| /* |
| * ARM Nested Vectored Interrupt Controller |
| * |
| * Copyright (c) 2006-2007 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licensed under the GPL. |
| * |
| * The ARMv7M System controller is fairly tightly tied in with the |
| * NVIC. Much of that is also implemented here. |
| */ |
| |
| #include "hw/sysbus.h" |
| #include "qemu/timer.h" |
| #include "hw/arm/arm.h" |
| #include "exec/address-spaces.h" |
| #include "gic_internal.h" |
| |
| typedef struct { |
| GICState gic; |
| struct { |
| uint32_t control; |
| uint32_t reload; |
| int64_t tick; |
| QEMUTimer *timer; |
| } systick; |
| MemoryRegion sysregmem; |
| MemoryRegion gic_iomem_alias; |
| MemoryRegion container; |
| uint32_t num_irq; |
| } nvic_state; |
| |
| #define TYPE_NVIC "armv7m_nvic" |
| /** |
| * NVICClass: |
| * @parent_reset: the parent class' reset handler. |
| * |
| * A model of the v7M NVIC and System Controller |
| */ |
| typedef struct NVICClass { |
| /*< private >*/ |
| ARMGICClass parent_class; |
| /*< public >*/ |
| DeviceRealize parent_realize; |
| void (*parent_reset)(DeviceState *dev); |
| } NVICClass; |
| |
| #define NVIC_CLASS(klass) \ |
| OBJECT_CLASS_CHECK(NVICClass, (klass), TYPE_NVIC) |
| #define NVIC_GET_CLASS(obj) \ |
| OBJECT_GET_CLASS(NVICClass, (obj), TYPE_NVIC) |
| #define NVIC(obj) \ |
| OBJECT_CHECK(nvic_state, (obj), TYPE_NVIC) |
| |
| static const uint8_t nvic_id[] = { |
| 0x00, 0xb0, 0x1b, 0x00, 0x0d, 0xe0, 0x05, 0xb1 |
| }; |
| |
| /* qemu timers run at 1GHz. We want something closer to 1MHz. */ |
| #define SYSTICK_SCALE 1000ULL |
| |
| #define SYSTICK_ENABLE (1 << 0) |
| #define SYSTICK_TICKINT (1 << 1) |
| #define SYSTICK_CLKSOURCE (1 << 2) |
| #define SYSTICK_COUNTFLAG (1 << 16) |
| |
| int system_clock_scale; |
| |
| /* Conversion factor from qemu timer to SysTick frequencies. */ |
| static inline int64_t systick_scale(nvic_state *s) |
| { |
| if (s->systick.control & SYSTICK_CLKSOURCE) |
| return system_clock_scale; |
| else |
| return 1000; |
| } |
| |
| static void systick_reload(nvic_state *s, int reset) |
| { |
| if (reset) |
| s->systick.tick = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| s->systick.tick += (s->systick.reload + 1) * systick_scale(s); |
| timer_mod(s->systick.timer, s->systick.tick); |
| } |
| |
| static void systick_timer_tick(void * opaque) |
| { |
| nvic_state *s = (nvic_state *)opaque; |
| s->systick.control |= SYSTICK_COUNTFLAG; |
| if (s->systick.control & SYSTICK_TICKINT) { |
| /* Trigger the interrupt. */ |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); |
| } |
| if (s->systick.reload == 0) { |
| s->systick.control &= ~SYSTICK_ENABLE; |
| } else { |
| systick_reload(s, 0); |
| } |
| } |
| |
| static void systick_reset(nvic_state *s) |
| { |
| s->systick.control = 0; |
| s->systick.reload = 0; |
| s->systick.tick = 0; |
| timer_del(s->systick.timer); |
| } |
| |
| /* The external routines use the hardware vector numbering, ie. the first |
| IRQ is #16. The internal GIC routines use #32 as the first IRQ. */ |
| void armv7m_nvic_set_pending(void *opaque, int irq) |
| { |
| nvic_state *s = (nvic_state *)opaque; |
| if (irq >= 16) |
| irq += 16; |
| gic_set_pending_private(&s->gic, 0, irq); |
| } |
| |
| /* Make pending IRQ active. */ |
| int armv7m_nvic_acknowledge_irq(void *opaque) |
| { |
| nvic_state *s = (nvic_state *)opaque; |
| uint32_t irq; |
| |
| irq = gic_acknowledge_irq(&s->gic, 0); |
| if (irq == 1023) |
| hw_error("Interrupt but no vector\n"); |
| if (irq >= 32) |
| irq -= 16; |
| return irq; |
| } |
| |
