| /* |
| * QEMU ESCC (Z8030/Z8530/Z85C30/SCC/ESCC) serial port emulation |
| * |
| * Copyright (c) 2003-2005 Fabrice Bellard |
| * |
| * Permission is hereby granted, free of charge, to any person obtaining a copy |
| * of this software and associated documentation files (the "Software"), to deal |
| * in the Software without restriction, including without limitation the rights |
| * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell |
| * copies of the Software, and to permit persons to whom the Software is |
| * furnished to do so, subject to the following conditions: |
| * |
| * The above copyright notice and this permission notice shall be included in |
| * all copies or substantial portions of the Software. |
| * |
| * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL |
| * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN |
| * THE SOFTWARE. |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "hw/irq.h" |
| #include "hw/qdev-properties.h" |
| #include "hw/qdev-properties-system.h" |
| #include "hw/sysbus.h" |
| #include "migration/vmstate.h" |
| #include "qemu/module.h" |
| #include "hw/char/escc.h" |
| #include "ui/console.h" |
| |
| #include "qemu/cutils.h" |
| #include "trace.h" |
| |
| /* |
| * Chipset docs: |
| * "Z80C30/Z85C30/Z80230/Z85230/Z85233 SCC/ESCC User Manual", |
| * http://www.zilog.com/docs/serial/scc_escc_um.pdf |
| * |
| * On Sparc32 this is the serial port, mouse and keyboard part of chip STP2001 |
| * (Slave I/O), also produced as NCR89C105. See |
| * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt |
| * |
| * The serial ports implement full AMD AM8530 or Zilog Z8530 chips, |
| * mouse and keyboard ports don't implement all functions and they are |
| * only asynchronous. There is no DMA. |
| * |
| * Z85C30 is also used on PowerMacs and m68k Macs. |
| * |
| * There are some small differences between Sparc version (sunzilog) |
| * and PowerMac (pmac): |
| * Offset between control and data registers |
| * There is some kind of lockup bug, but we can ignore it |
| * CTS is inverted |
| * DMA on pmac using DBDMA chip |
| * pmac can do IRDA and faster rates, sunzilog can only do 38400 |
| * pmac baud rate generator clock is 3.6864 MHz, sunzilog 4.9152 MHz |
| * |
| * Linux driver for m68k Macs is the same as for PowerMac (pmac_zilog), |
| * but registers are grouped by type and not by channel: |
| * channel is selected by bit 0 of the address (instead of bit 1) |
| * and register is selected by bit 1 of the address (instead of bit 0). |
| */ |
| |
| /* |
| * Modifications: |
| * 2006-Aug-10 Igor Kovalenko : Renamed KBDQueue to SERIOQueue, implemented |
| * serial mouse queue. |
| * Implemented serial mouse protocol. |
| * |
| * 2010-May-23 Artyom Tarasenko: Reworked IUS logic |
| */ |
| |
| #define CHN_C(s) ((s)->chn == escc_chn_b ? 'b' : 'a') |
| |
| #define SERIAL_CTRL 0 |
| #define SERIAL_DATA 1 |
| |
| #define W_CMD 0 |
| #define CMD_PTR_MASK 0x07 |
| #define CMD_CMD_MASK 0x38 |
| #define CMD_HI 0x08 |
| #define CMD_CLR_TXINT 0x28 |
| #define CMD_CLR_IUS 0x38 |
| #define W_INTR 1 |
| #define INTR_INTALL 0x01 |
| #define INTR_TXINT 0x02 |
| #define INTR_PAR_SPEC 0x04 |
| #define INTR_RXMODEMSK 0x18 |
| #define INTR_RXINT1ST 0x08 |
| #define INTR_RXINTALL 0x10 |
| #define INTR_WTRQ_TXRX 0x20 |
| #define W_IVEC 2 |
| #define W_RXCTRL 3 |
| #define RXCTRL_RXEN 0x01 |
| #define RXCTRL_HUNT 0x10 |
| #define W_TXCTRL1 4 |
| #define TXCTRL1_PAREN 0x01 |
| #define TXCTRL1_PAREV 0x02 |
| #define TXCTRL1_1STOP 0x04 |
| #define TXCTRL1_1HSTOP 0x08 |
| #define TXCTRL1_2STOP 0x0c |
| #define TXCTRL1_STPMSK 0x0c |
| #define TXCTRL1_CLK1X 0x00 |
| #define TXCTRL1_CLK16X 0x40 |
| #define TXCTRL1_CLK32X 0x80 |
| #define TXCTRL1_CLK64X 0xc0 |
| #define TXCTRL1_CLKMSK 0xc0 |
