| /* |
| * OneNAND flash memories emulation. |
| * |
| * Copyright (C) 2008 Nokia Corporation |
| * Written by Andrzej Zaborowski <andrew@openedhand.com> |
| * |
| * This program is free software; you can redistribute it and/or |
| * modify it under the terms of the GNU General Public License as |
| * published by the Free Software Foundation; either version 2 or |
| * (at your option) version 3 of the License. |
| * |
| * This program is distributed in the hope that it will be useful, |
| * but WITHOUT ANY WARRANTY; without even the implied warranty of |
| * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| * GNU General Public License for more details. |
| * |
| * You should have received a copy of the GNU General Public License along |
| * with this program; if not, see <http://www.gnu.org/licenses/>. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "qapi/error.h" |
| #include "hw/hw.h" |
| #include "hw/block/flash.h" |
| #include "hw/irq.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/qdev-properties-system.h" |
| #include "sysemu/block-backend.h" |
| #include "exec/memory.h" |
| #include "hw/sysbus.h" |
| #include "migration/vmstate.h" |
| #include "qemu/error-report.h" |
| #include "qemu/log.h" |
| #include "qemu/module.h" |
| #include "qom/object.h" |
| |
| /* 11 for 2kB-page OneNAND ("2nd generation") and 10 for 1kB-page chips */ |
| #define PAGE_SHIFT 11 |
| |
| /* Fixed */ |
| #define BLOCK_SHIFT (PAGE_SHIFT + 6) |
| |
| #define TYPE_ONE_NAND "onenand" |
| OBJECT_DECLARE_SIMPLE_TYPE(OneNANDState, ONE_NAND) |
| |
| struct OneNANDState { |
| SysBusDevice parent_obj; |
| |
| struct { |
| uint16_t man; |
| uint16_t dev; |
| uint16_t ver; |
| } id; |
| int shift; |
| hwaddr base; |
| qemu_irq intr; |
| qemu_irq rdy; |
| BlockBackend *blk; |
| BlockBackend *blk_cur; |
| uint8_t *image; |
| uint8_t *otp; |
| uint8_t *current; |
| MemoryRegion ram; |
| MemoryRegion mapped_ram; |
| uint8_t current_direction; |
| uint8_t *boot[2]; |
| uint8_t *data[2][2]; |
| MemoryRegion iomem; |
| MemoryRegion container; |
| int cycle; |
| int otpmode; |
| |
| uint16_t addr[8]; |
| uint16_t unladdr[8]; |
| int bufaddr; |
| int count; |
| uint16_t command; |
| uint16_t config[2]; |
| uint16_t status; |
| uint16_t intstatus; |
| uint16_t wpstatus; |
| |
| ECCState ecc; |
| |
| int density_mask; |
| int secs; |
| int secs_cur; |
| int blocks; |
| uint8_t *blockwp; |
| }; |
| |
| enum { |
| ONEN_BUF_BLOCK = 0, |
| ONEN_BUF_BLOCK2 = 1, |
| ONEN_BUF_DEST_BLOCK = 2, |
| ONEN_BUF_DEST_PAGE = 3, |
| ONEN_BUF_PAGE = 7, |
| }; |
| |
| enum { |
| ONEN_ERR_CMD = 1 << 10, |
| ONEN_ERR_ERASE = 1 << 11, |
| ONEN_ERR_PROG = 1 << 12, |
| ONEN_ERR_LOAD = 1 << 13, |
| }; |
| |
| enum { |
| ONEN_INT_RESET = 1 << 4, |
| ONEN_INT_ERASE = 1 << 5, |
| ONEN_INT_PROG = 1 << 6, |
| ONEN_INT_LOAD = 1 << 7, |
| ONEN_INT = 1 << 15, |
| }; |
| |
| enum { |
| ONEN_LOCK_LOCKTIGHTEN = 1 << 0, |
| ONEN_LOCK_LOCKED = 1 << 1, |
| ONEN_LOCK_UNLOCKED = 1 << 2, |
| }; |
| |
| static void onenand_mem_setup(OneNANDState *s) |
| { |
