| /* |
| * ARM PrimeCell Timer modules. |
| * |
| * Copyright (c) 2005-2006 CodeSourcery. |
| * Written by Paul Brook |
| * |
| * This code is licenced under the GPL. |
| */ |
| |
| #include "vl.h" |
| #include "arm_pic.h" |
| |
| /* Common timer implementation. */ |
| |
| #define TIMER_CTRL_ONESHOT (1 << 0) |
| #define TIMER_CTRL_32BIT (1 << 1) |
| #define TIMER_CTRL_DIV1 (0 << 2) |
| #define TIMER_CTRL_DIV16 (1 << 2) |
| #define TIMER_CTRL_DIV256 (2 << 2) |
| #define TIMER_CTRL_IE (1 << 5) |
| #define TIMER_CTRL_PERIODIC (1 << 6) |
| #define TIMER_CTRL_ENABLE (1 << 7) |
| |
| typedef struct { |
| int64_t next_time; |
| int64_t expires; |
| int64_t loaded; |
| QEMUTimer *timer; |
| uint32_t control; |
| uint32_t count; |
| uint32_t limit; |
| int raw_freq; |
| int freq; |
| int int_level; |
| qemu_irq irq; |
| } arm_timer_state; |
| |
| /* Calculate the new expiry time of the given timer. */ |
| |
| static void arm_timer_reload(arm_timer_state *s) |
| { |
| int64_t delay; |
| |
| s->loaded = s->expires; |
| delay = muldiv64(s->count, ticks_per_sec, s->freq); |
| if (delay == 0) |
| delay = 1; |
| s->expires += delay; |
| } |
| |
| /* Check all active timers, and schedule the next timer interrupt. */ |
| |
| static void arm_timer_update(arm_timer_state *s, int64_t now) |
| { |
| int64_t next; |
| |
| /* Ignore disabled timers. */ |
| if ((s->control & TIMER_CTRL_ENABLE) == 0) |
| return; |
| /* Ignore expired one-shot timers. */ |
| if (s->count == 0 && (s->control & TIMER_CTRL_ONESHOT)) |
| return; |
| if (s->expires - now <= 0) { |
| /* Timer has expired. */ |
| s->int_level = 1; |
| if (s->control & TIMER_CTRL_ONESHOT) { |
| /* One-shot. */ |
| s->count = 0; |
| } else { |
| if ((s->control & TIMER_CTRL_PERIODIC) == 0) { |
| /* Free running. */ |
| if (s->control & TIMER_CTRL_32BIT) |
| s->count = 0xffffffff; |
| else |
| s->count = 0xffff; |
| } else { |
| /* Periodic. */ |
| s->count = s->limit; |
| } |
| } |
| } |
| while (s->expires - now <= 0) { |
| arm_timer_reload(s); |
| } |
| /* Update interrupts. */ |
| if (s->int_level && (s->control & TIMER_CTRL_IE)) { |
| qemu_irq_raise(s->irq); |
| } else { |
| qemu_irq_lower(s->irq); |
| } |
| |
| next = now; |
| if (next - s->expires < 0) |
| next = s->expires; |
| |
| /* Schedule the next timer interrupt. */ |
| if (next == now) { |
| qemu_del_timer(s->timer); |
| s->next_time = 0; |
| } else if (next != s->next_time) { |
| qemu_mod_timer(s->timer, next); |
| s->next_time = next; |
| } |
| } |
| |
| /* Return the current value of the timer. */ |
| static uint32_t arm_timer_getcount(arm_timer_state *s, int64_t now) |
| { |
| int64_t left; |
| int64_t period; |
| |
| if (s->count == 0) |
| return 0; |
| if ((s->control & TIMER_CTRL_ENABLE) == 0) |
| return s->count; |
| left = s->expires - now; |
| period = s->expires - s->loaded; |
| /* If the timer should have expired then return 0. This can happen |
| when the host timer signal doesnt occur immediately. It's better to |
| have a timer appear to sit at zero for a while than have it wrap |
| around before the guest interrupt is raised. */ |
| /* ??? Could we trigger the interrupt here? */ |
| if (left < 0) |
| return 0; |
| /* We need to calculate count * elapsed / period without overfowing. |
| Scale both elapsed and period so they fit in a 32-bit int. */ |
| while (period != (int32_t)period) { |