| #define W_TXCTRL2 5 |
| #define TXCTRL2_TXCRC 0x01 |
| #define TXCTRL2_TXEN 0x08 |
| #define TXCTRL2_BITMSK 0x60 |
| #define TXCTRL2_5BITS 0x00 |
| #define TXCTRL2_7BITS 0x20 |
| #define TXCTRL2_6BITS 0x40 |
| #define TXCTRL2_8BITS 0x60 |
| #define W_SYNC1 6 |
| #define W_SYNC2 7 |
| #define W_TXBUF 8 |
| #define W_MINTR 9 |
| #define MINTR_VIS 0x01 |
| #define MINTR_NV 0x02 |
| #define MINTR_STATUSHI 0x10 |
| #define MINTR_SOFTIACK 0x20 |
| #define MINTR_RST_MASK 0xc0 |
| #define MINTR_RST_B 0x40 |
| #define MINTR_RST_A 0x80 |
| #define MINTR_RST_ALL 0xc0 |
| #define W_MISC1 10 |
| #define MISC1_ENC_MASK 0x60 |
| #define W_CLOCK 11 |
| #define CLOCK_TRXC 0x08 |
| #define W_BRGLO 12 |
| #define W_BRGHI 13 |
| #define W_MISC2 14 |
| #define MISC2_BRG_EN 0x01 |
| #define MISC2_BRG_SRC 0x02 |
| #define MISC2_LCL_LOOP 0x10 |
| #define MISC2_PLLCMD0 0x20 |
| #define MISC2_PLLCMD1 0x40 |
| #define MISC2_PLLCMD2 0x80 |
| #define W_EXTINT 15 |
| #define EXTINT_DCD 0x08 |
| #define EXTINT_SYNCINT 0x10 |
| #define EXTINT_CTSINT 0x20 |
| #define EXTINT_TXUNDRN 0x40 |
| #define EXTINT_BRKINT 0x80 |
| |
| #define R_STATUS 0 |
| #define STATUS_RXAV 0x01 |
| #define STATUS_ZERO 0x02 |
| #define STATUS_TXEMPTY 0x04 |
| #define STATUS_DCD 0x08 |
| #define STATUS_SYNC 0x10 |
| #define STATUS_CTS 0x20 |
| #define STATUS_TXUNDRN 0x40 |
| #define STATUS_BRK 0x80 |
| #define R_SPEC 1 |
| #define SPEC_ALLSENT 0x01 |
| #define SPEC_BITS8 0x06 |
| #define R_IVEC 2 |
| #define IVEC_TXINTB 0x00 |
| #define IVEC_LONOINT 0x06 |
| #define IVEC_LORXINTA 0x0c |
| #define IVEC_LORXINTB 0x04 |
| #define IVEC_LOTXINTA 0x08 |
| #define IVEC_HINOINT 0x60 |
| #define IVEC_HIRXINTA 0x30 |
| #define IVEC_HIRXINTB 0x20 |
| #define IVEC_HITXINTA 0x10 |
| #define R_INTR 3 |
| #define INTR_EXTINTB 0x01 |
| #define INTR_TXINTB 0x02 |
| #define INTR_RXINTB 0x04 |
| #define INTR_EXTINTA 0x08 |
| #define INTR_TXINTA 0x10 |
| #define INTR_RXINTA 0x20 |
| #define R_IPEN 4 |
| #define R_TXCTRL1 5 |
| #define R_TXCTRL2 6 |
| #define R_BC 7 |
| #define R_RXBUF 8 |
| #define R_RXCTRL 9 |
| #define R_MISC 10 |
| #define MISC_2CLKMISS 0x40 |
| #define R_MISC1 11 |
| #define R_BRGLO 12 |
| #define R_BRGHI 13 |
| #define R_MISC1I 14 |
| #define R_EXTINT 15 |
| |
| static uint8_t sunkbd_layout_dip_switch(const char *sunkbd_layout); |
| static void handle_kbd_command(ESCCChannelState *s, int val); |
| static int serial_can_receive(void *opaque); |
| static void serial_receive_byte(ESCCChannelState *s, int ch); |
| |
| static int reg_shift(ESCCState *s) |
| { |
| return s->bit_swap ? s->it_shift + 1 : s->it_shift; |
| } |
| |
| static int chn_shift(ESCCState *s) |
| { |
| return s->bit_swap ? s->it_shift : s->it_shift + 1; |
| } |
| |
| static void clear_queue(void *opaque) |
| { |
| ESCCChannelState *s = opaque; |
| ESCCSERIOQueue *q = &s->queue; |
| q->rptr = q->wptr = q->count = 0; |
| } |
| |
| static void put_queue(void *opaque, int b) |
| { |
| ESCCChannelState *s = opaque; |
| ESCCSERIOQueue *q = &s->queue; |
| |
| trace_escc_put_queue(CHN_C(s), b); |
| if (q->count >= ESCC_SERIO_QUEUE_SIZE) { |
| return; |
| } |
| q->data[q->wptr] = b; |
| if (++q->wptr == ESCC_SERIO_QUEUE_SIZE) { |
| q->wptr = 0; |
| } |
| q->count++; |
| serial_receive_byte(s, 0); |
| } |
| |
| static uint32_t get_queue(void *opaque) |
| { |
| ESCCChannelState *s = opaque; |
| ESCCSERIOQueue *q = &s->queue; |
| int val; |
| |
| if (q->count == 0) { |
| return 0; |
| } else { |
| val = q->data[q->rptr]; |
| if (++q->rptr == ESCC_SERIO_QUEUE_SIZE) { |
| q->rptr = 0; |
| } |
| q->count--; |
| } |
| trace_escc_get_queue(CHN_C(s), val); |
| if (q->count > 0) { |
| serial_receive_byte(s, 0); |
| } |
| return val; |
| } |
| |
| static int escc_update_irq_chn(ESCCChannelState *s) |