| void armv7m_nvic_complete_irq(void *opaque, int irq) |
| { |
| nvic_state *s = (nvic_state *)opaque; |
| if (irq >= 16) |
| irq += 16; |
| gic_complete_irq(&s->gic, 0, irq); |
| } |
| |
| static uint32_t nvic_readl(nvic_state *s, uint32_t offset) |
| { |
| ARMCPU *cpu; |
| uint32_t val; |
| int irq; |
| |
| switch (offset) { |
| case 4: /* Interrupt Control Type. */ |
| return (s->num_irq / 32) - 1; |
| case 0x10: /* SysTick Control and Status. */ |
| val = s->systick.control; |
| s->systick.control &= ~SYSTICK_COUNTFLAG; |
| return val; |
| case 0x14: /* SysTick Reload Value. */ |
| return s->systick.reload; |
| case 0x18: /* SysTick Current Value. */ |
| { |
| int64_t t; |
| if ((s->systick.control & SYSTICK_ENABLE) == 0) |
| return 0; |
| t = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| if (t >= s->systick.tick) |
| return 0; |
| val = ((s->systick.tick - (t + 1)) / systick_scale(s)) + 1; |
| /* The interrupt in triggered when the timer reaches zero. |
| However the counter is not reloaded until the next clock |
| tick. This is a hack to return zero during the first tick. */ |
| if (val > s->systick.reload) |
| val = 0; |
| return val; |
| } |
| case 0x1c: /* SysTick Calibration Value. */ |
| return 10000; |
| case 0xd00: /* CPUID Base. */ |
| cpu = ARM_CPU(current_cpu); |
| return cpu->midr; |
| case 0xd04: /* Interrupt Control State. */ |
| /* VECTACTIVE */ |
| val = s->gic.running_irq[0]; |
| if (val == 1023) { |
| val = 0; |
| } else if (val >= 32) { |
| val -= 16; |
| } |
| /* RETTOBASE */ |
| if (s->gic.running_irq[0] == 1023 |
| || s->gic.last_active[s->gic.running_irq[0]][0] == 1023) { |
| val |= (1 << 11); |
| } |
| /* VECTPENDING */ |
| if (s->gic.current_pending[0] != 1023) |
| val |= (s->gic.current_pending[0] << 12); |
| /* ISRPENDING */ |
| for (irq = 32; irq < s->num_irq; irq++) { |
| if (s->gic.irq_state[irq].pending) { |
| val |= (1 << 22); |
| break; |
| } |
| } |
| /* PENDSTSET */ |
| if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending) |
| val |= (1 << 26); |
| /* PENDSVSET */ |
| if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending) |
| val |= (1 << 28); |
| /* NMIPENDSET */ |
| if (s->gic.irq_state[ARMV7M_EXCP_NMI].pending) |
| val |= (1 << 31); |
| return val; |
| case 0xd08: /* Vector Table Offset. */ |
| cpu = ARM_CPU(current_cpu); |
| return cpu->env.v7m.vecbase; |
| case 0xd0c: /* Application Interrupt/Reset Control. */ |
| return 0xfa050000; |
| case 0xd10: /* System Control. */ |
| /* TODO: Implement SLEEPONEXIT. */ |
| return 0; |
| case 0xd14: /* Configuration Control. */ |
| /* TODO: Implement Configuration Control bits. */ |
| return 0; |
| case 0xd24: /* System Handler Status. */ |
| val = 0; |
| if (s->gic.irq_state[ARMV7M_EXCP_MEM].active) val |= (1 << 0); |
| if (s->gic.irq_state[ARMV7M_EXCP_BUS].active) val |= (1 << 1); |
| if (s->gic.irq_state[ARMV7M_EXCP_USAGE].active) val |= (1 << 3); |
| if (s->gic.irq_state[ARMV7M_EXCP_SVC].active) val |= (1 << 7); |
| if (s->gic.irq_state[ARMV7M_EXCP_DEBUG].active) val |= (1 << 8); |
| if (s->gic.irq_state[ARMV7M_EXCP_PENDSV].active) val |= (1 << 10); |
| if (s->gic.irq_state[ARMV7M_EXCP_SYSTICK].active) val |= (1 << 11); |
| if (s->gic.irq_state[ARMV7M_EXCP_USAGE].pending) val |= (1 << 12); |
| if (s->gic.irq_state[ARMV7M_EXCP_MEM].pending) val |= (1 << 13); |
| if (s->gic.irq_state[ARMV7M_EXCP_BUS].pending) val |= (1 << 14); |
| if (s->gic.irq_state[ARMV7M_EXCP_SVC].pending) val |= (1 << 15); |
| if (s->gic.irq_state[ARMV7M_EXCP_MEM].enabled) val |= (1 << 16); |
| if (s->gic.irq_state[ARMV7M_EXCP_BUS].enabled) val |= (1 << 17); |
