| /* |
| * QEMU HAX support |
| * |
| * Copyright IBM, Corp. 2008 |
| * Red Hat, Inc. 2008 |
| * |
| * Authors: |
| * Anthony Liguori <aliguori@us.ibm.com> |
| * Glauber Costa <gcosta@redhat.com> |
| * |
| * Copyright (c) 2011 Intel Corporation |
| * Written by: |
| * Jiang Yunhong<yunhong.jiang@intel.com> |
| * Xin Xiaohui<xiaohui.xin@intel.com> |
| * Zhang Xiantao<xiantao.zhang@intel.com> |
| * |
| * This work is licensed under the terms of the GNU GPL, version 2 or later. |
| * See the COPYING file in the top-level directory. |
| * |
| */ |
| |
| /* |
| * HAX common code for both windows and darwin |
| */ |
| |
| #include "qemu/osdep.h" |
| #include "cpu.h" |
| #include "exec/address-spaces.h" |
| |
| #include "qemu-common.h" |
| #include "hax-i386.h" |
| #include "sysemu/accel.h" |
| #include "sysemu/sysemu.h" |
| #include "qemu/main-loop.h" |
| #include "hw/boards.h" |
| |
| #define DEBUG_HAX 0 |
| |
| #define DPRINTF(fmt, ...) \ |
| do { \ |
| if (DEBUG_HAX) { \ |
| fprintf(stdout, fmt, ## __VA_ARGS__); \ |
| } \ |
| } while (0) |
| |
| /* Current version */ |
| const uint32_t hax_cur_version = 0x4; /* API v4: unmapping and MMIO moves */ |
| /* Minimum HAX kernel version */ |
| const uint32_t hax_min_version = 0x4; /* API v4: supports unmapping */ |
| |
| static bool hax_allowed; |
| |
| struct hax_state hax_global; |
| |
| static void hax_vcpu_sync_state(CPUArchState *env, int modified); |
| static int hax_arch_get_registers(CPUArchState *env); |
| |
| int hax_enabled(void) |
| { |
| return hax_allowed; |
| } |
| |
| int valid_hax_tunnel_size(uint16_t size) |
| { |
| return size >= sizeof(struct hax_tunnel); |
| } |
| |
| hax_fd hax_vcpu_get_fd(CPUArchState *env) |
| { |
| struct hax_vcpu_state *vcpu = env_cpu(env)->hax_vcpu; |
| if (!vcpu) { |
| return HAX_INVALID_FD; |
| } |
| return vcpu->fd; |
| } |
| |
| static int hax_get_capability(struct hax_state *hax) |
| { |
| int ret; |
| struct hax_capabilityinfo capinfo, *cap = &capinfo; |
| |
| ret = hax_capability(hax, cap); |
| if (ret) { |
| return ret; |
| } |
| |
| if ((cap->wstatus & HAX_CAP_WORKSTATUS_MASK) == HAX_CAP_STATUS_NOTWORKING) { |
| if (cap->winfo & HAX_CAP_FAILREASON_VT) { |
| DPRINTF |
| ("VTX feature is not enabled, HAX driver will not work.\n"); |
| } else if (cap->winfo & HAX_CAP_FAILREASON_NX) { |
| DPRINTF |
| ("NX feature is not enabled, HAX driver will not work.\n"); |
| } |
| return -ENXIO; |
| |
| } |
| |
| if (!(cap->winfo & HAX_CAP_UG)) { |
| fprintf(stderr, "UG mode is not supported by the hardware.\n"); |
| return -ENOTSUP; |
| } |
| |
| hax->supports_64bit_ramblock = !!(cap->winfo & HAX_CAP_64BIT_RAMBLOCK); |
| |
| if (cap->wstatus & HAX_CAP_MEMQUOTA) { |
| if (cap->mem_quota < hax->mem_quota) { |
| fprintf(stderr, "The VM memory needed exceeds the driver limit.\n"); |
| return -ENOSPC; |
| } |
| } |
| return 0; |
| } |
| |
| static int hax_version_support(struct hax_state *hax) |
| { |
| int ret; |
| struct hax_module_version version; |
| |
| ret = hax_mod_version(hax, &version); |
| if (ret < 0) { |
| return 0; |
| } |
| |
| if (hax_min_version > version.cur_version) { |
| fprintf(stderr, "Incompatible HAX module version %d,", |
| version.cur_version); |
| fprintf(stderr, "requires minimum version %d\n", hax_min_version); |
| return 0; |
| } |
| if (hax_cur_version < version.compat_version) { |
| fprintf(stderr, "Incompatible QEMU HAX API version %x,", |
| hax_cur_version); |
| fprintf(stderr, "requires minimum HAX API version %x\n", |
| version.compat_version); |
| return 0; |
| } |
| |
| return 1; |
| } |
| |
| int hax_vcpu_create(int id) |
| { |
| struct hax_vcpu_state *vcpu = NULL; |
| int ret; |
| |
| if (!hax_global.vm) { |