| { |
| if ((((s->wregs[W_INTR] & INTR_TXINT) && (s->txint == 1)) || |
| /* tx ints enabled, pending */ |
| ((((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINT1ST) || |
| ((s->wregs[W_INTR] & INTR_RXMODEMSK) == INTR_RXINTALL)) && |
| s->rxint == 1) || |
| /* rx ints enabled, pending */ |
| ((s->wregs[W_EXTINT] & EXTINT_BRKINT) && |
| (s->rregs[R_STATUS] & STATUS_BRK)))) { |
| /* break int e&p */ |
| return 1; |
| } |
| return 0; |
| } |
| |
| static void escc_update_irq(ESCCChannelState *s) |
| { |
| int irq; |
| |
| irq = escc_update_irq_chn(s); |
| irq |= escc_update_irq_chn(s->otherchn); |
| |
| trace_escc_update_irq(irq); |
| qemu_set_irq(s->irq, irq); |
| } |
| |
| static void escc_reset_chn(ESCCChannelState *s) |
| { |
| s->reg = 0; |
| s->rx = s->tx = 0; |
| s->rxint = s->txint = 0; |
| s->rxint_under_svc = s->txint_under_svc = 0; |
| s->e0_mode = s->led_mode = s->caps_lock_mode = s->num_lock_mode = 0; |
| clear_queue(s); |
| } |
| |
| static void escc_soft_reset_chn(ESCCChannelState *s) |
| { |
| escc_reset_chn(s); |
| |
| s->wregs[W_CMD] = 0; |
| s->wregs[W_INTR] &= INTR_PAR_SPEC | INTR_WTRQ_TXRX; |
| s->wregs[W_RXCTRL] &= ~RXCTRL_RXEN; |
| /* 1 stop bit */ |
| s->wregs[W_TXCTRL1] |= TXCTRL1_1STOP; |
| s->wregs[W_TXCTRL2] &= TXCTRL2_TXCRC | TXCTRL2_8BITS; |
| s->wregs[W_MINTR] &= ~MINTR_SOFTIACK; |
| s->wregs[W_MISC1] &= MISC1_ENC_MASK; |
| /* PLL disabled */ |
| s->wregs[W_MISC2] &= MISC2_BRG_EN | MISC2_BRG_SRC | |
| MISC2_PLLCMD1 | MISC2_PLLCMD2; |
| s->wregs[W_MISC2] |= MISC2_PLLCMD0; |
| /* Enable most interrupts */ |
| s->wregs[W_EXTINT] = EXTINT_DCD | EXTINT_SYNCINT | EXTINT_CTSINT | |
| EXTINT_TXUNDRN | EXTINT_BRKINT; |
| |
| s->rregs[R_STATUS] &= STATUS_DCD | STATUS_SYNC | STATUS_CTS | STATUS_BRK; |
| s->rregs[R_STATUS] |= STATUS_TXEMPTY | STATUS_TXUNDRN; |
| if (s->disabled) { |
| s->rregs[R_STATUS] |= STATUS_DCD | STATUS_SYNC | STATUS_CTS; |
| } |
| s->rregs[R_SPEC] &= SPEC_ALLSENT; |
| s->rregs[R_SPEC] |= SPEC_BITS8; |
| s->rregs[R_INTR] = 0; |
| s->rregs[R_MISC] &= MISC_2CLKMISS; |
| } |
| |
| static void escc_hard_reset_chn(ESCCChannelState *s) |
| { |
| escc_soft_reset_chn(s); |
| |
| /* |
| * Hard reset is almost identical to soft reset above, except that the |
| * values of WR9 (W_MINTR), WR10 (W_MISC1), WR11 (W_CLOCK) and WR14 |
| * (W_MISC2) have extra bits forced to 0/1 |
| */ |
| s->wregs[W_MINTR] &= MINTR_VIS | MINTR_NV; |
| s->wregs[W_MINTR] |= MINTR_RST_B | MINTR_RST_A; |
| s->wregs[W_MISC1] = 0; |
| s->wregs[W_CLOCK] = CLOCK_TRXC; |
| s->wregs[W_MISC2] &= MISC2_PLLCMD1 | MISC2_PLLCMD2; |
| s->wregs[W_MISC2] |= MISC2_LCL_LOOP | MISC2_PLLCMD0; |
| } |
| |
| static void escc_reset(DeviceState *d) |
| { |
| ESCCState *s = ESCC(d); |
| int i, j; |
| |
| for (i = 0; i < 2; i++) { |
| ESCCChannelState *cs = &s->chn[i]; |
| |
| /* |
| * According to the ESCC datasheet "Miscellaneous Questions" section |
| * on page 384, the values of the ESCC registers are not guaranteed on |
| * power-on until an explicit hardware or software reset has been |
| * issued. For now we zero the registers so that a device reset always |
| * returns the emulated device to a fixed state. |
| */ |
| for (j = 0; j < ESCC_SERIAL_REGS; j++) { |
| cs->rregs[j] = 0; |
| cs->wregs[j] = 0; |
| } |
| |
| /* |
| * ...but there is an exception. The "Transmit Interrupts and Transmit |
| * Buffer Empty Bit" section on page 50 of the ESCC datasheet says of |
| * the STATUS_TXEMPTY bit in R_STATUS: "After a hardware reset |
| * (including a hardware reset by software), or a channel reset, this |
| * bit is set to 1". The Sun PROM checks this bit early on startup and |
| * gets stuck in an infinite loop if it is not set. |
| */ |
| cs->rregs[R_STATUS] |= STATUS_TXEMPTY; |