| if (s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled) val |= (1 << 18); |
| return val; |
| case 0xd28: /* Configurable Fault Status. */ |
| /* TODO: Implement Fault Status. */ |
| qemu_log_mask(LOG_UNIMP, "Configurable Fault Status unimplemented\n"); |
| return 0; |
| case 0xd2c: /* Hard Fault Status. */ |
| case 0xd30: /* Debug Fault Status. */ |
| case 0xd34: /* Mem Manage Address. */ |
| case 0xd38: /* Bus Fault Address. */ |
| case 0xd3c: /* Aux Fault Status. */ |
| /* TODO: Implement fault status registers. */ |
| qemu_log_mask(LOG_UNIMP, "Fault status registers unimplemented\n"); |
| return 0; |
| case 0xd40: /* PFR0. */ |
| return 0x00000030; |
| case 0xd44: /* PRF1. */ |
| return 0x00000200; |
| case 0xd48: /* DFR0. */ |
| return 0x00100000; |
| case 0xd4c: /* AFR0. */ |
| return 0x00000000; |
| case 0xd50: /* MMFR0. */ |
| return 0x00000030; |
| case 0xd54: /* MMFR1. */ |
| return 0x00000000; |
| case 0xd58: /* MMFR2. */ |
| return 0x00000000; |
| case 0xd5c: /* MMFR3. */ |
| return 0x00000000; |
| case 0xd60: /* ISAR0. */ |
| return 0x01141110; |
| case 0xd64: /* ISAR1. */ |
| return 0x02111000; |
| case 0xd68: /* ISAR2. */ |
| return 0x21112231; |
| case 0xd6c: /* ISAR3. */ |
| return 0x01111110; |
| case 0xd70: /* ISAR4. */ |
| return 0x01310102; |
| /* TODO: Implement debug registers. */ |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, "NVIC: Bad read offset 0x%x\n", offset); |
| return 0; |
| } |
| } |
| |
| static void nvic_writel(nvic_state *s, uint32_t offset, uint32_t value) |
| { |
| ARMCPU *cpu; |
| uint32_t oldval; |
| switch (offset) { |
| case 0x10: /* SysTick Control and Status. */ |
| oldval = s->systick.control; |
| s->systick.control &= 0xfffffff8; |
| s->systick.control |= value & 7; |
| if ((oldval ^ value) & SYSTICK_ENABLE) { |
| int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL); |
| if (value & SYSTICK_ENABLE) { |
| if (s->systick.tick) { |
| s->systick.tick += now; |
| timer_mod(s->systick.timer, s->systick.tick); |
| } else { |
| systick_reload(s, 1); |
| } |
| } else { |
| timer_del(s->systick.timer); |
| s->systick.tick -= now; |
| if (s->systick.tick < 0) |
| s->systick.tick = 0; |
| } |
| } else if ((oldval ^ value) & SYSTICK_CLKSOURCE) { |
| /* This is a hack. Force the timer to be reloaded |
| when the reference clock is changed. */ |
| systick_reload(s, 1); |
| } |
| break; |
| case 0x14: /* SysTick Reload Value. */ |
| s->systick.reload = value; |
| break; |
| case 0x18: /* SysTick Current Value. Writes reload the timer. */ |
| systick_reload(s, 1); |
| s->systick.control &= ~SYSTICK_COUNTFLAG; |
| break; |
| case 0xd04: /* Interrupt Control State. */ |
| if (value & (1 << 31)) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_NMI); |
| } |
| if (value & (1 << 28)) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_PENDSV); |
| } else if (value & (1 << 27)) { |
| s->gic.irq_state[ARMV7M_EXCP_PENDSV].pending = 0; |
| gic_update(&s->gic); |
| } |
| if (value & (1 << 26)) { |
| armv7m_nvic_set_pending(s, ARMV7M_EXCP_SYSTICK); |
| } else if (value & (1 << 25)) { |
| s->gic.irq_state[ARMV7M_EXCP_SYSTICK].pending = 0; |
| gic_update(&s->gic); |
| } |
| break; |
| case 0xd08: /* Vector Table Offset. */ |
| cpu = ARM_CPU(current_cpu); |
| cpu->env.v7m.vecbase = value & 0xffffff80; |
| break; |
| case 0xd0c: /* Application Interrupt/Reset Control. */ |
| if ((value >> 16) == 0x05fa) { |
| if (value & 2) { |
| qemu_log_mask(LOG_UNIMP, "VECTCLRACTIVE unimplemented\n"); |
| } |
| if (value & 5) { |