| fprintf(stderr, "vcpu %x created failed, vm is null\n", id); |
| return -1; |
| } |
| |
| if (hax_global.vm->vcpus[id]) { |
| fprintf(stderr, "vcpu %x allocated already\n", id); |
| return 0; |
| } |
| |
| vcpu = g_new0(struct hax_vcpu_state, 1); |
| |
| ret = hax_host_create_vcpu(hax_global.vm->fd, id); |
| if (ret) { |
| fprintf(stderr, "Failed to create vcpu %x\n", id); |
| goto error; |
| } |
| |
| vcpu->vcpu_id = id; |
| vcpu->fd = hax_host_open_vcpu(hax_global.vm->id, id); |
| if (hax_invalid_fd(vcpu->fd)) { |
| fprintf(stderr, "Failed to open the vcpu\n"); |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| hax_global.vm->vcpus[id] = vcpu; |
| |
| ret = hax_host_setup_vcpu_channel(vcpu); |
| if (ret) { |
| fprintf(stderr, "Invalid hax tunnel size\n"); |
| ret = -EINVAL; |
| goto error; |
| } |
| return 0; |
| |
| error: |
| /* vcpu and tunnel will be closed automatically */ |
| if (vcpu && !hax_invalid_fd(vcpu->fd)) { |
| hax_close_fd(vcpu->fd); |
| } |
| |
| hax_global.vm->vcpus[id] = NULL; |
| g_free(vcpu); |
| return -1; |
| } |
| |
| int hax_vcpu_destroy(CPUState *cpu) |
| { |
| struct hax_vcpu_state *vcpu = cpu->hax_vcpu; |
| |
| if (!hax_global.vm) { |
| fprintf(stderr, "vcpu %x destroy failed, vm is null\n", vcpu->vcpu_id); |
| return -1; |
| } |
| |
| if (!vcpu) { |
| return 0; |
| } |
| |
| /* |
| * 1. The hax_tunnel is also destroyed when vcpu is destroyed |
| * 2. close fd will cause hax module vcpu be cleaned |
| */ |
| hax_close_fd(vcpu->fd); |
| hax_global.vm->vcpus[vcpu->vcpu_id] = NULL; |
| g_free(vcpu); |
| return 0; |
| } |
| |
| int hax_init_vcpu(CPUState *cpu) |
| { |
| int ret; |
| |
| ret = hax_vcpu_create(cpu->cpu_index); |
| if (ret < 0) { |
| fprintf(stderr, "Failed to create HAX vcpu\n"); |
| exit(-1); |
| } |
| |
| cpu->hax_vcpu = hax_global.vm->vcpus[cpu->cpu_index]; |
| cpu->vcpu_dirty = true; |
| qemu_register_reset(hax_reset_vcpu_state, (CPUArchState *) (cpu->env_ptr)); |
| |
| return ret; |
| } |
| |
| struct hax_vm *hax_vm_create(struct hax_state *hax) |
| { |
| struct hax_vm *vm; |
| int vm_id = 0, ret; |
| |
| if (hax_invalid_fd(hax->fd)) { |
| return NULL; |
| } |
| |
| if (hax->vm) { |
| return hax->vm; |
| } |
| |
| vm = g_new0(struct hax_vm, 1); |
| |
| ret = hax_host_create_vm(hax, &vm_id); |
| if (ret) { |
| fprintf(stderr, "Failed to create vm %x\n", ret); |
| goto error; |
| } |
| vm->id = vm_id; |
| vm->fd = hax_host_open_vm(hax, vm_id); |
| if (hax_invalid_fd(vm->fd)) { |
| fprintf(stderr, "Failed to open vm %d\n", vm_id); |
| goto error; |
| } |
| |
| hax->vm = vm; |
| return vm; |
| |
| error: |
| g_free(vm); |
| hax->vm = NULL; |
| return NULL; |
| } |
| |
| int hax_vm_destroy(struct hax_vm *vm) |
| { |
| int i; |
| |
| for (i = 0; i < HAX_MAX_VCPU; i++) |
| if (vm->vcpus[i]) { |
| fprintf(stderr, "VCPU should be cleaned before vm clean\n"); |
| return -1; |
| } |
| hax_close_fd(vm->fd); |
| g_free(vm); |
| hax_global.vm = NULL; |
| return 0; |
| } |
| |
| static void hax_handle_interrupt(CPUState *cpu, int mask) |
| { |
| cpu->interrupt_request |= mask; |
| |
| if (!qemu_cpu_is_self(cpu)) { |
| qemu_cpu_kick(cpu); |
| } |
| } |
| |
| static int hax_init(ram_addr_t ram_size) |
| { |
| struct hax_state *hax = NULL; |
| struct hax_qemu_version qversion; |
| int ret; |
| |
| hax = &hax_global; |
| |
| memset(hax, 0, sizeof(struct hax_state)); |
| hax->mem_quota = ram_size; |
| |
| hax->fd = hax_mod_open(); |
| if (hax_invalid_fd(hax->fd)) { |
| hax->fd = 0; |
| ret = -ENODEV; |
| goto error; |
| } |
| |
| ret = hax_get_capability(hax); |
| |
| if (ret) { |
| if (ret != -ENOSPC) { |
| ret = -EINVAL; |
| } |
| goto error; |
| } |
| |