| |
| escc_reset_chn(cs); |
| } |
| } |
| |
| static inline void set_rxint(ESCCChannelState *s) |
| { |
| s->rxint = 1; |
| /* |
| * XXX: missing daisy chaining: escc_chn_b rx should have a lower priority |
| * than chn_a rx/tx/special_condition service |
| */ |
| s->rxint_under_svc = 1; |
| if (s->chn == escc_chn_a) { |
| s->rregs[R_INTR] |= INTR_RXINTA; |
| if (s->wregs[W_MINTR] & MINTR_STATUSHI) { |
| s->otherchn->rregs[R_IVEC] = IVEC_HIRXINTA; |
| } else { |
| s->otherchn->rregs[R_IVEC] = IVEC_LORXINTA; |
| } |
| } else { |
| s->otherchn->rregs[R_INTR] |= INTR_RXINTB; |
| if (s->wregs[W_MINTR] & MINTR_STATUSHI) { |
| s->rregs[R_IVEC] = IVEC_HIRXINTB; |
| } else { |
| s->rregs[R_IVEC] = IVEC_LORXINTB; |
| } |
| } |
| escc_update_irq(s); |
| } |
| |
| static inline void set_txint(ESCCChannelState *s) |
| { |
| s->txint = 1; |
| if (!s->rxint_under_svc) { |
| s->txint_under_svc = 1; |
| if (s->chn == escc_chn_a) { |
| if (s->wregs[W_INTR] & INTR_TXINT) { |
| s->rregs[R_INTR] |= INTR_TXINTA; |
| } |
| if (s->wregs[W_MINTR] & MINTR_STATUSHI) { |
| s->otherchn->rregs[R_IVEC] = IVEC_HITXINTA; |
| } else { |
| s->otherchn->rregs[R_IVEC] = IVEC_LOTXINTA; |
| } |
| } else { |
| s->rregs[R_IVEC] = IVEC_TXINTB; |
| if (s->wregs[W_INTR] & INTR_TXINT) { |
| s->otherchn->rregs[R_INTR] |= INTR_TXINTB; |
| } |
| } |
| escc_update_irq(s); |
| } |
| } |
| |
| static inline void clr_rxint(ESCCChannelState *s) |
| { |
| s->rxint = 0; |
| s->rxint_under_svc = 0; |
| if (s->chn == escc_chn_a) { |
| if (s->wregs[W_MINTR] & MINTR_STATUSHI) { |
| s->otherchn->rregs[R_IVEC] = IVEC_HINOINT; |
| } else { |
| s->otherchn->rregs[R_IVEC] = IVEC_LONOINT; |
| } |
| s->rregs[R_INTR] &= ~INTR_RXINTA; |
| } else { |
| if (s->wregs[W_MINTR] & MINTR_STATUSHI) { |
| s->rregs[R_IVEC] = IVEC_HINOINT; |
| } else { |
| s->rregs[R_IVEC] = IVEC_LONOINT; |
| } |
| s->otherchn->rregs[R_INTR] &= ~INTR_RXINTB; |
| } |
| if (s->txint) { |
| set_txint(s); |
| } |
| escc_update_irq(s); |
| } |
| |
| static inline void clr_txint(ESCCChannelState *s) |
| { |
| s->txint = 0; |
| s->txint_under_svc = 0; |
| if (s->chn == escc_chn_a) { |
| if (s->wregs[W_MINTR] & MINTR_STATUSHI) { |
| s->otherchn->rregs[R_IVEC] = IVEC_HINOINT; |
| } else { |
| s->otherchn->rregs[R_IVEC] = IVEC_LONOINT; |
| } |
| s->rregs[R_INTR] &= ~INTR_TXINTA; |
| } else { |
| s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB; |
| if (s->wregs[W_MINTR] & MINTR_STATUSHI) { |
| s->rregs[R_IVEC] = IVEC_HINOINT; |
| } else { |
| s->rregs[R_IVEC] = IVEC_LONOINT; |
| } |
| s->otherchn->rregs[R_INTR] &= ~INTR_TXINTB; |
| } |
| if (s->rxint) { |
| set_rxint(s); |
| } |
| escc_update_irq(s); |
| } |
| |
| static void escc_update_parameters(ESCCChannelState *s) |
| { |
| int speed, parity, data_bits, stop_bits; |
| QEMUSerialSetParams ssp; |
| |
| if (!qemu_chr_fe_backend_connected(&s->chr) || s->type != escc_serial) { |
| return; |
| } |
| |
| if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREN) { |
| if (s->wregs[W_TXCTRL1] & TXCTRL1_PAREV) { |
| parity = 'E'; |
| } else { |
| parity = 'O'; |
| } |
| } else { |
| parity = 'N'; |
| } |
| if ((s->wregs[W_TXCTRL1] & TXCTRL1_STPMSK) == TXCTRL1_2STOP) { |
| stop_bits = 2; |
| } else { |
| stop_bits = 1; |
| } |
| switch (s->wregs[W_TXCTRL2] & TXCTRL2_BITMSK) { |
| case TXCTRL2_5BITS: |
| data_bits = 5; |
| break; |
| case TXCTRL2_7BITS: |
| data_bits = 7; |
| break; |
| case TXCTRL2_6BITS: |
| data_bits = 6; |
| break; |
| default: |
| case TXCTRL2_8BITS: |
| data_bits = 8; |
| break; |
| } |
| speed = s->clock / ((s->wregs[W_BRGLO] | (s->wregs[W_BRGHI] << 8)) + 2); |
| switch (s->wregs[W_TXCTRL1] & TXCTRL1_CLKMSK) { |
| case TXCTRL1_CLK1X: |
| break; |
| case TXCTRL1_CLK16X: |
| speed /= 16; |
| break; |
| case TXCTRL1_CLK32X: |
