blob: 4db254876dd5066cc1dab6c80b833b74645d736b [file] [log] [blame]
/*
* ARM helper routines
*
* Copyright (c) 2005-2007 CodeSourcery, LLC
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2 of the License, or (at your option) any later version.
*
* This library is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with this library; if not, see <http://www.gnu.org/licenses/>.
*/
#include "qemu/osdep.h"
#include "qemu/log.h"
#include "qemu/main-loop.h"
#include "cpu.h"
#include "exec/helper-proto.h"
#include "internals.h"
#include "exec/exec-all.h"
#include "exec/cpu_ldst.h"
#define SIGNBIT (uint32_t)0x80000000
#define SIGNBIT64 ((uint64_t)1 << 63)
static CPUState *do_raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
CPUState *cs = env_cpu(env);
if (target_el == 1 && (arm_hcr_el2_eff(env) & HCR_TGE)) {
/*
* Redirect NS EL1 exceptions to NS EL2. These are reported with
* their original syndrome register value, with the exception of
* SIMD/FP access traps, which are reported as uncategorized
* (see DDI0478C.a D1.10.4)
*/
target_el = 2;
if (syn_get_ec(syndrome) == EC_ADVSIMDFPACCESSTRAP) {
syndrome = syn_uncategorized();
}
}
assert(!excp_is_internal(excp));
cs->exception_index = excp;
env->exception.syndrome = syndrome;
env->exception.target_el = target_el;
return cs;
}
void raise_exception(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
cpu_loop_exit(cs);
}
void raise_exception_ra(CPUARMState *env, uint32_t excp, uint32_t syndrome,
uint32_t target_el, uintptr_t ra)
{
CPUState *cs = do_raise_exception(env, excp, syndrome, target_el);
cpu_loop_exit_restore(cs, ra);
}
uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, void *vn,
uint32_t maxindex)
{
uint32_t val, shift;
uint64_t *table = vn;
val = 0;
for (shift = 0; shift < 32; shift += 8) {
uint32_t index = (ireg >> shift) & 0xff;
if (index < maxindex) {
uint32_t tmp = (table[index >> 3] >> ((index & 7) << 3)) & 0xff;
val |= tmp << shift;
} else {
val |= def & (0xff << shift);
}
}
return val;
}
#if !defined(CONFIG_USER_ONLY)
static inline uint32_t merge_syn_data_abort(uint32_t template_syn,
unsigned int target_el,
bool same_el, bool ea,
bool s1ptw, bool is_write,
int fsc)
{
uint32_t syn;
/* ISV is only set for data aborts routed to EL2 and
* never for stage-1 page table walks faulting on stage 2.
*
* Furthermore, ISV is only set for certain kinds of load/stores.
* If the template syndrome does not have ISV set, we should leave
* it cleared.
*
* See ARMv8 specs, D7-1974:
* ISS encoding for an exception from a Data Abort, the
* ISV field.
*/
if (!(template_syn & ARM_EL_ISV) || target_el != 2 || s1ptw) {
syn = syn_data_abort_no_iss(same_el,
ea, 0, s1ptw, is_write, fsc);
} else {
/* Fields: IL, ISV, SAS, SSE, SRT, SF and AR come from the template
* syndrome created at translation time.
* Now we create the runtime syndrome with the remaining fields.
*/
syn = syn_data_abort_with_iss(same_el,
0, 0, 0, 0, 0,
ea, 0, s1ptw, is_write, fsc,
false);
/* Merge the runtime syndrome with the template syndrome. */
syn |= template_syn;
}
return syn;
}
void arm_deliver_fault(ARMCPU *cpu, vaddr addr, MMUAccessType access_type,
int mmu_idx, ARMMMUFaultInfo *fi)
{
CPUARMState *env = &cpu->env;
int target_el;
bool same_el;
uint32_t syn, exc, fsr, fsc;
ARMMMUIdx arm_mmu_idx = core_to_arm_mmu_idx(env, mmu_idx);
target_el = exception_target_el(env);
if (fi->stage2) {
target_el = 2;
env->cp15.hpfar_el2 = extract64(fi->s2addr, 12, 47) << 4;
}
same_el = (arm_current_el(env) == target_el);
if (target_el == 2 || arm_el_is_aa64(env, target_el) ||
arm_s1_regime_using_lpae_format(env, arm_mmu_idx)) {
/* LPAE format fault status register : bottom 6 bits are
* status code in the same form as needed for syndrome
*/
fsr = arm_fi_to_lfsc(fi);
fsc = extract32(fsr, 0, 6);
} else {
fsr = arm_fi_to_sfsc(fi);
/* Short format FSR : this fault will never actually be reported
* to an EL that uses a syndrome register. Use a (currently)
* reserved FSR code in case the constructed syndrome does leak
* into the guest somehow.