| /* XXX: We should use IO_MEM_ROMD but we broke it earlier... |
| * Both 0x0000 ... 0x01ff and 0x8000 ... 0x800f can be used to |
| * write boot commands. Also take note of the BWPS bit. */ |
| memory_region_init(&s->container, OBJECT(s), "onenand", |
| 0x10000 << s->shift); |
| memory_region_add_subregion(&s->container, 0, &s->iomem); |
| memory_region_init_alias(&s->mapped_ram, OBJECT(s), "onenand-mapped-ram", |
| &s->ram, 0x0200 << s->shift, |
| 0xbe00 << s->shift); |
| memory_region_add_subregion_overlap(&s->container, |
| 0x0200 << s->shift, |
| &s->mapped_ram, |
| 1); |
| } |
| |
| static void onenand_intr_update(OneNANDState *s) |
| { |
| qemu_set_irq(s->intr, ((s->intstatus >> 15) ^ (~s->config[0] >> 6)) & 1); |
| } |
| |
| static int onenand_pre_save(void *opaque) |
| { |
| OneNANDState *s = opaque; |
| if (s->current == s->otp) { |
| s->current_direction = 1; |
| } else if (s->current == s->image) { |
| s->current_direction = 2; |
| } else { |
| s->current_direction = 0; |
| } |
| |
| return 0; |
| } |
| |
| static int onenand_post_load(void *opaque, int version_id) |
| { |
| OneNANDState *s = opaque; |
| switch (s->current_direction) { |
| case 0: |
| break; |
| case 1: |
| s->current = s->otp; |
| break; |
| case 2: |
| s->current = s->image; |
| break; |
| default: |
| return -1; |
| } |
| onenand_intr_update(s); |
| return 0; |
| } |
| |
| static const VMStateDescription vmstate_onenand = { |
| .name = "onenand", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .pre_save = onenand_pre_save, |
| .post_load = onenand_post_load, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT8(current_direction, OneNANDState), |
| VMSTATE_INT32(cycle, OneNANDState), |
| VMSTATE_INT32(otpmode, OneNANDState), |
| VMSTATE_UINT16_ARRAY(addr, OneNANDState, 8), |
| VMSTATE_UINT16_ARRAY(unladdr, OneNANDState, 8), |
| VMSTATE_INT32(bufaddr, OneNANDState), |
| VMSTATE_INT32(count, OneNANDState), |
| VMSTATE_UINT16(command, OneNANDState), |
| VMSTATE_UINT16_ARRAY(config, OneNANDState, 2), |
| VMSTATE_UINT16(status, OneNANDState), |
| VMSTATE_UINT16(intstatus, OneNANDState), |
| VMSTATE_UINT16(wpstatus, OneNANDState), |
| VMSTATE_INT32(secs_cur, OneNANDState), |
| VMSTATE_PARTIAL_VBUFFER(blockwp, OneNANDState, blocks), |
| VMSTATE_UINT8(ecc.cp, OneNANDState), |
| VMSTATE_UINT16_ARRAY(ecc.lp, OneNANDState, 2), |
| VMSTATE_UINT16(ecc.count, OneNANDState), |
| VMSTATE_BUFFER_POINTER_UNSAFE(otp, OneNANDState, 0, |
| ((64 + 2) << PAGE_SHIFT)), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| /* Hot reset (Reset OneNAND command) or warm reset (RP pin low) */ |
| static void onenand_reset(OneNANDState *s, int cold) |
| { |
| memset(&s->addr, 0, sizeof(s->addr)); |
| s->command = 0; |
| s->count = 1; |
| s->bufaddr = 0; |
| s->config[0] = 0x40c0; |
| s->config[1] = 0x0000; |
| onenand_intr_update(s); |
| qemu_irq_raise(s->rdy); |
| s->status = 0x0000; |
| s->intstatus = cold ? 0x8080 : 0x8010; |
| s->unladdr[0] = 0; |
| s->unladdr[1] = 0; |
| s->wpstatus = 0x0002; |
| s->cycle = 0; |
| s->otpmode = 0; |
| s->blk_cur = s->blk; |