| if (!hax_version_support(hax)) { |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| hax->vm = hax_vm_create(hax); |
| if (!hax->vm) { |
| fprintf(stderr, "Failed to create HAX VM\n"); |
| ret = -EINVAL; |
| goto error; |
| } |
| |
| hax_memory_init(); |
| |
| qversion.cur_version = hax_cur_version; |
| qversion.min_version = hax_min_version; |
| hax_notify_qemu_version(hax->vm->fd, &qversion); |
| cpu_interrupt_handler = hax_handle_interrupt; |
| |
| return ret; |
| error: |
| if (hax->vm) { |
| hax_vm_destroy(hax->vm); |
| } |
| if (hax->fd) { |
| hax_mod_close(hax); |
| } |
| |
| return ret; |
| } |
| |
| static int hax_accel_init(MachineState *ms) |
| { |
| int ret = hax_init(ms->ram_size); |
| |
| if (ret && (ret != -ENOSPC)) { |
| fprintf(stderr, "No accelerator found.\n"); |
| } else { |
| fprintf(stdout, "HAX is %s and emulator runs in %s mode.\n", |
| !ret ? "working" : "not working", |
| !ret ? "fast virt" : "emulation"); |
| } |
| return ret; |
| } |
| |
| static int hax_handle_fastmmio(CPUArchState *env, struct hax_fastmmio *hft) |
| { |
| if (hft->direction < 2) { |
| cpu_physical_memory_rw(hft->gpa, (uint8_t *) &hft->value, hft->size, |
| hft->direction); |
| } else { |
| /* |
| * HAX API v4 supports transferring data between two MMIO addresses, |
| * hft->gpa and hft->gpa2 (instructions such as MOVS require this): |
| * hft->direction == 2: gpa ==> gpa2 |
| */ |
| uint64_t value; |
| cpu_physical_memory_rw(hft->gpa, (uint8_t *) &value, hft->size, 0); |
| cpu_physical_memory_rw(hft->gpa2, (uint8_t *) &value, hft->size, 1); |
| } |
| |
| return 0; |
| } |
| |
| static int hax_handle_io(CPUArchState *env, uint32_t df, uint16_t port, |
| int direction, int size, int count, void *buffer) |
| { |
| uint8_t *ptr; |
| int i; |
| MemTxAttrs attrs = { 0 }; |
| |
| if (!df) { |
| ptr = (uint8_t *) buffer; |
| } else { |
| ptr = buffer + size * count - size; |
| } |
| for (i = 0; i < count; i++) { |
| address_space_rw(&address_space_io, port, attrs, |
| ptr, size, direction == HAX_EXIT_IO_OUT); |
| if (!df) { |
| ptr += size; |
| } else { |
| ptr -= size; |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int hax_vcpu_interrupt(CPUArchState *env) |
| { |
| CPUState *cpu = env_cpu(env); |
| struct hax_vcpu_state *vcpu = cpu->hax_vcpu; |
| struct hax_tunnel *ht = vcpu->tunnel; |
| |
| /* |
| * Try to inject an interrupt if the guest can accept it |
| * Unlike KVM, HAX kernel check for the eflags, instead of qemu |
| */ |
| if (ht->ready_for_interrupt_injection && |
| (cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
| int irq; |
| |
| irq = cpu_get_pic_interrupt(env); |
| if (irq >= 0) { |
| hax_inject_interrupt(env, irq); |
| cpu->interrupt_request &= ~CPU_INTERRUPT_HARD; |
| } |
| } |
| |
| /* If we have an interrupt but the guest is not ready to receive an |
| * interrupt, request an interrupt window exit. This will |
| * cause a return to userspace as soon as the guest is ready to |
| * receive interrupts. */ |
| if ((cpu->interrupt_request & CPU_INTERRUPT_HARD)) { |
| ht->request_interrupt_window = 1; |
| } else { |
| ht->request_interrupt_window = 0; |
| } |
| return 0; |
| } |
| |
| void hax_raise_event(CPUState *cpu) |
| { |
| struct hax_vcpu_state *vcpu = cpu->hax_vcpu; |
| |
| if (!vcpu) { |
| return; |
| } |
| vcpu->tunnel->user_event_pending = 1; |
| } |
| |
| /* |
| * Ask hax kernel module to run the CPU for us till: |
| * 1. Guest crash or shutdown |
| * 2. Need QEMU's emulation like guest execute MMIO instruction |
| * 3. Guest execute HLT |
| * 4. QEMU have Signal/event pending |
| * 5. An unknown VMX exit happens |
| */ |
| static int hax_vcpu_hax_exec(CPUArchState *env) |
| { |
| int ret = 0; |
| CPUState *cpu = env_cpu(env); |