*/
fsc = 0x3f;
}
if (access_type == MMU_INST_FETCH) {
syn = syn_insn_abort(same_el, fi->ea, fi->s1ptw, fsc);
exc = EXCP_PREFETCH_ABORT;
} else {
syn = merge_syn_data_abort(env->exception.syndrome, target_el,
same_el, fi->ea, fi->s1ptw,
access_type == MMU_DATA_STORE,
fsc);
if (access_type == MMU_DATA_STORE
&& arm_feature(env, ARM_FEATURE_V6)) {
fsr |= (1 << 11);
}
exc = EXCP_DATA_ABORT;
}
env->exception.vaddress = addr;
env->exception.fsr = fsr;
raise_exception(env, exc, syn, target_el);
}
/* Raise a data fault alignment exception for the specified virtual address */
void arm_cpu_do_unaligned_access(CPUState *cs, vaddr vaddr,
MMUAccessType access_type,
int mmu_idx, uintptr_t retaddr)
{
ARMCPU *cpu = ARM_CPU(cs);
ARMMMUFaultInfo fi = {};
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr, true);
fi.type = ARMFault_Alignment;
arm_deliver_fault(cpu, vaddr, access_type, mmu_idx, &fi);
}
/* arm_cpu_do_transaction_failed: handle a memory system error response
* (eg "no device/memory present at address") by raising an external abort
* exception
*/
void arm_cpu_do_transaction_failed(CPUState *cs, hwaddr physaddr,
vaddr addr, unsigned size,
MMUAccessType access_type,
int mmu_idx, MemTxAttrs attrs,
MemTxResult response, uintptr_t retaddr)
{
ARMCPU *cpu = ARM_CPU(cs);
ARMMMUFaultInfo fi = {};
/* now we have a real cpu fault */
cpu_restore_state(cs, retaddr, true);
fi.ea = arm_extabort_type(response);
fi.type = ARMFault_SyncExternal;
arm_deliver_fault(cpu, addr, access_type, mmu_idx, &fi);
}
#endif /* !defined(CONFIG_USER_ONLY) */
void HELPER(v8m_stackcheck)(CPUARMState *env, uint32_t newvalue)
{
/*
* Perform the v8M stack limit check for SP updates from translated code,
* raising an exception if the limit is breached.
*/
if (newvalue < v7m_sp_limit(env)) {
CPUState *cs = env_cpu(env);
/*
* Stack limit exceptions are a rare case, so rather than syncing
* PC/condbits before the call, we use cpu_restore_state() to
* get them right before raising the exception.