| s->current = s->image; |
| s->secs_cur = s->secs; |
| |
| if (cold) { |
| /* Lock the whole flash */ |
| memset(s->blockwp, ONEN_LOCK_LOCKED, s->blocks); |
| |
| if (s->blk_cur && blk_pread(s->blk_cur, 0, 8 << BDRV_SECTOR_BITS, |
| s->boot[0], 0) < 0) { |
| hw_error("%s: Loading the BootRAM failed.\n", __func__); |
| } |
| } |
| } |
| |
| static void onenand_system_reset(DeviceState *dev) |
| { |
| OneNANDState *s = ONE_NAND(dev); |
| |
| onenand_reset(s, 1); |
| } |
| |
| static inline int onenand_load_main(OneNANDState *s, int sec, int secn, |
| void *dest) |
| { |
| assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec); |
| assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn); |
| if (s->blk_cur) { |
| return blk_pread(s->blk_cur, sec << BDRV_SECTOR_BITS, |
| secn << BDRV_SECTOR_BITS, dest, 0) < 0; |
| } else if (sec + secn > s->secs_cur) { |
| return 1; |
| } |
| |
| memcpy(dest, s->current + (sec << 9), secn << 9); |
| |
| return 0; |
| } |
| |
| static inline int onenand_prog_main(OneNANDState *s, int sec, int secn, |
| void *src) |
| { |
| int result = 0; |
| |
| if (secn > 0) { |
| uint32_t size = secn << BDRV_SECTOR_BITS; |
| uint32_t offset = sec << BDRV_SECTOR_BITS; |
| assert(UINT32_MAX >> BDRV_SECTOR_BITS > sec); |
| assert(UINT32_MAX >> BDRV_SECTOR_BITS > secn); |
| const uint8_t *sp = (const uint8_t *)src; |
| uint8_t *dp = 0; |
| if (s->blk_cur) { |
| dp = g_malloc(size); |
| if (!dp || blk_pread(s->blk_cur, offset, size, dp, 0) < 0) { |
| result = 1; |
| } |
| } else { |
| if (sec + secn > s->secs_cur) { |
| result = 1; |
| } else { |
| dp = (uint8_t *)s->current + offset; |
| } |
| } |
| if (!result) { |
| uint32_t i; |
| for (i = 0; i < size; i++) { |
| dp[i] &= sp[i]; |
| } |
| if (s->blk_cur) { |
| result = blk_pwrite(s->blk_cur, offset, size, dp, 0) < 0; |
| } |
| } |
| if (dp && s->blk_cur) { |
| g_free(dp); |
| } |
| } |
| |
| return result; |
| } |
| |
| static inline int onenand_load_spare(OneNANDState *s, int sec, int secn, |
| void *dest) |
| { |
| uint8_t buf[512]; |
| |
| if (s->blk_cur) { |
| uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS; |
| if (blk_pread(s->blk_cur, offset, BDRV_SECTOR_SIZE, buf, 0) < 0) { |
| return 1; |
| } |
| memcpy(dest, buf + ((sec & 31) << 4), secn << 4); |
| } else if (sec + secn > s->secs_cur) { |
| return 1; |
| } else { |
| memcpy(dest, s->current + (s->secs_cur << 9) + (sec << 4), secn << 4); |
| } |
| |
| return 0; |
| } |
| |
| static inline int onenand_prog_spare(OneNANDState *s, int sec, int secn, |
| void *src) |
| { |
| int result = 0; |
| if (secn > 0) { |
| const uint8_t *sp = (const uint8_t *)src; |
| uint8_t *dp = 0, *dpp = 0; |
| uint32_t offset = (s->secs_cur + (sec >> 5)) << BDRV_SECTOR_BITS; |
| assert(UINT32_MAX >> BDRV_SECTOR_BITS > s->secs_cur + (sec >> 5)); |
| if (s->blk_cur) { |
| dp = g_malloc(512); |
| if (!dp |
| || blk_pread(s->blk_cur, offset, BDRV_SECTOR_SIZE, dp, 0) < 0) { |
| result = 1; |
| } else { |
| dpp = dp + ((sec & 31) << 4); |
| } |
| } else { |
| if (sec + secn > s->secs_cur) { |
