|  | /* | 
|  | * QEMU Crypto XTS cipher mode | 
|  | * | 
|  | * Copyright (c) 2015-2016 Red Hat, Inc. | 
|  | * | 
|  | * This library is free software; you can redistribute it and/or | 
|  | * modify it under the terms of the GNU Lesser General Public | 
|  | * License as published by the Free Software Foundation; either | 
|  | * version 2.1 of the License, or (at your option) any later version. | 
|  | * | 
|  | * This library is distributed in the hope that it will be useful, | 
|  | * but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|  | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU | 
|  | * Lesser General Public License for more details. | 
|  | * | 
|  | * You should have received a copy of the GNU Lesser General Public | 
|  | * License along with this library; if not, see <http://www.gnu.org/licenses/>. | 
|  | * | 
|  | * This code is originally derived from public domain / WTFPL code in | 
|  | * LibTomCrypt crytographic library http://libtom.org. The XTS code | 
|  | * was donated by Elliptic Semiconductor Inc (www.ellipticsemi.com) | 
|  | * to the LibTom Projects | 
|  | * | 
|  | */ | 
|  |  | 
|  | #include "qemu/osdep.h" | 
|  | #include "qemu/bswap.h" | 
|  | #include "crypto/xts.h" | 
|  |  | 
|  | typedef union { | 
|  | uint8_t b[XTS_BLOCK_SIZE]; | 
|  | uint64_t u[2]; | 
|  | } xts_uint128; | 
|  |  | 
|  | static inline void xts_uint128_xor(xts_uint128 *D, | 
|  | const xts_uint128 *S1, | 
|  | const xts_uint128 *S2) | 
|  | { | 
|  | D->u[0] = S1->u[0] ^ S2->u[0]; | 
|  | D->u[1] = S1->u[1] ^ S2->u[1]; | 
|  | } | 
|  |  | 
|  | static inline void xts_uint128_cpu_to_les(xts_uint128 *v) | 
|  | { | 
|  | cpu_to_le64s(&v->u[0]); | 
|  | cpu_to_le64s(&v->u[1]); | 
|  | } | 
|  |  | 
|  | static inline void xts_uint128_le_to_cpus(xts_uint128 *v) | 
|  | { | 
|  | le64_to_cpus(&v->u[0]); | 
|  | le64_to_cpus(&v->u[1]); | 
|  | } | 
|  |  | 
|  | static void xts_mult_x(xts_uint128 *I) | 
|  | { | 
|  | uint64_t tt; | 
|  |  | 
|  | xts_uint128_le_to_cpus(I); | 
|  |  | 
|  | tt = I->u[0] >> 63; | 
|  | I->u[0] <<= 1; | 
|  |  | 
|  | if (I->u[1] >> 63) { | 
|  | I->u[0] ^= 0x87; | 
|  | } | 
|  | I->u[1] <<= 1; | 
|  | I->u[1] |= tt; | 
|  |  | 
|  | xts_uint128_cpu_to_les(I); | 
|  | } | 
|  |  | 
|  |  | 
|  | /** | 
|  | * xts_tweak_encdec: | 
|  | * @param ctxt: the cipher context | 
|  | * @param func: the cipher function | 
|  | * @src: buffer providing the input text of XTS_BLOCK_SIZE bytes | 
|  | * @dst: buffer to output the output text of XTS_BLOCK_SIZE bytes | 
|  | * @iv: the initialization vector tweak of XTS_BLOCK_SIZE bytes | 
|  | * | 
|  | * Encrypt/decrypt data with a tweak | 
|  | */ | 
|  | static inline void xts_tweak_encdec(const void *ctx, | 
|  | xts_cipher_func *func, | 
|  | const xts_uint128 *src, | 
|  | xts_uint128 *dst, | 
|  | xts_uint128 *iv) | 
|  | { | 
|  | /* tweak encrypt block i */ | 
|  | xts_uint128_xor(dst, src, iv); | 
|  |  | 
|  | func(ctx, XTS_BLOCK_SIZE, dst->b, dst->b); | 
|  |  | 
|  | xts_uint128_xor(dst, dst, iv); | 
|  |  | 
|  | /* LFSR the tweak */ | 
|  | xts_mult_x(iv); | 
|  | } | 
|  |  | 
|  |  | 
|  | void xts_decrypt(const void *datactx, | 
|  | const void *tweakctx, | 
|  | xts_cipher_func *encfunc, | 
|  | xts_cipher_func *decfunc, | 
|  | uint8_t *iv, | 
|  | size_t length, | 
|  | uint8_t *dst, | 
|  | const uint8_t *src) | 
|  | { | 
|  | xts_uint128 PP, CC, T; | 
|  | unsigned long i, m, mo, lim; | 
|  |  | 
|  | /* get number of blocks */ | 
|  | m = length >> 4; | 
|  | mo = length & 15; | 
|  |  | 
|  | /* must have at least one full block */ | 
|  | g_assert(m != 0); | 
|  |  | 
|  | if (mo == 0) { | 
|  | lim = m; | 
|  | } else { | 
|  | lim = m - 1; | 
|  | } | 
|  |  | 