*/
cpu_restore_state(cs, GETPC(), true);
raise_exception(env, EXCP_STKOF, 0, 1);
}
}
uint32_t HELPER(add_setq)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT))
env->QF = 1;
return res;
}
uint32_t HELPER(add_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) {
env->QF = 1;
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint32_t HELPER(sub_saturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) {
env->QF = 1;
res = ~(((int32_t)a >> 31) ^ SIGNBIT);
}
return res;
}
uint32_t HELPER(double_saturate)(CPUARMState *env, int32_t val)
{
uint32_t res;
if (val >= 0x40000000) {
res = ~SIGNBIT;
env->QF = 1;
} else if (val <= (int32_t)0xc0000000) {
res = SIGNBIT;
env->QF = 1;
} else {
res = val << 1;
}
return res;
}
uint32_t HELPER(add_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a + b;
if (res < a) {
env->QF = 1;
res = ~0;
}
return res;
}
uint32_t HELPER(sub_usaturate)(CPUARMState *env, uint32_t a, uint32_t b)
{
uint32_t res = a - b;
if (res > a) {
env->QF = 1;
res = 0;
}
return res;
}
/* Signed saturation. */
static inline uint32_t do_ssat(CPUARMState *env, int32_t val, int shift)
{
int32_t top;
uint32_t mask;
top = val >> shift;
mask = (1u << shift) - 1;
if (top > 0) {
env->QF = 1;
return mask;
} else if (top < -1) {
env->QF = 1;
return ~mask;
}
return val;
}
/* Unsigned saturation. */
static inline uint32_t do_usat(CPUARMState *env, int32_t val, int shift)
{
uint32_t max;
max = (1u << shift) - 1;
if (val < 0) {
env->QF = 1;
return 0;
} else if (val > max) {
env->QF = 1;
return max;
}
return val;
}
/* Signed saturate. */
uint32_t HELPER(ssat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
return do_ssat(env, x, shift);
}
/* Dual halfword signed saturate. */
uint32_t HELPER(ssat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
uint32_t res;
res = (uint16_t)do_ssat(env, (int16_t)x, shift);
res |= do_ssat(env, ((int32_t)x) >> 16, shift) << 16;
return res;
}
/* Unsigned saturate. */
uint32_t HELPER(usat)(CPUARMState *env, uint32_t x, uint32_t shift)
{
return do_usat(env, x, shift);
}
/* Dual halfword unsigned saturate. */
uint32_t HELPER(usat16)(CPUARMState *env, uint32_t x, uint32_t shift)
{
uint32_t res;
res = (uint16_t)do_usat(env, (int16_t)x, shift);
res |= do_usat(env, ((int32_t)x) >> 16, shift) << 16;
return res;
}
void HELPER(setend)(CPUARMState *env)
{
env->uncached_cpsr ^= CPSR_E;
}
/* Function checks whether WFx (WFI/WFE) instructions are set up to be trapped.
* The function returns the target EL (1-3) if the instruction is to be trapped;
* otherwise it returns 0 indicating it is not trapped.
*/
static inline int check_wfx_trap(CPUARMState *env, bool is_wfe)
{
int cur_el = arm_current_el(env);
uint64_t mask;
if (arm_feature(env, ARM_FEATURE_M)) {
/* M profile cores can never trap WFI/WFE. */
return 0;
}
/* If we are currently in EL0 then we need to check if SCTLR is set up for
* WFx instructions being trapped to EL1. These trap bits don't exist in v7.
*/
if (cur_el < 1 && arm_feature(env, ARM_FEATURE_V8)) {
int target_el;
mask = is_wfe ? SCTLR_nTWE : SCTLR_nTWI;
if (arm_is_secure_below_el3(env) && !arm_el_is_aa64(env, 3)) {
/* Secure EL0 and Secure PL1 is at EL3 */
target_el = 3;
} else {
target_el = 1;
}
if (!(env->cp15.sctlr_el[target_el] & mask)) {
return target_el;
}
}
/* We are not trapping to EL1; trap to EL2 if HCR_EL2 requires it
* No need for ARM_FEATURE check as if HCR_EL2 doesn't exist the
* bits will be zero indicating no trap.
*/
if (cur_el < 2) {
mask = is_wfe ? HCR_TWE : HCR_TWI;
if (arm_hcr_el2_eff(env) & mask) {
return 2;
}
}
/* We are not trapping to EL1 or EL2; trap to EL3 if SCR_EL3 requires it */
if (cur_el < 3) {
mask = (is_wfe) ? SCR_TWE : SCR_TWI;
if (env->cp15.scr_el3 & mask) {
return 3;
}
}
return 0;
}
void HELPER(wfi)(CPUARMState *env, uint32_t insn_len)
{
CPUState *cs = env_cpu(env);
int target_el = check_wfx_trap(env, false);
if (cpu_has_work(cs)) {
/* Don't bother to go into our "low power state" if
* we would just wake up immediately.
*/
return;
}
if (target_el) {
env->pc -= insn_len;
raise_exception(env, EXCP_UDEF, syn_wfx(1, 0xe, 0, insn_len == 2),
target_el);
}
cs->exception_index = EXCP_HLT;
cs->halted = 1;
cpu_loop_exit(cs);
}
void HELPER(wfe)(CPUARMState *env)
{
/* This is a hint instruction that is semantically different
* from YIELD even though we currently implement it identically.
* Don't actually halt the CPU, just yield back to top
* level loop. This is not going into a "low power state"
* (ie halting until some event occurs), so we never take
* a configurable trap to a different exception level.