| X86CPU *x86_cpu = X86_CPU(cpu); |
| struct hax_vcpu_state *vcpu = cpu->hax_vcpu; |
| struct hax_tunnel *ht = vcpu->tunnel; |
| |
| if (!hax_enabled()) { |
| DPRINTF("Trying to vcpu execute at eip:" TARGET_FMT_lx "\n", env->eip); |
| return 0; |
| } |
| |
| if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { |
| cpu->interrupt_request &= ~CPU_INTERRUPT_POLL; |
| apic_poll_irq(x86_cpu->apic_state); |
| } |
| |
| /* After a vcpu is halted (either because it is an AP and has just been |
| * reset, or because it has executed the HLT instruction), it will not be |
| * run (hax_vcpu_run()) until it is unhalted. The next few if blocks check |
| * for events that may change the halted state of this vcpu: |
| * a) Maskable interrupt, when RFLAGS.IF is 1; |
| * Note: env->eflags may not reflect the current RFLAGS state, because |
| * it is not updated after each hax_vcpu_run(). We cannot afford |
| * to fail to recognize any unhalt-by-maskable-interrupt event |
| * (in which case the vcpu will halt forever), and yet we cannot |
| * afford the overhead of hax_vcpu_sync_state(). The current |
| * solution is to err on the side of caution and have the HLT |
| * handler (see case HAX_EXIT_HLT below) unconditionally set the |
| * IF_MASK bit in env->eflags, which, in effect, disables the |
| * RFLAGS.IF check. |
| * b) NMI; |
| * c) INIT signal; |
| * d) SIPI signal. |
| */ |
| if (((cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
| (env->eflags & IF_MASK)) || |
| (cpu->interrupt_request & CPU_INTERRUPT_NMI)) { |
| cpu->halted = 0; |
| } |
| |
| if (cpu->interrupt_request & CPU_INTERRUPT_INIT) { |
| DPRINTF("\nhax_vcpu_hax_exec: handling INIT for %d\n", |
| cpu->cpu_index); |
| do_cpu_init(x86_cpu); |
| hax_vcpu_sync_state(env, 1); |
| } |
| |
| if (cpu->interrupt_request & CPU_INTERRUPT_SIPI) { |
| DPRINTF("hax_vcpu_hax_exec: handling SIPI for %d\n", |
| cpu->cpu_index); |
| hax_vcpu_sync_state(env, 0); |
| do_cpu_sipi(x86_cpu); |
| hax_vcpu_sync_state(env, 1); |
| } |
| |
| if (cpu->halted) { |
| /* If this vcpu is halted, we must not ask HAXM to run it. Instead, we |
| * break out of hax_smp_cpu_exec() as if this vcpu had executed HLT. |
| * That way, this vcpu thread will be trapped in qemu_wait_io_event(), |
| * until the vcpu is unhalted. |
| */ |
| cpu->exception_index = EXCP_HLT; |
| return 0; |
| } |
| |
| do { |
| int hax_ret; |
| |
| if (cpu->exit_request) { |
| ret = 1; |
| break; |
| } |
| |
| hax_vcpu_interrupt(env); |
| |
| qemu_mutex_unlock_iothread(); |
| cpu_exec_start(cpu); |
| hax_ret = hax_vcpu_run(vcpu); |
| cpu_exec_end(cpu); |
| qemu_mutex_lock_iothread(); |
| |
| /* Simply continue the vcpu_run if system call interrupted */ |
| if (hax_ret == -EINTR || hax_ret == -EAGAIN) { |
| DPRINTF("io window interrupted\n"); |
| continue; |
| } |
| |
| if (hax_ret < 0) { |
| fprintf(stderr, "vcpu run failed for vcpu %x\n", vcpu->vcpu_id); |
| abort(); |
| } |
| switch (ht->_exit_status) { |
| case HAX_EXIT_IO: |
| ret = hax_handle_io(env, ht->pio._df, ht->pio._port, |
| ht->pio._direction, |
| ht->pio._size, ht->pio._count, vcpu->iobuf); |
| break; |
| case HAX_EXIT_FAST_MMIO: |
| ret = hax_handle_fastmmio(env, (struct hax_fastmmio *) vcpu->iobuf); |
| break; |
| /* Guest state changed, currently only for shutdown */ |
| case HAX_EXIT_STATECHANGE: |
| fprintf(stdout, "VCPU shutdown request\n"); |
| qemu_system_shutdown_request(SHUTDOWN_CAUSE_GUEST_SHUTDOWN); |
| hax_vcpu_sync_state(env, 0); |
| ret = 1; |
| break; |
| case HAX_EXIT_UNKNOWN_VMEXIT: |
| fprintf(stderr, "Unknown VMX exit %x from guest\n", |
| ht->_exit_reason); |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| hax_vcpu_sync_state(env, 0); |