| result = 1; |
| } else { |
| dpp = s->current + (s->secs_cur << 9) + (sec << 4); |
| } |
| } |
| if (!result) { |
| uint32_t i; |
| for (i = 0; i < (secn << 4); i++) { |
| dpp[i] &= sp[i]; |
| } |
| if (s->blk_cur) { |
| result = blk_pwrite(s->blk_cur, offset, BDRV_SECTOR_SIZE, dp, |
| 0) < 0; |
| } |
| } |
| g_free(dp); |
| } |
| return result; |
| } |
| |
| static inline int onenand_erase(OneNANDState *s, int sec, int num) |
| { |
| uint8_t *blankbuf, *tmpbuf; |
| |
| blankbuf = g_malloc(512); |
| tmpbuf = g_malloc(512); |
| memset(blankbuf, 0xff, 512); |
| for (; num > 0; num--, sec++) { |
| if (s->blk_cur) { |
| int erasesec = s->secs_cur + (sec >> 5); |
| if (blk_pwrite(s->blk_cur, sec << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, blankbuf, 0) < 0) { |
| goto fail; |
| } |
| if (blk_pread(s->blk_cur, erasesec << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, tmpbuf, 0) < 0) { |
| goto fail; |
| } |
| memcpy(tmpbuf + ((sec & 31) << 4), blankbuf, 1 << 4); |
| if (blk_pwrite(s->blk_cur, erasesec << BDRV_SECTOR_BITS, |
| BDRV_SECTOR_SIZE, tmpbuf, 0) < 0) { |
| goto fail; |
| } |
| } else { |
| if (sec + 1 > s->secs_cur) { |
| goto fail; |
| } |
| memcpy(s->current + (sec << 9), blankbuf, 512); |
| memcpy(s->current + (s->secs_cur << 9) + (sec << 4), |
| blankbuf, 1 << 4); |
| } |
| } |
| |
| g_free(tmpbuf); |
| g_free(blankbuf); |
| return 0; |
| |
| fail: |
| g_free(tmpbuf); |
| g_free(blankbuf); |
| return 1; |
| } |
| |
| static void onenand_command(OneNANDState *s) |
| { |
| int b; |
| int sec; |
| void *buf; |
| #define SETADDR(block, page) \ |
| sec = (s->addr[page] & 3) + \ |
| ((((s->addr[page] >> 2) & 0x3f) + \ |
| (((s->addr[block] & 0xfff) | \ |
| (s->addr[block] >> 15 ? \ |
| s->density_mask : 0)) << 6)) << (PAGE_SHIFT - 9)); |
| #define SETBUF_M() \ |
| buf = (s->bufaddr & 8) ? \ |
| s->data[(s->bufaddr >> 2) & 1][0] : s->boot[0]; \ |
| buf += (s->bufaddr & 3) << 9; |
| #define SETBUF_S() \ |
| buf = (s->bufaddr & 8) ? \ |
| s->data[(s->bufaddr >> 2) & 1][1] : s->boot[1]; \ |
| buf += (s->bufaddr & 3) << 4; |
| |
| switch (s->command) { |
| case 0x00: /* Load single/multiple sector data unit into buffer */ |
| SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) |
| |
| SETBUF_M() |
| if (onenand_load_main(s, sec, s->count, buf)) |
| s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; |
| |
| #if 0 |
| SETBUF_S() |
| if (onenand_load_spare(s, sec, s->count, buf)) |
| s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; |
| #endif |
| |
| /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) |
| * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) |
| * then we need two split the read/write into two chunks. |
| */ |
| s->intstatus |= ONEN_INT | ONEN_INT_LOAD; |
| break; |
| case 0x13: /* Load single/multiple spare sector into buffer */ |
| SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) |
| |
| SETBUF_S() |
| if (onenand_load_spare(s, sec, s->count, buf)) |
| s->status |= ONEN_ERR_CMD | ONEN_ERR_LOAD; |
| |
| /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) |
| * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) |
| * then we need two split the read/write into two chunks. |
| */ |
| s->intstatus |= ONEN_INT | ONEN_INT_LOAD; |
| break; |
| case 0x80: /* Program single/multiple sector data unit from buffer */ |
| SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) |
| |
| SETBUF_M() |
| if (onenand_prog_main(s, sec, s->count, buf)) |
| s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; |
| |
| #if 0 |
| SETBUF_S() |
| if (onenand_prog_spare(s, sec, s->count, buf)) |
| s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; |
| #endif |
| |
| /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) |
| * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) |
| * then we need two split the read/write into two chunks. |
| */ |
| s->intstatus |= ONEN_INT | ONEN_INT_PROG; |
| break; |
| case 0x1a: /* Program single/multiple spare area sector from buffer */ |
| SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) |
| |
| SETBUF_S() |
| if (onenand_prog_spare(s, sec, s->count, buf)) |
| s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; |
| |
| /* TODO: if (s->bufaddr & 3) + s->count was > 4 (2k-pages) |
| * or if (s->bufaddr & 1) + s->count was > 2 (1k-pages) |
| * then we need two split the read/write into two chunks. |
| */ |
| s->intstatus |= ONEN_INT | ONEN_INT_PROG; |
| break; |
| case 0x1b: /* Copy-back program */ |
| SETBUF_S() |
| |
| SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) |
| if (onenand_load_main(s, sec, s->count, buf)) |
| s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; |
| |
| SETADDR(ONEN_BUF_DEST_BLOCK, ONEN_BUF_DEST_PAGE) |
| if (onenand_prog_main(s, sec, s->count, buf)) |
| s->status |= ONEN_ERR_CMD | ONEN_ERR_PROG; |
| |
| /* TODO: spare areas */ |
| |
| s->intstatus |= ONEN_INT | ONEN_INT_PROG; |
| break; |
| |
| case 0x23: /* Unlock NAND array block(s) */ |
| s->intstatus |= ONEN_INT; |
| |
| /* XXX the previous (?) area should be locked automatically */ |
| for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { |
| if (b >= s->blocks) { |
| s->status |= ONEN_ERR_CMD; |
| break; |
| } |
| if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) |
| break; |
| |
| s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; |
| } |
| break; |
| case 0x27: /* Unlock All NAND array blocks */ |
| s->intstatus |= ONEN_INT; |
| |
| for (b = 0; b < s->blocks; b ++) { |
| if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) |
| break; |
| |
| s->wpstatus = s->blockwp[b] = ONEN_LOCK_UNLOCKED; |
| } |
| break; |
| |
| case 0x2a: /* Lock NAND array block(s) */ |
| s->intstatus |= ONEN_INT; |
| |
| for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { |
| if (b >= s->blocks) { |
| s->status |= ONEN_ERR_CMD; |
| break; |
| } |
| if (s->blockwp[b] == ONEN_LOCK_LOCKTIGHTEN) |
| break; |
| |
| s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKED; |
| } |
| break; |
| case 0x2c: /* Lock-tight NAND array block(s) */ |
| s->intstatus |= ONEN_INT; |
| |
| for (b = s->unladdr[0]; b <= s->unladdr[1]; b ++) { |