|  | /* encrypt the iv */ | 
|  | encfunc(tweakctx, XTS_BLOCK_SIZE, T.b, iv); | 
|  |  | 
|  | if (QEMU_PTR_IS_ALIGNED(src, sizeof(uint64_t)) && | 
|  | QEMU_PTR_IS_ALIGNED(dst, sizeof(uint64_t))) { | 
|  | xts_uint128 *S = (xts_uint128 *)src; | 
|  | xts_uint128 *D = (xts_uint128 *)dst; | 
|  | for (i = 0; i < lim; i++, S++, D++) { | 
|  | xts_tweak_encdec(datactx, decfunc, S, D, &T); | 
|  | } | 
|  | } else { | 
|  | xts_uint128 D; | 
|  |  | 
|  | for (i = 0; i < lim; i++) { | 
|  | memcpy(&D, src, XTS_BLOCK_SIZE); | 
|  | xts_tweak_encdec(datactx, decfunc, &D, &D, &T); | 
|  | memcpy(dst, &D, XTS_BLOCK_SIZE); | 
|  | src += XTS_BLOCK_SIZE; | 
|  | dst += XTS_BLOCK_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if length is not a multiple of XTS_BLOCK_SIZE then */ | 
|  | if (mo > 0) { | 
|  | xts_uint128 S, D; | 
|  | memcpy(&CC, &T, XTS_BLOCK_SIZE); | 
|  | xts_mult_x(&CC); | 
|  |  | 
|  | /* PP = tweak decrypt block m-1 */ | 
|  | memcpy(&S, src, XTS_BLOCK_SIZE); | 
|  | xts_tweak_encdec(datactx, decfunc, &S, &PP, &CC); | 
|  |  | 
|  | /* Pm = first length % XTS_BLOCK_SIZE bytes of PP */ | 
|  | for (i = 0; i < mo; i++) { | 
|  | CC.b[i] = src[XTS_BLOCK_SIZE + i]; | 
|  | dst[XTS_BLOCK_SIZE + i] = PP.b[i]; | 
|  | } | 
|  | for (; i < XTS_BLOCK_SIZE; i++) { | 
|  | CC.b[i] = PP.b[i]; | 
|  | } | 
|  |  | 
|  | /* Pm-1 = Tweak uncrypt CC */ | 
|  | xts_tweak_encdec(datactx, decfunc, &CC, &D, &T); | 
|  | memcpy(dst, &D, XTS_BLOCK_SIZE); | 
|  | } | 
|  |  | 
|  | /* Decrypt the iv back */ | 
|  | decfunc(tweakctx, XTS_BLOCK_SIZE, iv, T.b); | 
|  | } | 
|  |  | 
|  |  | 
|  | void xts_encrypt(const void *datactx, | 
|  | const void *tweakctx, | 
|  | xts_cipher_func *encfunc, | 
|  | xts_cipher_func *decfunc, | 
|  | uint8_t *iv, | 
|  | size_t length, | 
|  | uint8_t *dst, | 
|  | const uint8_t *src) | 
|  | { | 
|  | xts_uint128 PP, CC, T; | 
|  | unsigned long i, m, mo, lim; | 
|  |  | 
|  | /* get number of blocks */ | 
|  | m = length >> 4; | 
|  | mo = length & 15; | 
|  |  | 
|  | /* must have at least one full block */ | 
|  | g_assert(m != 0); | 
|  |  | 
|  | if (mo == 0) { | 
|  | lim = m; | 
|  | } else { | 
|  | lim = m - 1; | 
|  | } | 
|  |  | 
|  | /* encrypt the iv */ | 
|  | encfunc(tweakctx, XTS_BLOCK_SIZE, T.b, iv); | 
|  |  | 
|  | if (QEMU_PTR_IS_ALIGNED(src, sizeof(uint64_t)) && | 
|  | QEMU_PTR_IS_ALIGNED(dst, sizeof(uint64_t))) { | 
|  | xts_uint128 *S = (xts_uint128 *)src; | 
|  | xts_uint128 *D = (xts_uint128 *)dst; | 
|  | for (i = 0; i < lim; i++, S++, D++) { | 
|  | xts_tweak_encdec(datactx, encfunc, S, D, &T); | 
|  | } | 
|  | } else { | 
|  | xts_uint128 D; | 
|  |  | 
|  | for (i = 0; i < lim; i++) { | 
|  | memcpy(&D, src, XTS_BLOCK_SIZE); | 
|  | xts_tweak_encdec(datactx, encfunc, &D, &D, &T); | 
|  | memcpy(dst, &D, XTS_BLOCK_SIZE); | 
|  |  | 
|  | dst += XTS_BLOCK_SIZE; | 
|  | src += XTS_BLOCK_SIZE; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* if length is not a multiple of XTS_BLOCK_SIZE then */ | 
|  | if (mo > 0) { | 
|  | xts_uint128 S, D; | 
|  | /* CC = tweak encrypt block m-1 */ | 
|  | memcpy(&S, src, XTS_BLOCK_SIZE); | 
|  | xts_tweak_encdec(datactx, encfunc, &S, &CC, &T); | 
|  |  | 
|  | /* Cm = first length % XTS_BLOCK_SIZE bytes of CC */ | 
|  | for (i = 0; i < mo; i++) { | 
|  | PP.b[i] = src[XTS_BLOCK_SIZE + i]; | 
|  | dst[XTS_BLOCK_SIZE + i] = CC.b[i]; | 
|  | } | 
|  |  | 
|  | for (; i < XTS_BLOCK_SIZE; i++) { | 
|  | PP.b[i] = CC.b[i]; | 
|  | } | 
|  |  | 
|  | /* Cm-1 = Tweak encrypt PP */ | 
|  | xts_tweak_encdec(datactx, encfunc, &PP, &D, &T); | 
|  | memcpy(dst, &D, XTS_BLOCK_SIZE); | 
|  | } | 
|  |  | 
|  | /* Decrypt the iv back */ | 
|  | decfunc(tweakctx, XTS_BLOCK_SIZE, iv, T.b); | 
|  | } |