| qemu_log_mask(LOG_UNIMP, "AIRCR system reset unimplemented\n"); |
| } |
| if (value & 0x700) { |
| qemu_log_mask(LOG_UNIMP, "PRIGROUP unimplemented\n"); |
| } |
| } |
| break; |
| case 0xd10: /* System Control. */ |
| case 0xd14: /* Configuration Control. */ |
| /* TODO: Implement control registers. */ |
| qemu_log_mask(LOG_UNIMP, "NVIC: SCR and CCR unimplemented\n"); |
| break; |
| case 0xd24: /* System Handler Control. */ |
| /* TODO: Real hardware allows you to set/clear the active bits |
| under some circumstances. We don't implement this. */ |
| s->gic.irq_state[ARMV7M_EXCP_MEM].enabled = (value & (1 << 16)) != 0; |
| s->gic.irq_state[ARMV7M_EXCP_BUS].enabled = (value & (1 << 17)) != 0; |
| s->gic.irq_state[ARMV7M_EXCP_USAGE].enabled = (value & (1 << 18)) != 0; |
| break; |
| case 0xd28: /* Configurable Fault Status. */ |
| case 0xd2c: /* Hard Fault Status. */ |
| case 0xd30: /* Debug Fault Status. */ |
| case 0xd34: /* Mem Manage Address. */ |
| case 0xd38: /* Bus Fault Address. */ |
| case 0xd3c: /* Aux Fault Status. */ |
| qemu_log_mask(LOG_UNIMP, |
| "NVIC: fault status registers unimplemented\n"); |
| break; |
| case 0xf00: /* Software Triggered Interrupt Register */ |
| if ((value & 0x1ff) < s->num_irq) { |
| gic_set_pending_private(&s->gic, 0, value & 0x1ff); |
| } |
| break; |
| default: |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "NVIC: Bad write offset 0x%x\n", offset); |
| } |
| } |
| |
| static uint64_t nvic_sysreg_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| nvic_state *s = (nvic_state *)opaque; |
| uint32_t offset = addr; |
| int i; |
| uint32_t val; |
| |
| switch (offset) { |
| case 0xd18 ... 0xd23: /* System Handler Priority. */ |
| val = 0; |
| for (i = 0; i < size; i++) { |
| val |= s->gic.priority1[(offset - 0xd14) + i][0] << (i * 8); |
| } |
| return val; |
| case 0xfe0 ... 0xfff: /* ID. */ |
| if (offset & 3) { |
| return 0; |
| } |
| return nvic_id[(offset - 0xfe0) >> 2]; |
| } |
| if (size == 4) { |
| return nvic_readl(s, offset); |
| } |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "NVIC: Bad read of size %d at offset 0x%x\n", size, offset); |
| return 0; |
| } |
| |
| static void nvic_sysreg_write(void *opaque, hwaddr addr, |
| uint64_t value, unsigned size) |
| { |
| nvic_state *s = (nvic_state *)opaque; |
| uint32_t offset = addr; |
| int i; |
| |
| switch (offset) { |
| case 0xd18 ... 0xd23: /* System Handler Priority. */ |
| for (i = 0; i < size; i++) { |
| s->gic.priority1[(offset - 0xd14) + i][0] = |
| (value >> (i * 8)) & 0xff; |
| } |
| gic_update(&s->gic); |
| return; |
| } |
| if (size == 4) { |
| nvic_writel(s, offset, value); |
| return; |
| } |
| qemu_log_mask(LOG_GUEST_ERROR, |
| "NVIC: Bad write of size %d at offset 0x%x\n", size, offset); |
| } |
| |
| static const MemoryRegionOps nvic_sysreg_ops = { |
| .read = nvic_sysreg_read, |
| .write = nvic_sysreg_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| }; |
| |
| static const VMStateDescription vmstate_nvic = { |
| .name = "armv7m_nvic", |
| .version_id = 1, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(systick.control, nvic_state), |
| VMSTATE_UINT32(systick.reload, nvic_state), |
| VMSTATE_INT64(systick.tick, nvic_state), |
| VMSTATE_TIMER_PTR(systick.timer, nvic_state), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void armv7m_nvic_reset(DeviceState *dev) |
| { |
| nvic_state *s = NVIC(dev); |
| NVICClass *nc = NVIC_GET_CLASS(s); |
| nc->parent_reset(dev); |
| /* Common GIC reset resets to disabled; the NVIC doesn't have |
| * per-CPU interfaces so mark our non-existent CPU interface |