| period >>= 1; |
| left >>= 1; |
| } |
| return ((uint64_t)s->count * (uint64_t)(int32_t)left) |
| / (int32_t)period; |
| } |
| |
| uint32_t arm_timer_read(void *opaque, target_phys_addr_t offset) |
| { |
| arm_timer_state *s = (arm_timer_state *)opaque; |
| |
| switch (offset >> 2) { |
| case 0: /* TimerLoad */ |
| case 6: /* TimerBGLoad */ |
| return s->limit; |
| case 1: /* TimerValue */ |
| return arm_timer_getcount(s, qemu_get_clock(vm_clock)); |
| case 2: /* TimerControl */ |
| return s->control; |
| case 4: /* TimerRIS */ |
| return s->int_level; |
| case 5: /* TimerMIS */ |
| if ((s->control & TIMER_CTRL_IE) == 0) |
| return 0; |
| return s->int_level; |
| default: |
| cpu_abort (cpu_single_env, "arm_timer_read: Bad offset %x\n", offset); |
| return 0; |
| } |
| } |
| |
| static void arm_timer_write(void *opaque, target_phys_addr_t offset, |
| uint32_t value) |
| { |
| arm_timer_state *s = (arm_timer_state *)opaque; |
| int64_t now; |
| |
| now = qemu_get_clock(vm_clock); |
| switch (offset >> 2) { |
| case 0: /* TimerLoad */ |
| s->limit = value; |
| s->count = value; |
| s->expires = now; |
| arm_timer_reload(s); |
| break; |
| case 1: /* TimerValue */ |
| /* ??? Linux seems to want to write to this readonly register. |
| Ignore it. */ |
| break; |
| case 2: /* TimerControl */ |
| if (s->control & TIMER_CTRL_ENABLE) { |
| /* Pause the timer if it is running. This may cause some |
| inaccuracy dure to rounding, but avoids a whole lot of other |
| messyness. */ |
| s->count = arm_timer_getcount(s, now); |
| } |
| s->control = value; |
| s->freq = s->raw_freq; |
| /* ??? Need to recalculate expiry time after changing divisor. */ |
| switch ((value >> 2) & 3) { |
| case 1: s->freq >>= 4; break; |
| case 2: s->freq >>= 8; break; |
| } |
| if (s->control & TIMER_CTRL_ENABLE) { |
| /* Restart the timer if still enabled. */ |
| s->expires = now; |
| arm_timer_reload(s); |
| } |
| break; |
| case 3: /* TimerIntClr */ |
| s->int_level = 0; |
| break; |
| case 6: /* TimerBGLoad */ |
| s->limit = value; |
| break; |
| default: |
| cpu_abort (cpu_single_env, "arm_timer_write: Bad offset %x\n", offset); |
| } |
| arm_timer_update(s, now); |
| } |
| |
| static void arm_timer_tick(void *opaque) |
| { |
| int64_t now; |
| |
| now = qemu_get_clock(vm_clock); |
| arm_timer_update((arm_timer_state *)opaque, now); |
| } |
| |
| static void *arm_timer_init(uint32_t freq, qemu_irq irq) |
| { |
| arm_timer_state *s; |
| |
| s = (arm_timer_state *)qemu_mallocz(sizeof(arm_timer_state)); |
| s->irq = irq; |
| s->raw_freq = s->freq = 1000000; |
| s->control = TIMER_CTRL_IE; |
| s->count = 0xffffffff; |
| |
| s->timer = qemu_new_timer(vm_clock, arm_timer_tick, s); |
| /* ??? Save/restore. */ |
| return s; |
| } |
| |
| /* ARM PrimeCell SP804 dual timer module. |
| Docs for this device don't seem to be publicly available. This |
| implementation is based on guesswork, the linux kernel sources and the |
| Integrator/CP timer modules. */ |
| |
| typedef struct { |
| void *timer[2]; |
| int level[2]; |
| uint32_t base; |
| qemu_irq irq; |
| } sp804_state; |
| |
| /* Merge the IRQs from the two component devices. */ |
| static void sp804_set_irq(void *opaque, int irq, int level) |
| { |
| sp804_state *s = (sp804_state *)opaque; |
| |
| s->level[irq] = level; |
| qemu_set_irq(s->irq, s->level[0] || s->level[1]); |