| speed /= 32; |
| break; |
| default: |
| case TXCTRL1_CLK64X: |
| speed /= 64; |
| break; |
| } |
| ssp.speed = speed; |
| ssp.parity = parity; |
| ssp.data_bits = data_bits; |
| ssp.stop_bits = stop_bits; |
| trace_escc_update_parameters(CHN_C(s), speed, parity, data_bits, stop_bits); |
| qemu_chr_fe_ioctl(&s->chr, CHR_IOCTL_SERIAL_SET_PARAMS, &ssp); |
| } |
| |
| static void escc_mem_write(void *opaque, hwaddr addr, |
| uint64_t val, unsigned size) |
| { |
| ESCCState *serial = opaque; |
| ESCCChannelState *s; |
| uint32_t saddr; |
| int newreg, channel; |
| |
| val &= 0xff; |
| saddr = (addr >> reg_shift(serial)) & 1; |
| channel = (addr >> chn_shift(serial)) & 1; |
| s = &serial->chn[channel]; |
| switch (saddr) { |
| case SERIAL_CTRL: |
| trace_escc_mem_writeb_ctrl(CHN_C(s), s->reg, val & 0xff); |
| newreg = 0; |
| switch (s->reg) { |
| case W_CMD: |
| newreg = val & CMD_PTR_MASK; |
| val &= CMD_CMD_MASK; |
| switch (val) { |
| case CMD_HI: |
| newreg |= CMD_HI; |
| break; |
| case CMD_CLR_TXINT: |
| clr_txint(s); |
| break; |
| case CMD_CLR_IUS: |
| if (s->rxint_under_svc) { |
| s->rxint_under_svc = 0; |
| if (s->txint) { |
| set_txint(s); |
| } |
| } else if (s->txint_under_svc) { |
| s->txint_under_svc = 0; |
| } |
| escc_update_irq(s); |
| break; |
| default: |
| break; |
| } |
| break; |
| case W_RXCTRL: |
| s->wregs[s->reg] = val; |
| if (val & RXCTRL_HUNT) { |
| s->rregs[R_STATUS] |= STATUS_SYNC; |
| } |
| break; |
| case W_INTR ... W_IVEC: |
| case W_SYNC1 ... W_TXBUF: |
| case W_MISC1 ... W_CLOCK: |
| case W_MISC2 ... W_EXTINT: |
| s->wregs[s->reg] = val; |
| break; |
| case W_TXCTRL1: |
| s->wregs[s->reg] = val; |
| /* |
| * The ESCC datasheet states that SPEC_ALLSENT is always set in |
| * sync mode, and set in async mode when all characters have |
| * cleared the transmitter. Since writes to SERIAL_DATA use the |
| * blocking qemu_chr_fe_write_all() function to write each |
| * character, the guest can never see the state when async data |
| * is in the process of being transmitted so we can set this bit |
| * unconditionally regardless of the state of the W_TXCTRL1 mode |
| * bits. |
| */ |
| s->rregs[R_SPEC] |= SPEC_ALLSENT; |
| escc_update_parameters(s); |
| break; |
| case W_TXCTRL2: |
| s->wregs[s->reg] = val; |
| escc_update_parameters(s); |
| break; |
| case W_BRGLO: |
| case W_BRGHI: |
| s->wregs[s->reg] = val; |
| s->rregs[s->reg] = val; |
| escc_update_parameters(s); |
| break; |
| case W_MINTR: |
| switch (val & MINTR_RST_MASK) { |
| case 0: |
| default: |
| break; |
| case MINTR_RST_B: |
| trace_escc_soft_reset_chn(CHN_C(&serial->chn[0])); |
| escc_soft_reset_chn(&serial->chn[0]); |
| return; |
| case MINTR_RST_A: |
| trace_escc_soft_reset_chn(CHN_C(&serial->chn[1])); |
| escc_soft_reset_chn(&serial->chn[1]); |
| return; |
| case MINTR_RST_ALL: |
| trace_escc_hard_reset(); |
| escc_hard_reset_chn(&serial->chn[0]); |
| escc_hard_reset_chn(&serial->chn[1]); |
| return; |
| } |
| break; |
| default: |
| break; |
| } |
| if (s->reg == 0) { |
| s->reg = newreg; |
| } else { |
| s->reg = 0; |
| } |
| break; |
| case SERIAL_DATA: |
| trace_escc_mem_writeb_data(CHN_C(s), val); |
| /* |
| * Lower the irq when data is written to the Tx buffer and no other |
| * interrupts are currently pending. The irq will be raised again once |
| * the Tx buffer becomes empty below. |
| */ |
| s->txint = 0; |
| escc_update_irq(s); |
| s->tx = val; |
| if (s->wregs[W_TXCTRL2] & TXCTRL2_TXEN) { /* tx enabled */ |
| if (s->wregs[W_MISC2] & MISC2_LCL_LOOP) { |
| serial_receive_byte(s, s->tx); |
| } else if (qemu_chr_fe_backend_connected(&s->chr)) { |
| /* |
| * XXX this blocks entire thread. Rewrite to use |
| * qemu_chr_fe_write and background I/O callbacks |
| */ |