*/
HELPER(yield)(env);
}
void HELPER(yield)(CPUARMState *env)
{
CPUState *cs = env_cpu(env);
/* This is a non-trappable hint instruction that generally indicates
* that the guest is currently busy-looping. Yield control back to the
* top level loop so that a more deserving VCPU has a chance to run.
*/
cs->exception_index = EXCP_YIELD;
cpu_loop_exit(cs);
}
/* Raise an internal-to-QEMU exception. This is limited to only
* those EXCP values which are special cases for QEMU to interrupt
* execution and not to be used for exceptions which are passed to
* the guest (those must all have syndrome information and thus should
* use exception_with_syndrome).
*/
void HELPER(exception_internal)(CPUARMState *env, uint32_t excp)
{
CPUState *cs = env_cpu(env);
assert(excp_is_internal(excp));
cs->exception_index = excp;
cpu_loop_exit(cs);
}
/* Raise an exception with the specified syndrome register value */
void HELPER(exception_with_syndrome)(CPUARMState *env, uint32_t excp,
uint32_t syndrome, uint32_t target_el)
{
raise_exception(env, excp, syndrome, target_el);
}
/* Raise an EXCP_BKPT with the specified syndrome register value,
* targeting the correct exception level for debug exceptions.
*/
void HELPER(exception_bkpt_insn)(CPUARMState *env, uint32_t syndrome)
{
/* FSR will only be used if the debug target EL is AArch32. */
env->exception.fsr = arm_debug_exception_fsr(env);
/* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
* values to the guest that it shouldn't be able to see at its
* exception/security level.
*/
env->exception.vaddress = 0;
raise_exception(env, EXCP_BKPT, syndrome, arm_debug_target_el(env));
}
uint32_t HELPER(cpsr_read)(CPUARMState *env)
{
return cpsr_read(env) & ~(CPSR_EXEC | CPSR_RESERVED);
}
void HELPER(cpsr_write)(CPUARMState *env, uint32_t val, uint32_t mask)
{
cpsr_write(env, val, mask, CPSRWriteByInstr);
}
/* Write the CPSR for a 32-bit exception return */
void HELPER(cpsr_write_eret)(CPUARMState *env, uint32_t val)
{
qemu_mutex_lock_iothread();
arm_call_pre_el_change_hook(env_archcpu(env));
qemu_mutex_unlock_iothread();
cpsr_write(env, val, CPSR_ERET_MASK, CPSRWriteExceptionReturn);
/* Generated code has already stored the new PC value, but
* without masking out its low bits, because which bits need
* masking depends on whether we're returning to Thumb or ARM
* state. Do the masking now.
*/
env->regs[15] &= (env->thumb ? ~1 : ~3);
qemu_mutex_lock_iothread();
arm_call_el_change_hook(env_archcpu(env));
qemu_mutex_unlock_iothread();
}
/* Access to user mode registers from privileged modes. */
uint32_t HELPER(get_user_reg)(CPUARMState *env, uint32_t regno)
{
uint32_t val;
if (regno == 13) {
val = env->banked_r13[BANK_USRSYS];
} else if (regno == 14) {
val = env->banked_r14[BANK_USRSYS];
} else if (regno >= 8
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
val = env->usr_regs[regno - 8];
} else {
val = env->regs[regno];
}
return val;
}
void HELPER(set_user_reg)(CPUARMState *env, uint32_t regno, uint32_t val)
{
if (regno == 13) {
env->banked_r13[BANK_USRSYS] = val;
} else if (regno == 14) {
env->banked_r14[BANK_USRSYS] = val;
} else if (regno >= 8
&& (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) {
env->usr_regs[regno - 8] = val;
} else {
env->regs[regno] = val;
}
}
void HELPER(set_r13_banked)(CPUARMState *env, uint32_t mode, uint32_t val)
{
if ((env->uncached_cpsr & CPSR_M) == mode) {
env->regs[13] = val;
} else {
env->banked_r13[bank_number(mode)] = val;
}
}
uint32_t HELPER(get_r13_banked)(CPUARMState *env, uint32_t mode)
{
if ((env->uncached_cpsr & CPSR_M) == ARM_CPU_MODE_SYS) {
/* SRS instruction is UNPREDICTABLE from System mode; we UNDEF.