| cpu_dump_state(cpu, stderr, 0); |
| ret = -1; |
| break; |
| case HAX_EXIT_HLT: |
| if (!(cpu->interrupt_request & CPU_INTERRUPT_HARD) && |
| !(cpu->interrupt_request & CPU_INTERRUPT_NMI)) { |
| /* hlt instruction with interrupt disabled is shutdown */ |
| env->eflags |= IF_MASK; |
| cpu->halted = 1; |
| cpu->exception_index = EXCP_HLT; |
| ret = 1; |
| } |
| break; |
| /* these situations will continue to hax module */ |
| case HAX_EXIT_INTERRUPT: |
| case HAX_EXIT_PAUSED: |
| break; |
| case HAX_EXIT_MMIO: |
| /* Should not happen on UG system */ |
| fprintf(stderr, "HAX: unsupported MMIO emulation\n"); |
| ret = -1; |
| break; |
| case HAX_EXIT_REAL: |
| /* Should not happen on UG system */ |
| fprintf(stderr, "HAX: unimplemented real mode emulation\n"); |
| ret = -1; |
| break; |
| default: |
| fprintf(stderr, "Unknown exit %x from HAX\n", ht->_exit_status); |
| qemu_system_reset_request(SHUTDOWN_CAUSE_GUEST_RESET); |
| hax_vcpu_sync_state(env, 0); |
| cpu_dump_state(cpu, stderr, 0); |
| ret = 1; |
| break; |
| } |
| } while (!ret); |
| |
| if (cpu->exit_request) { |
| cpu->exit_request = 0; |
| cpu->exception_index = EXCP_INTERRUPT; |
| } |
| return ret < 0; |
| } |
| |
| static void do_hax_cpu_synchronize_state(CPUState *cpu, run_on_cpu_data arg) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| |
| hax_arch_get_registers(env); |
| cpu->vcpu_dirty = true; |
| } |
| |
| void hax_cpu_synchronize_state(CPUState *cpu) |
| { |
| if (!cpu->vcpu_dirty) { |
| run_on_cpu(cpu, do_hax_cpu_synchronize_state, RUN_ON_CPU_NULL); |
| } |
| } |
| |
| static void do_hax_cpu_synchronize_post_reset(CPUState *cpu, |
| run_on_cpu_data arg) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| |
| hax_vcpu_sync_state(env, 1); |
| cpu->vcpu_dirty = false; |
| } |
| |
| void hax_cpu_synchronize_post_reset(CPUState *cpu) |
| { |
| run_on_cpu(cpu, do_hax_cpu_synchronize_post_reset, RUN_ON_CPU_NULL); |
| } |
| |
| static void do_hax_cpu_synchronize_post_init(CPUState *cpu, run_on_cpu_data arg) |
| { |
| CPUArchState *env = cpu->env_ptr; |
| |
| hax_vcpu_sync_state(env, 1); |
| cpu->vcpu_dirty = false; |
| } |
| |
| void hax_cpu_synchronize_post_init(CPUState *cpu) |
| { |
| run_on_cpu(cpu, do_hax_cpu_synchronize_post_init, RUN_ON_CPU_NULL); |
| } |
| |
| static void do_hax_cpu_synchronize_pre_loadvm(CPUState *cpu, run_on_cpu_data arg) |
| { |
| cpu->vcpu_dirty = true; |
| } |
| |
| void hax_cpu_synchronize_pre_loadvm(CPUState *cpu) |
| { |
| run_on_cpu(cpu, do_hax_cpu_synchronize_pre_loadvm, RUN_ON_CPU_NULL); |
| } |
| |
| int hax_smp_cpu_exec(CPUState *cpu) |
| { |
| CPUArchState *env = (CPUArchState *) (cpu->env_ptr); |
| int fatal; |
| int ret; |
| |
| while (1) { |
| if (cpu->exception_index >= EXCP_INTERRUPT) { |
| ret = cpu->exception_index; |
| cpu->exception_index = -1; |
| break; |
| } |
| |
| fatal = hax_vcpu_hax_exec(env); |
| |
| if (fatal) { |
| fprintf(stderr, "Unsupported HAX vcpu return\n"); |
| abort(); |
| } |
| } |
| |
| return ret; |
| } |
| |
| static void set_v8086_seg(struct segment_desc_t *lhs, const SegmentCache *rhs) |
| { |
| memset(lhs, 0, sizeof(struct segment_desc_t)); |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = 3; |
| lhs->present = 1; |
| lhs->dpl = 3; |
| lhs->operand_size = 0; |
| lhs->desc = 1; |
| lhs->long_mode = 0; |
| lhs->granularity = 0; |
| lhs->available = 0; |
| } |
| |
| static void get_seg(SegmentCache *lhs, const struct segment_desc_t *rhs) |
| { |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->flags = (rhs->type << DESC_TYPE_SHIFT) |
| | (rhs->present * DESC_P_MASK) |
| | (rhs->dpl << DESC_DPL_SHIFT) |
| | (rhs->operand_size << DESC_B_SHIFT) |
| | (rhs->desc * DESC_S_MASK) |