| * as enabled by default, and with a priority mask which allows |
| * all interrupts through. |
| */ |
| s->gic.cpu_enabled[0] = true; |
| s->gic.priority_mask[0] = 0x100; |
| /* The NVIC as a whole is always enabled. */ |
| s->gic.enabled = true; |
| systick_reset(s); |
| } |
| |
| static void armv7m_nvic_realize(DeviceState *dev, Error **errp) |
| { |
| nvic_state *s = NVIC(dev); |
| NVICClass *nc = NVIC_GET_CLASS(s); |
| Error *local_err = NULL; |
| |
| /* The NVIC always has only one CPU */ |
| s->gic.num_cpu = 1; |
| /* Tell the common code we're an NVIC */ |
| s->gic.revision = 0xffffffff; |
| s->num_irq = s->gic.num_irq; |
| nc->parent_realize(dev, &local_err); |
| if (local_err) { |
| error_propagate(errp, local_err); |
| return; |
| } |
| gic_init_irqs_and_distributor(&s->gic); |
| /* The NVIC and system controller register area looks like this: |
| * 0..0xff : system control registers, including systick |
| * 0x100..0xcff : GIC-like registers |
| * 0xd00..0xfff : system control registers |
| * We use overlaying to put the GIC like registers |
| * over the top of the system control register region. |
| */ |
| memory_region_init(&s->container, OBJECT(s), "nvic", 0x1000); |
| /* The system register region goes at the bottom of the priority |
| * stack as it covers the whole page. |
| */ |
| memory_region_init_io(&s->sysregmem, OBJECT(s), &nvic_sysreg_ops, s, |
| "nvic_sysregs", 0x1000); |
| memory_region_add_subregion(&s->container, 0, &s->sysregmem); |
| /* Alias the GIC region so we can get only the section of it |
| * we need, and layer it on top of the system register region. |
| */ |
| memory_region_init_alias(&s->gic_iomem_alias, OBJECT(s), |
| "nvic-gic", &s->gic.iomem, |
| 0x100, 0xc00); |
| memory_region_add_subregion_overlap(&s->container, 0x100, |
| &s->gic_iomem_alias, 1); |
| /* Map the whole thing into system memory at the location required |
| * by the v7M architecture. |
| */ |
| memory_region_add_subregion(get_system_memory(), 0xe000e000, &s->container); |
| s->systick.timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, systick_timer_tick, s); |
| } |
| |
| static void armv7m_nvic_instance_init(Object *obj) |
| { |
| /* We have a different default value for the num-irq property |
| * than our superclass. This function runs after qdev init |
| * has set the defaults from the Property array and before |
| * any user-specified property setting, so just modify the |
| * value in the GICState struct. |
| */ |
| GICState *s = ARM_GIC_COMMON(obj); |
| /* The ARM v7m may have anything from 0 to 496 external interrupt |
| * IRQ lines. We default to 64. Other boards may differ and should |
| * set the num-irq property appropriately. |
| */ |
| s->num_irq = 64; |
| } |
| |
| static void armv7m_nvic_class_init(ObjectClass *klass, void *data) |
| { |
| NVICClass *nc = NVIC_CLASS(klass); |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| nc->parent_reset = dc->reset; |
| nc->parent_realize = dc->realize; |
| dc->vmsd = &vmstate_nvic; |
| dc->reset = armv7m_nvic_reset; |
| dc->realize = armv7m_nvic_realize; |
| } |
| |
| static const TypeInfo armv7m_nvic_info = { |
| .name = TYPE_NVIC, |
| .parent = TYPE_ARM_GIC_COMMON, |
| .instance_init = armv7m_nvic_instance_init, |
| .instance_size = sizeof(nvic_state), |
| .class_init = armv7m_nvic_class_init, |
| .class_size = sizeof(NVICClass), |
| }; |
| |
| static void armv7m_nvic_register_types(void) |
| { |
| type_register_static(&armv7m_nvic_info); |
| } |
| |
| type_init(armv7m_nvic_register_types) |