* Other UNPREDICTABLE and UNDEF cases were caught at translate time.
*/
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
if ((env->uncached_cpsr & CPSR_M) == mode) {
return env->regs[13];
} else {
return env->banked_r13[bank_number(mode)];
}
}
static void msr_mrs_banked_exc_checks(CPUARMState *env, uint32_t tgtmode,
uint32_t regno)
{
/* Raise an exception if the requested access is one of the UNPREDICTABLE
* cases; otherwise return. This broadly corresponds to the pseudocode
* BankedRegisterAccessValid() and SPSRAccessValid(),
* except that we have already handled some cases at translate time.
*/
int curmode = env->uncached_cpsr & CPSR_M;
if (regno == 17) {
/* ELR_Hyp: a special case because access from tgtmode is OK */
if (curmode != ARM_CPU_MODE_HYP && curmode != ARM_CPU_MODE_MON) {
goto undef;
}
return;
}
if (curmode == tgtmode) {
goto undef;
}
if (tgtmode == ARM_CPU_MODE_USR) {
switch (regno) {
case 8 ... 12:
if (curmode != ARM_CPU_MODE_FIQ) {
goto undef;
}
break;
case 13:
if (curmode == ARM_CPU_MODE_SYS) {
goto undef;
}
break;
case 14:
if (curmode == ARM_CPU_MODE_HYP || curmode == ARM_CPU_MODE_SYS) {
goto undef;
}
break;
default:
break;
}
}
if (tgtmode == ARM_CPU_MODE_HYP) {
/* SPSR_Hyp, r13_hyp: accessible from Monitor mode only */
if (curmode != ARM_CPU_MODE_MON) {
goto undef;
}
}
return;
undef:
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
void HELPER(msr_banked)(CPUARMState *env, uint32_t value, uint32_t tgtmode,
uint32_t regno)
{
msr_mrs_banked_exc_checks(env, tgtmode, regno);
switch (regno) {
case 16: /* SPSRs */
env->banked_spsr[bank_number(tgtmode)] = value;
break;
case 17: /* ELR_Hyp */
env->elr_el[2] = value;
break;
case 13:
env->banked_r13[bank_number(tgtmode)] = value;
break;
case 14:
env->banked_r14[r14_bank_number(tgtmode)] = value;
break;
case 8 ... 12:
switch (tgtmode) {
case ARM_CPU_MODE_USR:
env->usr_regs[regno - 8] = value;
break;
case ARM_CPU_MODE_FIQ:
env->fiq_regs[regno - 8] = value;
break;
default:
g_assert_not_reached();
}
break;
default:
g_assert_not_reached();
}
}
uint32_t HELPER(mrs_banked)(CPUARMState *env, uint32_t tgtmode, uint32_t regno)
{
msr_mrs_banked_exc_checks(env, tgtmode, regno);
switch (regno) {
case 16: /* SPSRs */
return env->banked_spsr[bank_number(tgtmode)];
case 17: /* ELR_Hyp */
return env->elr_el[2];
case 13:
return env->banked_r13[bank_number(tgtmode)];
case 14:
return env->banked_r14[r14_bank_number(tgtmode)];
case 8 ... 12:
switch (tgtmode) {
case ARM_CPU_MODE_USR:
return env->usr_regs[regno - 8];
case ARM_CPU_MODE_FIQ:
return env->fiq_regs[regno - 8];
default:
g_assert_not_reached();
}
default:
g_assert_not_reached();
}
}
void HELPER(access_check_cp_reg)(CPUARMState *env, void *rip, uint32_t syndrome,
uint32_t isread)
{
const ARMCPRegInfo *ri = rip;
int target_el;
if (arm_feature(env, ARM_FEATURE_XSCALE) && ri->cp < 14
&& extract32(env->cp15.c15_cpar, ri->cp, 1) == 0) {
raise_exception(env, EXCP_UDEF, syndrome, exception_target_el(env));
}
if (!ri->accessfn) {
return;
}
switch (ri->accessfn(env, ri, isread)) {
case CP_ACCESS_OK:
return;
case CP_ACCESS_TRAP:
target_el = exception_target_el(env);
break;
case CP_ACCESS_TRAP_EL2:
/* Requesting a trap to EL2 when we're in EL3 or S-EL0/1 is
* a bug in the access function.