| } |
| |
| static uint32_t sp804_read(void *opaque, target_phys_addr_t offset) |
| { |
| sp804_state *s = (sp804_state *)opaque; |
| |
| /* ??? Don't know the PrimeCell ID for this device. */ |
| offset -= s->base; |
| if (offset < 0x20) { |
| return arm_timer_read(s->timer[0], offset); |
| } else { |
| return arm_timer_read(s->timer[1], offset - 0x20); |
| } |
| } |
| |
| static void sp804_write(void *opaque, target_phys_addr_t offset, |
| uint32_t value) |
| { |
| sp804_state *s = (sp804_state *)opaque; |
| |
| offset -= s->base; |
| if (offset < 0x20) { |
| arm_timer_write(s->timer[0], offset, value); |
| } else { |
| arm_timer_write(s->timer[1], offset - 0x20, value); |
| } |
| } |
| |
| static CPUReadMemoryFunc *sp804_readfn[] = { |
| sp804_read, |
| sp804_read, |
| sp804_read |
| }; |
| |
| static CPUWriteMemoryFunc *sp804_writefn[] = { |
| sp804_write, |
| sp804_write, |
| sp804_write |
| }; |
| |
| void sp804_init(uint32_t base, qemu_irq irq) |
| { |
| int iomemtype; |
| sp804_state *s; |
| qemu_irq *qi; |
| |
| s = (sp804_state *)qemu_mallocz(sizeof(sp804_state)); |
| qi = qemu_allocate_irqs(sp804_set_irq, s, 2); |
| s->base = base; |
| s->irq = irq; |
| /* ??? The timers are actually configurable between 32kHz and 1MHz, but |
| we don't implement that. */ |
| s->timer[0] = arm_timer_init(1000000, qi[0]); |
| s->timer[1] = arm_timer_init(1000000, qi[1]); |
| iomemtype = cpu_register_io_memory(0, sp804_readfn, |
| sp804_writefn, s); |
| cpu_register_physical_memory(base, 0x00000fff, iomemtype); |
| /* ??? Save/restore. */ |
| } |
| |
| |
| /* Integrator/CP timer module. */ |
| |
| typedef struct { |
| void *timer[3]; |
| uint32_t base; |
| } icp_pit_state; |
| |
| static uint32_t icp_pit_read(void *opaque, target_phys_addr_t offset) |
| { |
| icp_pit_state *s = (icp_pit_state *)opaque; |
| int n; |
| |
| /* ??? Don't know the PrimeCell ID for this device. */ |
| offset -= s->base; |
| n = offset >> 8; |
| if (n > 3) |
| cpu_abort(cpu_single_env, "sp804_read: Bad timer %d\n", n); |
| |
| return arm_timer_read(s->timer[n], offset & 0xff); |
| } |
| |
| static void icp_pit_write(void *opaque, target_phys_addr_t offset, |
| uint32_t value) |
| { |
| icp_pit_state *s = (icp_pit_state *)opaque; |
| int n; |
| |
| offset -= s->base; |
| n = offset >> 8; |
| if (n > 3) |
| cpu_abort(cpu_single_env, "sp804_write: Bad timer %d\n", n); |
| |
| arm_timer_write(s->timer[n], offset & 0xff, value); |
| } |
| |
| |
| static CPUReadMemoryFunc *icp_pit_readfn[] = { |
| icp_pit_read, |
| icp_pit_read, |
| icp_pit_read |
| }; |
| |
| static CPUWriteMemoryFunc *icp_pit_writefn[] = { |
| icp_pit_write, |
| icp_pit_write, |
| icp_pit_write |
| }; |
| |
| void icp_pit_init(uint32_t base, qemu_irq *pic, int irq) |
| { |
| int iomemtype; |
| icp_pit_state *s; |
| |
| s = (icp_pit_state *)qemu_mallocz(sizeof(icp_pit_state)); |
| s->base = base; |
| /* Timer 0 runs at the system clock speed (40MHz). */ |
| s->timer[0] = arm_timer_init(40000000, pic[irq]); |
| /* The other two timers run at 1MHz. */ |
| s->timer[1] = arm_timer_init(1000000, pic[irq + 1]); |
| s->timer[2] = arm_timer_init(1000000, pic[irq + 2]); |
| |
| iomemtype = cpu_register_io_memory(0, icp_pit_readfn, |
| icp_pit_writefn, s); |
| cpu_register_physical_memory(base, 0x00000fff, iomemtype); |
| /* ??? Save/restore. */ |
| } |
| |