| if (b >= s->blocks) { |
| s->status |= ONEN_ERR_CMD; |
| break; |
| } |
| if (s->blockwp[b] == ONEN_LOCK_UNLOCKED) |
| continue; |
| |
| s->wpstatus = s->blockwp[b] = ONEN_LOCK_LOCKTIGHTEN; |
| } |
| break; |
| |
| case 0x71: /* Erase-Verify-Read */ |
| s->intstatus |= ONEN_INT; |
| break; |
| case 0x95: /* Multi-block erase */ |
| qemu_irq_pulse(s->intr); |
| /* Fall through. */ |
| case 0x94: /* Block erase */ |
| sec = ((s->addr[ONEN_BUF_BLOCK] & 0xfff) | |
| (s->addr[ONEN_BUF_BLOCK] >> 15 ? s->density_mask : 0)) |
| << (BLOCK_SHIFT - 9); |
| if (onenand_erase(s, sec, 1 << (BLOCK_SHIFT - 9))) |
| s->status |= ONEN_ERR_CMD | ONEN_ERR_ERASE; |
| |
| s->intstatus |= ONEN_INT | ONEN_INT_ERASE; |
| break; |
| case 0xb0: /* Erase suspend */ |
| break; |
| case 0x30: /* Erase resume */ |
| s->intstatus |= ONEN_INT | ONEN_INT_ERASE; |
| break; |
| |
| case 0xf0: /* Reset NAND Flash core */ |
| onenand_reset(s, 0); |
| break; |
| case 0xf3: /* Reset OneNAND */ |
| onenand_reset(s, 0); |
| break; |
| |
| case 0x65: /* OTP Access */ |
| s->intstatus |= ONEN_INT; |
| s->blk_cur = NULL; |
| s->current = s->otp; |
| s->secs_cur = 1 << (BLOCK_SHIFT - 9); |
| s->addr[ONEN_BUF_BLOCK] = 0; |
| s->otpmode = 1; |
| break; |
| |
| default: |
| s->status |= ONEN_ERR_CMD; |
| s->intstatus |= ONEN_INT; |
| qemu_log_mask(LOG_GUEST_ERROR, "unknown OneNAND command %x\n", |
| s->command); |
| } |
| |
| onenand_intr_update(s); |
| } |
| |
| static uint64_t onenand_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| OneNANDState *s = (OneNANDState *) opaque; |
| int offset = addr >> s->shift; |
| |
| switch (offset) { |
| case 0x0000 ... 0xbffe: |
| return lduw_le_p(s->boot[0] + addr); |
| |
| case 0xf000: /* Manufacturer ID */ |
| return s->id.man; |
| case 0xf001: /* Device ID */ |
| return s->id.dev; |
| case 0xf002: /* Version ID */ |
| return s->id.ver; |
| /* TODO: get the following values from a real chip! */ |
| case 0xf003: /* Data Buffer size */ |
| return 1 << PAGE_SHIFT; |
| case 0xf004: /* Boot Buffer size */ |
| return 0x200; |
| case 0xf005: /* Amount of buffers */ |
| return 1 | (2 << 8); |
| case 0xf006: /* Technology */ |
| return 0; |
| |
| case 0xf100 ... 0xf107: /* Start addresses */ |
| return s->addr[offset - 0xf100]; |
| |
| case 0xf200: /* Start buffer */ |
| return (s->bufaddr << 8) | ((s->count - 1) & (1 << (PAGE_SHIFT - 10))); |
| |
| case 0xf220: /* Command */ |
| return s->command; |
| case 0xf221: /* System Configuration 1 */ |
| return s->config[0] & 0xffe0; |
| case 0xf222: /* System Configuration 2 */ |
| return s->config[1]; |
| |
| case 0xf240: /* Controller Status */ |
| return s->status; |
| case 0xf241: /* Interrupt */ |
| return s->intstatus; |
| case 0xf24c: /* Unlock Start Block Address */ |
| return s->unladdr[0]; |
| case 0xf24d: /* Unlock End Block Address */ |
| return s->unladdr[1]; |
| case 0xf24e: /* Write Protection Status */ |
| return s->wpstatus; |
| |
| case 0xff00: /* ECC Status */ |
| return 0x00; |
| case 0xff01: /* ECC Result of main area data */ |