*/
assert(!arm_is_secure(env) && arm_current_el(env) != 3);
target_el = 2;
break;
case CP_ACCESS_TRAP_EL3:
target_el = 3;
break;
case CP_ACCESS_TRAP_UNCATEGORIZED:
target_el = exception_target_el(env);
syndrome = syn_uncategorized();
break;
case CP_ACCESS_TRAP_UNCATEGORIZED_EL2:
target_el = 2;
syndrome = syn_uncategorized();
break;
case CP_ACCESS_TRAP_UNCATEGORIZED_EL3:
target_el = 3;
syndrome = syn_uncategorized();
break;
case CP_ACCESS_TRAP_FP_EL2:
target_el = 2;
/* Since we are an implementation that takes exceptions on a trapped
* conditional insn only if the insn has passed its condition code
* check, we take the IMPDEF choice to always report CV=1 COND=0xe
* (which is also the required value for AArch64 traps).
*/
syndrome = syn_fp_access_trap(1, 0xe, false);
break;
case CP_ACCESS_TRAP_FP_EL3:
target_el = 3;
syndrome = syn_fp_access_trap(1, 0xe, false);
break;
default:
g_assert_not_reached();
}
raise_exception(env, EXCP_UDEF, syndrome, target_el);
}
void HELPER(set_cp_reg)(CPUARMState *env, void *rip, uint32_t value)
{
const ARMCPRegInfo *ri = rip;
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
ri->writefn(env, ri, value);
qemu_mutex_unlock_iothread();
} else {
ri->writefn(env, ri, value);
}
}
uint32_t HELPER(get_cp_reg)(CPUARMState *env, void *rip)
{
const ARMCPRegInfo *ri = rip;
uint32_t res;
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
res = ri->readfn(env, ri);
qemu_mutex_unlock_iothread();
} else {
res = ri->readfn(env, ri);
}
return res;
}
void HELPER(set_cp_reg64)(CPUARMState *env, void *rip, uint64_t value)
{
const ARMCPRegInfo *ri = rip;
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
ri->writefn(env, ri, value);
qemu_mutex_unlock_iothread();
} else {
ri->writefn(env, ri, value);
}
}
uint64_t HELPER(get_cp_reg64)(CPUARMState *env, void *rip)
{
const ARMCPRegInfo *ri = rip;
uint64_t res;
if (ri->type & ARM_CP_IO) {
qemu_mutex_lock_iothread();
res = ri->readfn(env, ri);
qemu_mutex_unlock_iothread();
} else {
res = ri->readfn(env, ri);
}
return res;
}
void HELPER(pre_hvc)(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
/* FIXME: Use actual secure state. */
bool secure = false;
bool undef;
if (arm_is_psci_call(cpu, EXCP_HVC)) {
/* If PSCI is enabled and this looks like a valid PSCI call then
* that overrides the architecturally mandated HVC behaviour.
*/
return;
}
if (!arm_feature(env, ARM_FEATURE_EL2)) {
/* If EL2 doesn't exist, HVC always UNDEFs */
undef = true;
} else if (arm_feature(env, ARM_FEATURE_EL3)) {
/* EL3.HCE has priority over EL2.HCD. */
undef = !(env->cp15.scr_el3 & SCR_HCE);
} else {
undef = env->cp15.hcr_el2 & HCR_HCD;
}
/* In ARMv7 and ARMv8/AArch32, HVC is undef in secure state.
* For ARMv8/AArch64, HVC is allowed in EL3.
* Note that we've already trapped HVC from EL0 at translation
* time.
*/
if (secure && (!is_a64(env) || cur_el == 1)) {
undef = true;
}
if (undef) {
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
}
void HELPER(pre_smc)(CPUARMState *env, uint32_t syndrome)
{
ARMCPU *cpu = env_archcpu(env);
int cur_el = arm_current_el(env);
bool secure = arm_is_secure(env);
bool smd_flag = env->cp15.scr_el3 & SCR_SMD;
/*
* SMC behaviour is summarized in the following table.
* This helper handles the "Trap to EL2" and "Undef insn" cases.
* The "Trap to EL3" and "PSCI call" cases are handled in the exception
* helper.