| qemu_chr_fe_write_all(&s->chr, &s->tx, 1); |
| } else if (s->type == escc_kbd && !s->disabled) { |
| handle_kbd_command(s, val); |
| } |
| } |
| s->rregs[R_STATUS] |= STATUS_TXEMPTY; /* Tx buffer empty */ |
| s->rregs[R_SPEC] |= SPEC_ALLSENT; /* All sent */ |
| set_txint(s); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static uint64_t escc_mem_read(void *opaque, hwaddr addr, |
| unsigned size) |
| { |
| ESCCState *serial = opaque; |
| ESCCChannelState *s; |
| uint32_t saddr; |
| uint32_t ret; |
| int channel; |
| |
| saddr = (addr >> reg_shift(serial)) & 1; |
| channel = (addr >> chn_shift(serial)) & 1; |
| s = &serial->chn[channel]; |
| switch (saddr) { |
| case SERIAL_CTRL: |
| trace_escc_mem_readb_ctrl(CHN_C(s), s->reg, s->rregs[s->reg]); |
| ret = s->rregs[s->reg]; |
| s->reg = 0; |
| return ret; |
| case SERIAL_DATA: |
| s->rregs[R_STATUS] &= ~STATUS_RXAV; |
| clr_rxint(s); |
| if (s->type == escc_kbd || s->type == escc_mouse) { |
| ret = get_queue(s); |
| } else { |
| ret = s->rx; |
| } |
| trace_escc_mem_readb_data(CHN_C(s), ret); |
| qemu_chr_fe_accept_input(&s->chr); |
| return ret; |
| default: |
| break; |
| } |
| return 0; |
| } |
| |
| static const MemoryRegionOps escc_mem_ops = { |
| .read = escc_mem_read, |
| .write = escc_mem_write, |
| .endianness = DEVICE_NATIVE_ENDIAN, |
| .valid = { |
| .min_access_size = 1, |
| .max_access_size = 1, |
| }, |
| }; |
| |
| static int serial_can_receive(void *opaque) |
| { |
| ESCCChannelState *s = opaque; |
| int ret; |
| |
| if (((s->wregs[W_RXCTRL] & RXCTRL_RXEN) == 0) /* Rx not enabled */ |
| || ((s->rregs[R_STATUS] & STATUS_RXAV) == STATUS_RXAV)) { |
| /* char already available */ |
| ret = 0; |
| } else { |
| ret = 1; |
| } |
| return ret; |
| } |
| |
| static void serial_receive_byte(ESCCChannelState *s, int ch) |
| { |
| trace_escc_serial_receive_byte(CHN_C(s), ch); |
| s->rregs[R_STATUS] |= STATUS_RXAV; |
| s->rx = ch; |
| set_rxint(s); |
| } |
| |
| static void serial_receive_break(ESCCChannelState *s) |
| { |
| s->rregs[R_STATUS] |= STATUS_BRK; |
| escc_update_irq(s); |
| } |
| |
| static void serial_receive1(void *opaque, const uint8_t *buf, int size) |
| { |
| ESCCChannelState *s = opaque; |
| serial_receive_byte(s, buf[0]); |
| } |
| |
| static void serial_event(void *opaque, QEMUChrEvent event) |
| { |
| ESCCChannelState *s = opaque; |
| if (event == CHR_EVENT_BREAK) { |
| serial_receive_break(s); |
| } |
| } |
| |
| static const VMStateDescription vmstate_escc_chn = { |
| .name = "escc_chn", |
| .version_id = 2, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_UINT32(vmstate_dummy, ESCCChannelState), |
| VMSTATE_UINT32(reg, ESCCChannelState), |
| VMSTATE_UINT32(rxint, ESCCChannelState), |
| VMSTATE_UINT32(txint, ESCCChannelState), |
| VMSTATE_UINT32(rxint_under_svc, ESCCChannelState), |
| VMSTATE_UINT32(txint_under_svc, ESCCChannelState), |
| VMSTATE_UINT8(rx, ESCCChannelState), |
| VMSTATE_UINT8(tx, ESCCChannelState), |
| VMSTATE_BUFFER(wregs, ESCCChannelState), |
| VMSTATE_BUFFER(rregs, ESCCChannelState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static const VMStateDescription vmstate_escc = { |
| .name = "escc", |
| .version_id = 2, |
| .minimum_version_id = 1, |
| .fields = (VMStateField[]) { |
| VMSTATE_STRUCT_ARRAY(chn, ESCCState, 2, 2, vmstate_escc_chn, |
| ESCCChannelState), |
| VMSTATE_END_OF_LIST() |
| } |
| }; |
| |
| static void sunkbd_handle_event(DeviceState *dev, QemuConsole *src, |
| InputEvent *evt) |
| { |
| ESCCChannelState *s = (ESCCChannelState *)dev; |
| int qcode, keycode; |
| InputKeyEvent *key; |
| |
| assert(evt->type == INPUT_EVENT_KIND_KEY); |
| key = evt->u.key.data; |
| qcode = qemu_input_key_value_to_qcode(key->key); |
| trace_escc_sunkbd_event_in(qcode, QKeyCode_str(qcode), |
