClass *oc, void *data)
{
MachineClass *mc = MACHINE_CLASS(oc);
NMIClass *nc = NMI_CLASS(oc);
mc->desc = "HP C3700 workstation";
mc->default_cpu_type = TYPE_HPPA64_CPU;
mc->valid_cpu_types = HP_C3700_machine_valid_cpu_types;
mc->init = machine_HP_C3700_init;
mc->reset = hppa_machine_reset;
mc->block_default_type = IF_SCSI;
mc->max_cpus = HPPA_MAX_CPUS;
mc->default_cpus = 1;
mc->is_default = false;
mc->default_ram_size = 1024 * MiB;
mc->default_boot_order = "cd";
mc->default_ram_id = "ram";
mc->default_nic = "tulip";
nc->nmi_monitor_handler = hppa_nmi;
}
static const TypeInfo HP_C3700_machine_init_typeinfo = {
.name = MACHINE_TYPE_NAME("C3700"),
.parent = TYPE_MACHINE,
.class_init = HP_C3700_machine_init_class_init,
.interfaces = (InterfaceInfo[]) {
{ TYPE_NMI },
{ }
},
};
static void hppa_machine_init_register_types(void)
{
type_register_static(&HP_B160L_machine_init_typeinfo);
type_register_static(&HP_C3700_machine_init_typeinfo);
}
type_init(hppa_machine_init_register_types)