*
* -> ARM_FEATURE_EL3 and !SMD
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Trap to EL3
* Conduit not SMC Trap to EL2 Trap to EL3
*
*
* -> ARM_FEATURE_EL3 and SMD
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Undef insn
* Conduit not SMC Trap to EL2 Undef insn
*
*
* -> !ARM_FEATURE_EL3
* HCR_TSC && NS EL1 !HCR_TSC || !NS EL1
*
* Conduit SMC, valid call Trap to EL2 PSCI Call
* Conduit SMC, inval call Trap to EL2 Undef insn
* Conduit not SMC Undef insn Undef insn
*/
/* On ARMv8 with EL3 AArch64, SMD applies to both S and NS state.
* On ARMv8 with EL3 AArch32, or ARMv7 with the Virtualization
* extensions, SMD only applies to NS state.
* On ARMv7 without the Virtualization extensions, the SMD bit
* doesn't exist, but we forbid the guest to set it to 1 in scr_write(),
* so we need not special case this here.
*/
bool smd = arm_feature(env, ARM_FEATURE_AARCH64) ? smd_flag
: smd_flag && !secure;
if (!arm_feature(env, ARM_FEATURE_EL3) &&
cpu->psci_conduit != QEMU_PSCI_CONDUIT_SMC) {
/* If we have no EL3 then SMC always UNDEFs and can't be
* trapped to EL2. PSCI-via-SMC is a sort of ersatz EL3
* firmware within QEMU, and we want an EL2 guest to be able
* to forbid its EL1 from making PSCI calls into QEMU's
* "firmware" via HCR.TSC, so for these purposes treat
* PSCI-via-SMC as implying an EL3.
* This handles the very last line of the previous table.
*/
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
if (cur_el == 1 && (arm_hcr_el2_eff(env) & HCR_TSC)) {
/* In NS EL1, HCR controlled routing to EL2 has priority over SMD.
* We also want an EL2 guest to be able to forbid its EL1 from
* making PSCI calls into QEMU's "firmware" via HCR.TSC.
* This handles all the "Trap to EL2" cases of the previous table.
*/
raise_exception(env, EXCP_HYP_TRAP, syndrome, 2);
}
/* Catch the two remaining "Undef insn" cases of the previous table:
* - PSCI conduit is SMC but we don't have a valid PCSI call,
* - We don't have EL3 or SMD is set.
*/
if (!arm_is_psci_call(cpu, EXCP_SMC) &&
(smd || !arm_feature(env, ARM_FEATURE_EL3))) {
raise_exception(env, EXCP_UDEF, syn_uncategorized(),
exception_target_el(env));
}
}
/* Return true if the linked breakpoint entry lbn passes its checks */
static bool linked_bp_matches(ARMCPU *cpu, int lbn)
{
CPUARMState *env = &cpu->env;
uint64_t bcr = env->cp15.dbgbcr[lbn];
int brps = extract32(cpu->dbgdidr, 24, 4);
int ctx_cmps = extract32(cpu->dbgdidr, 20, 4);
int bt;
uint32_t contextidr;
/* Links to unimplemented or non-context aware breakpoints are
* CONSTRAINED UNPREDICTABLE: either behave as if disabled, or
* as if linked to an UNKNOWN context-aware breakpoint (in which
* case DBGWCR<n>_EL1.LBN must indicate that breakpoint).
* We choose the former.
*/
if (lbn > brps || lbn < (brps - ctx_cmps)) {
return false;
}
bcr = env->cp15.dbgbcr[lbn];
if (extract64(bcr, 0, 1) == 0) {
/* Linked breakpoint disabled : generate no events */
return false;
}
bt = extract64(bcr, 20, 4);
/* We match the whole register even if this is AArch32 using the
* short descriptor format (in which case it holds both PROCID and ASID),
* since we don't implement the optional v7 context ID masking.
*/
contextidr = extract64(env->cp15.contextidr_el[1], 0, 32);
switch (bt) {
case 3: /* linked context ID match */
if (arm_current_el(env) > 1) {
/* Context matches never fire in EL2 or (AArch64) EL3 */
return false;
}
return (contextidr == extract64(env->cp15.dbgbvr[lbn], 0, 32));
case 5: /* linked address mismatch (reserved in AArch64) */
case 9: /* linked VMID match (reserved if no EL2) */
case 11: /* linked context ID and VMID match (reserved if no EL2) */
default:
/* Links to Unlinked context breakpoints must generate no
* events; we choose to do the same for reserved values too.