| key->down); |
| |
| if (qcode == Q_KEY_CODE_CAPS_LOCK) { |
| if (key->down) { |
| s->caps_lock_mode ^= 1; |
| if (s->caps_lock_mode == 2) { |
| return; /* Drop second press */ |
| } |
| } else { |
| s->caps_lock_mode ^= 2; |
| if (s->caps_lock_mode == 3) { |
| return; /* Drop first release */ |
| } |
| } |
| } |
| |
| if (qcode == Q_KEY_CODE_NUM_LOCK) { |
| if (key->down) { |
| s->num_lock_mode ^= 1; |
| if (s->num_lock_mode == 2) { |
| return; /* Drop second press */ |
| } |
| } else { |
| s->num_lock_mode ^= 2; |
| if (s->num_lock_mode == 3) { |
| return; /* Drop first release */ |
| } |
| } |
| } |
| |
| if (qcode >= qemu_input_map_qcode_to_sun_len) { |
| return; |
| } |
| |
| keycode = qemu_input_map_qcode_to_sun[qcode]; |
| if (!key->down) { |
| keycode |= 0x80; |
| } |
| trace_escc_sunkbd_event_out(keycode); |
| put_queue(s, keycode); |
| } |
| |
| static const QemuInputHandler sunkbd_handler = { |
| .name = "sun keyboard", |
| .mask = INPUT_EVENT_MASK_KEY, |
| .event = sunkbd_handle_event, |
| }; |
| |
| static uint8_t sunkbd_layout_dip_switch(const char *kbd_layout) |
| { |
| /* Return the value of the dip-switches in a SUN Type 5 keyboard */ |
| static uint8_t ret = 0xff; |
| |
| if ((ret == 0xff) && kbd_layout) { |
| int i; |
| struct layout_values { |
| const char *lang; |
| uint8_t dip; |
| } languages[] = |
| /* |
| * Dip values from table 3-16 Layouts for Type 4, 5 and 5c Keyboards |
| */ |
| { |
| {"en-us", 0x21}, /* U.S.A. (US5.kt) */ |
| /* 0x22 is some other US (US_UNIX5.kt) */ |
| {"fr", 0x23}, /* France (France5.kt) */ |
| {"da", 0x24}, /* Denmark (Denmark5.kt) */ |
| {"de", 0x25}, /* Germany (Germany5.kt) */ |
| {"it", 0x26}, /* Italy (Italy5.kt) */ |
| {"nl", 0x27}, /* The Netherlands (Netherland5.kt) */ |
| {"no", 0x28}, /* Norway (Norway.kt) */ |
| {"pt", 0x29}, /* Portugal (Portugal5.kt) */ |
| {"es", 0x2a}, /* Spain (Spain5.kt) */ |
| {"sv", 0x2b}, /* Sweden (Sweden5.kt) */ |
| {"fr-ch", 0x2c}, /* Switzerland/French (Switzer_Fr5.kt) */ |
| {"de-ch", 0x2d}, /* Switzerland/German (Switzer_Ge5.kt) */ |
| {"en-gb", 0x2e}, /* Great Britain (UK5.kt) */ |
| {"ko", 0x2f}, /* Korea (Korea5.kt) */ |
| {"tw", 0x30}, /* Taiwan (Taiwan5.kt) */ |
| {"ja", 0x31}, /* Japan (Japan5.kt) */ |
| {"fr-ca", 0x32}, /* Canada/French (Canada_Fr5.kt) */ |
| {"hu", 0x33}, /* Hungary (Hungary5.kt) */ |
| {"pl", 0x34}, /* Poland (Poland5.kt) */ |
| {"cz", 0x35}, /* Czech (Czech5.kt) */ |
| {"ru", 0x36}, /* Russia (Russia5.kt) */ |
| {"lv", 0x37}, /* Latvia (Latvia5.kt) */ |
| {"tr", 0x38}, /* Turkey-Q5 (TurkeyQ5.kt) */ |
| {"gr", 0x39}, /* Greece (Greece5.kt) */ |
| {"ar", 0x3a}, /* Arabic (Arabic5.kt) */ |
| {"lt", 0x3b}, /* Lithuania (Lithuania5.kt) */ |
| {"nl-be", 0x3c}, /* Belgium (Belgian5.kt) */ |
| {"be", 0x3c}, /* Belgium (Belgian5.kt) */ |
| }; |
| |
| for (i = 0; |
| i < sizeof(languages) / sizeof(struct layout_values); |
| i++) { |
| if (!strcmp(kbd_layout, languages[i].lang)) { |
| ret = languages[i].dip; |
| return ret; |
| } |
| } |
| |
| /* Found no known language code */ |
| if ((kbd_layout[0] >= '0') && (kbd_layout[0] <= '9')) { |
| unsigned int tmp; |
| |
| /* As a fallback we also accept numeric dip switch value */ |
| if (!qemu_strtoui(kbd_layout, NULL, 0, &tmp)) { |
| ret = tmp; |
| } |
| } |
| } |
| |
| if (ret == 0xff) { |
| /* Final fallback if keyboard_layout was not set or recognized */ |
| ret = 0x21; /* en-us layout */ |
| } |
| return ret; |
| } |
| |
| static void handle_kbd_command(ESCCChannelState *s, int val) |
| { |
| trace_escc_kbd_command(val); |
| if (s->led_mode) { /* Ignore led byte */ |
| s->led_mode = 0; |
| return; |
| } |
| switch (val) { |
| case 1: /* Reset, return type code */ |
| clear_queue(s); |
| put_queue(s, 0xff); |
| put_queue(s, 4); /* Type 4 */ |