| case 0xff02: /* ECC Result of spare area data */ |
| case 0xff03: /* ECC Result of main area data */ |
| case 0xff04: /* ECC Result of spare area data */ |
| qemu_log_mask(LOG_UNIMP, |
| "onenand: ECC result registers unimplemented\n"); |
| return 0x0000; |
| } |
| |
| qemu_log_mask(LOG_GUEST_ERROR, "read of unknown OneNAND register 0x%x\n", |
| offset); |
| return 0; |
| } |
| |
| static void onenand_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| OneNANDState *s = (OneNANDState *) opaque; |
| int offset = addr >> s->shift; |
| int sec; |
| |
| switch (offset) { |
| case 0x0000 ... 0x01ff: |
| case 0x8000 ... 0x800f: |
| if (s->cycle) { |
| s->cycle = 0; |
| |
| if (value == 0x0000) { |
| SETADDR(ONEN_BUF_BLOCK, ONEN_BUF_PAGE) |
| onenand_load_main(s, sec, |
| 1 << (PAGE_SHIFT - 9), s->data[0][0]); |
| s->addr[ONEN_BUF_PAGE] += 4; |
| s->addr[ONEN_BUF_PAGE] &= 0xff; |
| } |
| break; |
| } |
| |
| switch (value) { |
| case 0x00f0: /* Reset OneNAND */ |
| onenand_reset(s, 0); |
| break; |
| |
| case 0x00e0: /* Load Data into Buffer */ |
| s->cycle = 1; |
| break; |
| |
| case 0x0090: /* Read Identification Data */ |
| memset(s->boot[0], 0, 3 << s->shift); |
| s->boot[0][0 << s->shift] = s->id.man & 0xff; |
| s->boot[0][1 << s->shift] = s->id.dev & 0xff; |
| s->boot[0][2 << s->shift] = s->wpstatus & 0xff; |
| break; |
| |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "unknown OneNAND boot command %" PRIx64 "\n", |
| value); |
| } |
| break; |
| |
| case 0xf100 ... 0xf107: /* Start addresses */ |
| s->addr[offset - 0xf100] = value; |
| break; |
| |
| case 0xf200: /* Start buffer */ |
| s->bufaddr = (value >> 8) & 0xf; |
| if (PAGE_SHIFT == 11) |
| s->count = (value & 3) ?: 4; |
| else if (PAGE_SHIFT == 10) |
| s->count = (value & 1) ?: 2; |
| break; |
| |
| case 0xf220: /* Command */ |
| if (s->intstatus & (1 << 15)) |
| break; |
| s->command = value; |
| onenand_command(s); |
| break; |
| case 0xf221: /* System Configuration 1 */ |
| s->config[0] = value; |
| onenand_intr_update(s); |
| qemu_set_irq(s->rdy, (s->config[0] >> 7) & 1); |
| break; |
| case 0xf222: /* System Configuration 2 */ |
| s->config[1] = value; |
| break; |
| |
| case 0xf241: /* Interrupt */ |
| s->intstatus &= value; |
| if ((1 << 15) & ~s->intstatus) |
| s->status &= ~(ONEN_ERR_CMD | ONEN_ERR_ERASE | |
| ONEN_ERR_PROG | ONEN_ERR_LOAD); |
| onenand_intr_update(s); |
| break; |
| case 0xf24c: /* Unlock Start Block Address */ |
| s->unladdr[0] = value & (s->blocks - 1); |
| /* For some reason we have to set the end address to by default |
| * be same as start because the software forgets to write anything |
| * in there. */ |
| s->unladdr[1] = value & (s->blocks - 1); |
| break; |
| case 0xf24d: /* Unlock End Block Address */ |
| s->unladdr[1] = value & (s->blocks - 1); |
| break; |
| |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "write to unknown OneNAND register 0x%x\n", |
| offset); |
| } |
| } |
| |
| static const MemoryRegionOps onenand_ops = { |
| .read = onenand_read, |