| | (rhs->long_mode << DESC_L_SHIFT) |
| | (rhs->granularity * DESC_G_MASK) | (rhs->available * DESC_AVL_MASK); |
| } |
| |
| static void set_seg(struct segment_desc_t *lhs, const SegmentCache *rhs) |
| { |
| unsigned flags = rhs->flags; |
| |
| memset(lhs, 0, sizeof(struct segment_desc_t)); |
| lhs->selector = rhs->selector; |
| lhs->base = rhs->base; |
| lhs->limit = rhs->limit; |
| lhs->type = (flags >> DESC_TYPE_SHIFT) & 15; |
| lhs->present = (flags & DESC_P_MASK) != 0; |
| lhs->dpl = rhs->selector & 3; |
| lhs->operand_size = (flags >> DESC_B_SHIFT) & 1; |
| lhs->desc = (flags & DESC_S_MASK) != 0; |
| lhs->long_mode = (flags >> DESC_L_SHIFT) & 1; |
| lhs->granularity = (flags & DESC_G_MASK) != 0; |
| lhs->available = (flags & DESC_AVL_MASK) != 0; |
| } |
| |
| static void hax_getput_reg(uint64_t *hax_reg, target_ulong *qemu_reg, int set) |
| { |
| target_ulong reg = *hax_reg; |
| |
| if (set) { |
| *hax_reg = *qemu_reg; |
| } else { |
| *qemu_reg = reg; |
| } |
| } |
| |
| /* The sregs has been synced with HAX kernel already before this call */ |
| static int hax_get_segments(CPUArchState *env, struct vcpu_state_t *sregs) |
| { |
| get_seg(&env->segs[R_CS], &sregs->_cs); |
| get_seg(&env->segs[R_DS], &sregs->_ds); |
| get_seg(&env->segs[R_ES], &sregs->_es); |
| get_seg(&env->segs[R_FS], &sregs->_fs); |
| get_seg(&env->segs[R_GS], &sregs->_gs); |
| get_seg(&env->segs[R_SS], &sregs->_ss); |
| |
| get_seg(&env->tr, &sregs->_tr); |
| get_seg(&env->ldt, &sregs->_ldt); |
| env->idt.limit = sregs->_idt.limit; |
| env->idt.base = sregs->_idt.base; |
| env->gdt.limit = sregs->_gdt.limit; |
| env->gdt.base = sregs->_gdt.base; |
| return 0; |
| } |
| |
| static int hax_set_segments(CPUArchState *env, struct vcpu_state_t *sregs) |
| { |
| if ((env->eflags & VM_MASK)) { |
| set_v8086_seg(&sregs->_cs, &env->segs[R_CS]); |
| set_v8086_seg(&sregs->_ds, &env->segs[R_DS]); |
| set_v8086_seg(&sregs->_es, &env->segs[R_ES]); |
| set_v8086_seg(&sregs->_fs, &env->segs[R_FS]); |
| set_v8086_seg(&sregs->_gs, &env->segs[R_GS]); |
| set_v8086_seg(&sregs->_ss, &env->segs[R_SS]); |
| } else { |
| set_seg(&sregs->_cs, &env->segs[R_CS]); |
| set_seg(&sregs->_ds, &env->segs[R_DS]); |
| set_seg(&sregs->_es, &env->segs[R_ES]); |
| set_seg(&sregs->_fs, &env->segs[R_FS]); |
| set_seg(&sregs->_gs, &env->segs[R_GS]); |
| set_seg(&sregs->_ss, &env->segs[R_SS]); |
| |
| if (env->cr[0] & CR0_PE_MASK) { |
| /* force ss cpl to cs cpl */ |
| sregs->_ss.selector = (sregs->_ss.selector & ~3) | |
| (sregs->_cs.selector & 3); |
| sregs->_ss.dpl = sregs->_ss.selector & 3; |
| } |
| } |
| |
| set_seg(&sregs->_tr, &env->tr); |
| set_seg(&sregs->_ldt, &env->ldt); |
| sregs->_idt.limit = env->idt.limit; |
| sregs->_idt.base = env->idt.base; |
| sregs->_gdt.limit = env->gdt.limit; |
| sregs->_gdt.base = env->gdt.base; |
| return 0; |
| } |
| |
| static int hax_sync_vcpu_register(CPUArchState *env, int set) |
| { |
| struct vcpu_state_t regs; |
| int ret; |
| memset(®s, 0, sizeof(struct vcpu_state_t)); |
| |
| if (!set) { |
| ret = hax_sync_vcpu_state(env, ®s, 0); |
| if (ret < 0) { |
| return -1; |
| } |
| } |
| |
| /* generic register */ |
| hax_getput_reg(®s._rax, &env->regs[R_EAX], set); |
| hax_getput_reg(®s._rbx, &env->regs[R_EBX], set); |
| hax_getput_reg(®s._rcx, &env->regs[R_ECX], set); |
| hax_getput_reg(®s._rdx, &env->regs[R_EDX], set); |
| hax_getput_reg(®s._rsi, &env->regs[R_ESI], set); |
| hax_getput_reg(®s._rdi, &env->regs[R_EDI], set); |
| hax_getput_reg(®s._rsp, &env->regs[R_ESP], set); |
| hax_getput_reg(®s._rbp, &env->regs[R_EBP], set); |
| #ifdef TARGET_X86_64 |
| hax_getput_reg(®s._r8, &env->regs[8], set); |
| hax_getput_reg(®s._r9, &env->regs[9], set); |