| put_queue(s, 0x7f); |
| break; |
| case 0xe: /* Set leds */ |
| s->led_mode = 1; |
| break; |
| case 7: /* Query layout */ |
| case 0xf: |
| clear_queue(s); |
| put_queue(s, 0xfe); |
| put_queue(s, sunkbd_layout_dip_switch(s->sunkbd_layout)); |
| break; |
| default: |
| break; |
| } |
| } |
| |
| static void sunmouse_event(void *opaque, |
| int dx, int dy, int dz, int buttons_state) |
| { |
| ESCCChannelState *s = opaque; |
| int ch; |
| |
| trace_escc_sunmouse_event(dx, dy, buttons_state); |
| ch = 0x80 | 0x7; /* protocol start byte, no buttons pressed */ |
| |
| if (buttons_state & MOUSE_EVENT_LBUTTON) { |
| ch ^= 0x4; |
| } |
| if (buttons_state & MOUSE_EVENT_MBUTTON) { |
| ch ^= 0x2; |
| } |
| if (buttons_state & MOUSE_EVENT_RBUTTON) { |
| ch ^= 0x1; |
| } |
| |
| put_queue(s, ch); |
| |
| ch = dx; |
| |
| if (ch > 127) { |
| ch = 127; |
| } else if (ch < -127) { |
| ch = -127; |
| } |
| |
| put_queue(s, ch & 0xff); |
| |
| ch = -dy; |
| |
| if (ch > 127) { |
| ch = 127; |
| } else if (ch < -127) { |
| ch = -127; |
| } |
| |
| put_queue(s, ch & 0xff); |
| |
| /* MSC protocol specifies two extra motion bytes */ |
| |
| put_queue(s, 0); |
| put_queue(s, 0); |
| } |
| |
| static void escc_init1(Object *obj) |
| { |
| ESCCState *s = ESCC(obj); |
| SysBusDevice *dev = SYS_BUS_DEVICE(obj); |
| unsigned int i; |
| |
| for (i = 0; i < 2; i++) { |
| sysbus_init_irq(dev, &s->chn[i].irq); |
| s->chn[i].chn = 1 - i; |
| } |
| s->chn[0].otherchn = &s->chn[1]; |
| s->chn[1].otherchn = &s->chn[0]; |
| |
| sysbus_init_mmio(dev, &s->mmio); |
| } |
| |
| static void escc_realize(DeviceState *dev, Error **errp) |
| { |
| ESCCState *s = ESCC(dev); |
| unsigned int i; |
| |
| s->chn[0].disabled = s->disabled; |
| s->chn[1].disabled = s->disabled; |
| |
| memory_region_init_io(&s->mmio, OBJECT(dev), &escc_mem_ops, s, "escc", |
| ESCC_SIZE << s->it_shift); |
| |
| for (i = 0; i < 2; i++) { |
| if (qemu_chr_fe_backend_connected(&s->chn[i].chr)) { |
| s->chn[i].clock = s->frequency / 2; |
| qemu_chr_fe_set_handlers(&s->chn[i].chr, serial_can_receive, |
| serial_receive1, serial_event, NULL, |
| &s->chn[i], NULL, true); |
| } |
| } |
| |
| if (s->chn[0].type == escc_mouse) { |
| qemu_add_mouse_event_handler(sunmouse_event, &s->chn[0], 0, |
| "QEMU Sun Mouse"); |
| } |
| if (s->chn[1].type == escc_kbd) { |
| s->chn[1].hs = qemu_input_handler_register((DeviceState *)(&s->chn[1]), |
| &sunkbd_handler); |
| } |
| } |
| |
| static Property escc_properties[] = { |
| DEFINE_PROP_UINT32("frequency", ESCCState, frequency, 0), |
| DEFINE_PROP_UINT32("it_shift", ESCCState, it_shift, 0), |
| DEFINE_PROP_BOOL("bit_swap", ESCCState, bit_swap, false), |
| DEFINE_PROP_UINT32("disabled", ESCCState, disabled, 0), |
| DEFINE_PROP_UINT32("chnBtype", ESCCState, chn[0].type, 0), |
| DEFINE_PROP_UINT32("chnAtype", ESCCState, chn[1].type, 0), |
| DEFINE_PROP_CHR("chrB", ESCCState, chn[0].chr), |
| DEFINE_PROP_CHR("chrA", ESCCState, chn[1].chr), |
| DEFINE_PROP_STRING("chnA-sunkbd-layout", ESCCState, chn[1].sunkbd_layout), |
| DEFINE_PROP_END_OF_LIST(), |
| }; |
| |
| static void escc_class_init(ObjectClass *klass, void *data) |
| { |
| DeviceClass *dc = DEVICE_CLASS(klass); |
| |
| dc->reset = escc_reset; |
| dc->realize = escc_realize; |
| dc->vmsd = &vmstate_escc; |
| device_class_set_props(dc, escc_properties); |
| set_bit(DEVICE_CATEGORY_INPUT, dc->categories); |
| } |
| |
| static const TypeInfo escc_info = { |
| .name = TYPE_ESCC, |
| .parent = TYPE_SYS_BUS_DEVICE, |
| .instance_size = sizeof(ESCCState), |
| .instance_init = escc_init1, |
| .class_init = escc_class_init, |
| }; |
| |
| static void escc_register_types(void) |
| { |
| type_register_static(&escc_info); |
| } |
| |
| type_init(escc_register_types) |