| .write = onenand_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static void onenand_realize(DeviceState *dev, Error **errp) |
| { |
| SysBusDevice *sbd = SYS_BUS_DEVICE(dev); |
| OneNANDState *s = ONE_NAND(dev); |
| uint32_t size = 1 << (24 + ((s->id.dev >> 4) & 7)); |
| void *ram; |
| Error *local_err = NULL; |
| |
| s->base = (hwaddr)-1; |
| s->rdy = NULL; |
| s->blocks = size >> BLOCK_SHIFT; |
| s->secs = size >> 9; |
| s->blockwp = g_malloc(s->blocks); |
| s->density_mask = (s->id.dev & 0x08) |
| ? (1 << (6 + ((s->id.dev >> 4) & 7))) : 0; |
| memory_region_init_io(&s->iomem, OBJECT(s), &onenand_ops, s, "onenand", |
| 0x10000 << s->shift); |
| if (!s->blk) { |
| s->image = memset(g_malloc(size + (size >> 5)), |
| 0xff, size + (size >> 5)); |
| } else { |
| if (!blk_supports_write_perm(s->blk)) { |
| error_setg(errp, "Can't use a read-only drive"); |
| return; |
| } |
| blk_set_perm(s->blk, BLK_PERM_CONSISTENT_READ | BLK_PERM_WRITE, |
| BLK_PERM_ALL, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| s->blk_cur = s->blk; |
| } |
| s->otp = memset(g_malloc((64 + 2) << PAGE_SHIFT), |
| 0xff, (64 + 2) << PAGE_SHIFT); |
| memory_region_init_ram_nomigrate(&s->ram, OBJECT(s), "onenand.ram", |
| 0xc000 << s->shift, &error_fatal); |
| vmstate_register_ram_global(&s->ram); |
| ram = memory_region_get_ram_ptr(&s->ram); |
| s->boot[0] = ram + (0x0000 << s->shift); |
| s->boot[1] = ram + (0x8000 << s->shift); |
| s->data[0][0] = ram + ((0x0200 + (0 << (PAGE_SHIFT - 1))) << s->shift); |
| s->data[0][1] = ram + ((0x8010 + (0 << (PAGE_SHIFT - 6))) << s->shift); |
| s->data[1][0] = ram + ((0x0200 + (1 << (PAGE_SHIFT - 1))) << s->shift); |
| s->data[1][1] = ram + ((0x8010 + (1 << (PAGE_SHIFT - 6))) << s->shift); |
| onenand_mem_setup(s); |
| sysbus_init_irq(sbd, &s->intr); |
| sysbus_init_mmio(sbd, &s->container); |
| vmstate_register(VMSTATE_IF(dev), |
| ((s->shift & 0x7f) << 24) |
| | ((s->id.man & 0xff) << 16) |
| | ((s->id.dev & 0xff) << 8) |
| | (s->id.ver & 0xff), |
| &vmstate_onenand, s); |
| } |
| |
| static Property onenand_properties[] = { |
| DEFINE_PROP_UINT16("manufacturer_id", OneNANDState, id.man, 0), |
| DEFINE_PROP_UINT16("device_id", OneNANDState, id.dev, 0), |
| DEFINE_PROP_UINT16("version_id", OneNANDState, id.ver, 0), |
| DEFINE_PROP_INT32("shift", OneNANDState, shift, 0), |
| DEFINE_PROP_DRIVE("drive", OneNANDState, blk), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void onenand_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->realize = onenand_realize; |
| dc->reset = onenand_system_reset; |
| device_class_set_props(dc, onenand_properties); |
| } |
| |
| static const TypeInfo onenand_info = { |
| .name = TYPE_ONE_NAND, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(OneNANDState), |
| .class_init = onenand_class_init, |
| }; |
| |
| static void onenand_register_types(void) |
| { |
| type_register_static(&onenand_info); |
| } |
| |
| void *onenand_raw_otp(DeviceState *onenand_device) |
| { |
| OneNANDState *s = ONE_NAND(onenand_device); |
| |
| return s->otp; |
| } |
| |
| type_init(onenand_register_types) |