| hax_getput_reg(®s._r10, &env->regs[10], set); |
| hax_getput_reg(®s._r11, &env->regs[11], set); |
| hax_getput_reg(®s._r12, &env->regs[12], set); |
| hax_getput_reg(®s._r13, &env->regs[13], set); |
| hax_getput_reg(®s._r14, &env->regs[14], set); |
| hax_getput_reg(®s._r15, &env->regs[15], set); |
| #endif |
| hax_getput_reg(®s._rflags, &env->eflags, set); |
| hax_getput_reg(®s._rip, &env->eip, set); |
| |
| if (set) { |
| regs._cr0 = env->cr[0]; |
| regs._cr2 = env->cr[2]; |
| regs._cr3 = env->cr[3]; |
| regs._cr4 = env->cr[4]; |
| hax_set_segments(env, ®s); |
| } else { |
| env->cr[0] = regs._cr0; |
| env->cr[2] = regs._cr2; |
| env->cr[3] = regs._cr3; |
| env->cr[4] = regs._cr4; |
| hax_get_segments(env, ®s); |
| } |
| |
| if (set) { |
| ret = hax_sync_vcpu_state(env, ®s, 1); |
| if (ret < 0) { |
| return -1; |
| } |
| } |
| return 0; |
| } |
| |
| static void hax_msr_entry_set(struct vmx_msr *item, uint32_t index, |
| uint64_t value) |
| { |
| item->entry = index; |
| item->value = value; |
| } |
| |
| static int hax_get_msrs(CPUArchState *env) |
| { |
| struct hax_msr_data md; |
| struct vmx_msr *msrs = md.entries; |
| int ret, i, n; |
| |
| n = 0; |
| msrs[n++].entry = MSR_IA32_SYSENTER_CS; |
| msrs[n++].entry = MSR_IA32_SYSENTER_ESP; |
| msrs[n++].entry = MSR_IA32_SYSENTER_EIP; |
| msrs[n++].entry = MSR_IA32_TSC; |
| #ifdef TARGET_X86_64 |
| msrs[n++].entry = MSR_EFER; |
| msrs[n++].entry = MSR_STAR; |
| msrs[n++].entry = MSR_LSTAR; |
| msrs[n++].entry = MSR_CSTAR; |
| msrs[n++].entry = MSR_FMASK; |
| msrs[n++].entry = MSR_KERNELGSBASE; |
| #endif |
| md.nr_msr = n; |
| ret = hax_sync_msr(env, &md, 0); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| for (i = 0; i < md.done; i++) { |
| switch (msrs[i].entry) { |
| case MSR_IA32_SYSENTER_CS: |
| env->sysenter_cs = msrs[i].value; |
| break; |
| case MSR_IA32_SYSENTER_ESP: |
| env->sysenter_esp = msrs[i].value; |
| break; |
| case MSR_IA32_SYSENTER_EIP: |
| env->sysenter_eip = msrs[i].value; |
| break; |
| case MSR_IA32_TSC: |
| env->tsc = msrs[i].value; |
| break; |
| #ifdef TARGET_X86_64 |
| case MSR_EFER: |
| env->efer = msrs[i].value; |
| break; |
| case MSR_STAR: |
| env->star = msrs[i].value; |
| break; |
| case MSR_LSTAR: |
| env->lstar = msrs[i].value; |
| break; |
| case MSR_CSTAR: |
| env->cstar = msrs[i].value; |
| break; |
| case MSR_FMASK: |
| env->fmask = msrs[i].value; |
| break; |
| case MSR_KERNELGSBASE: |
| env->kernelgsbase = msrs[i].value; |
| break; |
| #endif |
| } |
| } |
| |
| return 0; |
| } |
| |
| static int hax_set_msrs(CPUArchState *env) |
| { |
| struct hax_msr_data md; |
| struct vmx_msr *msrs; |
| msrs = md.entries; |
| int n = 0; |
| |
| memset(&md, 0, sizeof(struct hax_msr_data)); |
| hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs); |
| hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp); |
| hax_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip); |
| hax_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc); |
| #ifdef TARGET_X86_64 |
| hax_msr_entry_set(&msrs[n++], MSR_EFER, env->efer); |
| hax_msr_entry_set(&msrs[n++], MSR_STAR, env->star); |
| hax_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar); |
| hax_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar); |
| hax_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask); |
| hax_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase); |
| #endif |
| md.nr_msr = n; |
| md.done = 0; |
| |
| return hax_sync_msr(env, &md, 1); |
| } |
| |
| static int hax_get_fpu(CPUArchState *env) |
| { |
| struct fx_layout fpu; |
| int i, ret; |
| |
| ret = hax_sync_fpu(env, &fpu, 0); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| env->fpstt = (fpu.fsw >> 11) & 7; |
| env->fpus = fpu.fsw; |
| env->fpuc = fpu.fcw; |
| for (i = 0; i < 8; ++i) { |
| env->fptags[i] = !((fpu.ftw >> i) & 1); |
| } |
| memcpy(env->fpregs, fpu.st_mm, sizeof(env->fpregs)); |
| |
| for (i = 0; i < 8; i++) { |
| env->xmm_regs[i].ZMM_Q(0) = ldq_p(&fpu.mmx_1[i][0]); |
| env->xmm_regs[i].ZMM_Q(1) = ldq_p(&fpu.mmx_1[i][8]); |
| if (CPU_NB_REGS > 8) { |
| env->xmm_regs[i + 8].ZMM_Q(0) = ldq_p(&fpu.mmx_2[i][0]); |
| env->xmm_regs[i + 8].ZMM_Q(1) = ldq_p(&fpu.mmx_2[i][8]); |
| } |
| } |
| env->mxcsr = fpu.mxcsr; |
| |
| return 0; |
| } |
| |
| static int hax_set_fpu(CPUArchState *env) |
| { |
| struct fx_layout fpu; |
| int i; |
| |
| memset(&fpu, 0, sizeof(fpu)); |
| fpu.fsw = env->fpus & ~(7 << 11); |
| fpu.fsw |= (env->fpstt & 7) << 11; |
| fpu.fcw = env->fpuc; |
| |
| for (i = 0; i < 8; ++i) { |
| fpu.ftw |= (!env->fptags[i]) << i; |
| } |
| |
| memcpy(fpu.st_mm, env->fpregs, sizeof(env->fpregs)); |
| for (i = 0; i < 8; i++) { |
| stq_p(&fpu.mmx_1[i][0], env->xmm_regs[i].ZMM_Q(0)); |
| stq_p(&fpu.mmx_1[i][8], env->xmm_regs[i].ZMM_Q(1)); |
| if (CPU_NB_REGS > 8) { |
| stq_p(&fpu.mmx_2[i][0], env->xmm_regs[i + 8].ZMM_Q(0)); |
| stq_p(&fpu.mmx_2[i][8], env->xmm_regs[i + 8].ZMM_Q(1)); |
| } |
| } |
| |
| fpu.mxcsr = env->mxcsr; |
| |
| return hax_sync_fpu(env, &fpu, 1); |
| } |
| |
| static int hax_arch_get_registers(CPUArchState *env) |
| { |
| int ret; |
| |
| ret = hax_sync_vcpu_register(env, 0); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = hax_get_fpu(env); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| ret = hax_get_msrs(env); |
| if (ret < 0) { |
| return ret; |
| } |
| |
| x86_update_hflags(env); |
| return 0; |
| } |
| |
| static int hax_arch_set_registers(CPUArchState *env) |
| { |
| int ret; |
| ret = hax_sync_vcpu_register(env, 1); |
| |
| if (ret < 0) { |
| fprintf(stderr, "Failed to sync vcpu reg\n"); |
| return ret; |
| } |
| ret = hax_set_fpu(env); |
| if (ret < 0) { |
| fprintf(stderr, "FPU failed\n"); |
| return ret; |
| } |
| ret = hax_set_msrs(env); |
| if (ret < 0) { |
| fprintf(stderr, "MSR failed\n"); |
| return ret; |
| } |
| |
| return 0; |
| } |
| |
| static void hax_vcpu_sync_state(CPUArchState *env, int modified) |
| { |
| if (hax_enabled()) { |
| if (modified) { |
| hax_arch_set_registers(env); |
| } else { |
| hax_arch_get_registers(env); |
| } |
| } |
| } |
| |
| /* |
| * much simpler than kvm, at least in first stage because: |
| * We don't need consider the device pass-through, we don't need |
| * consider the framebuffer, and we may even remove the bios at all |
| */ |
| int hax_sync_vcpus(void) |
| { |
| if (hax_enabled()) { |
| CPUState *cpu; |
| |
| cpu = first_cpu; |
| if (!cpu) { |
| return 0; |
| } |
| |
| for (; cpu != NULL; cpu = CPU_NEXT(cpu)) { |
| int ret; |
| |
| ret = hax_arch_set_registers(cpu->env_ptr); |
| if (ret < 0) { |
| return ret; |
| } |
| } |
| } |
| |
| return 0; |
| } |
| |
| void hax_reset_vcpu_state(void *opaque) |
| { |
| CPUState *cpu; |
| for (cpu = first_cpu; cpu != NULL; cpu = CPU_NEXT(cpu)) { |
| cpu->hax_vcpu->tunnel->user_event_pending = 0; |
| cpu->hax_vcpu->tunnel->ready_for_interrupt_injection = 0; |
| } |
| } |
| |
| static void hax_accel_class_init(ObjectClass *oc, void *data) |
| { |
| AccelClass *ac = ACCEL_CLASS(oc); |
| ac->name = "HAX"; |
| ac->init_machine = hax_accel_init; |
| ac->allowed = &hax_allowed; |
| } |
| |
| static const TypeInfo hax_accel_type = { |
| .name = ACCEL_CLASS_NAME("hax"), |
| .parent = TYPE_ACCEL, |
| .class_init = hax_accel_class_init, |
| }; |
| |
| static void hax_type_init(void) |
| { |
| type_register_static(&hax_accel_type); |
| } |
| |
| type_init(hax_type_init); |