*/
return false;
}
return false;
}
static bool bp_wp_matches(ARMCPU *cpu, int n, bool is_wp)
{
CPUARMState *env = &cpu->env;
uint64_t cr;
int pac, hmc, ssc, wt, lbn;
/* Note that for watchpoints the check is against the CPU security
* state, not the S/NS attribute on the offending data access.
*/
bool is_secure = arm_is_secure(env);
int access_el = arm_current_el(env);
if (is_wp) {
CPUWatchpoint *wp = env->cpu_watchpoint[n];
if (!wp || !(wp->flags & BP_WATCHPOINT_HIT)) {
return false;
}
cr = env->cp15.dbgwcr[n];
if (wp->hitattrs.user) {
/* The LDRT/STRT/LDT/STT "unprivileged access" instructions should
* match watchpoints as if they were accesses done at EL0, even if
* the CPU is at EL1 or higher.
*/
access_el = 0;
}
} else {
uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
if (!env->cpu_breakpoint[n] || env->cpu_breakpoint[n]->pc != pc) {
return false;
}
cr = env->cp15.dbgbcr[n];
}
/* The WATCHPOINT_HIT flag guarantees us that the watchpoint is
* enabled and that the address and access type match; for breakpoints
* we know the address matched; check the remaining fields, including
* linked breakpoints. We rely on WCR and BCR having the same layout
* for the LBN, SSC, HMC, PAC/PMC and is-linked fields.
* Note that some combinations of {PAC, HMC, SSC} are reserved and
* must act either like some valid combination or as if the watchpoint
* were disabled. We choose the former, and use this together with
* the fact that EL3 must always be Secure and EL2 must always be
* Non-Secure to simplify the code slightly compared to the full
* table in the ARM ARM.
*/
pac = extract64(cr, 1, 2);
hmc = extract64(cr, 13, 1);
ssc = extract64(cr, 14, 2);
switch (ssc) {
case 0:
break;
case 1:
case 3:
if (is_secure) {
return false;
}
break;
case 2:
if (!is_secure) {
return false;
}
break;
}
switch (access_el) {
case 3:
case 2:
if (!hmc) {
return false;
}
break;
case 1:
if (extract32(pac, 0, 1) == 0) {
return false;
}
break;
case 0:
if (extract32(pac, 1, 1) == 0) {
return false;
}
break;
default:
g_assert_not_reached();
}
wt = extract64(cr, 20, 1);
lbn = extract64(cr, 16, 4);
if (wt && !linked_bp_matches(cpu, lbn)) {
return false;
}
return true;
}
static bool check_watchpoints(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
int n;
/* If watchpoints are disabled globally or we can't take debug
* exceptions here then watchpoint firings are ignored.
*/
if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
|| !arm_generate_debug_exceptions(env)) {
return false;
}
for (n = 0; n < ARRAY_SIZE(env->cpu_watchpoint); n++) {
if (bp_wp_matches(cpu, n, true)) {
return true;
}
}
return false;
}
static bool check_breakpoints(ARMCPU *cpu)
{
CPUARMState *env = &cpu->env;
int n;
/* If breakpoints are disabled globally or we can't take debug
* exceptions here then breakpoint firings are ignored.
*/
if (extract32(env->cp15.mdscr_el1, 15, 1) == 0
|| !arm_generate_debug_exceptions(env)) {
return false;
}
for (n = 0; n < ARRAY_SIZE(env->cpu_breakpoint); n++) {
if (bp_wp_matches(cpu, n, false)) {
return true;
}
}
return false;
}
void HELPER(check_breakpoints)(CPUARMState *env)
{
ARMCPU *cpu = env_archcpu(env);
if (check_breakpoints(cpu)) {
HELPER(exception_internal(env, EXCP_DEBUG));
}
}
bool arm_debug_check_watchpoint(CPUState *cs, CPUWatchpoint *wp)
{
/* Called by core code when a CPU watchpoint fires; need to check if this
* is also an architectural watchpoint match.
*/
ARMCPU *cpu = ARM_CPU(cs);
return check_watchpoints(cpu);
}
vaddr arm_adjust_watchpoint_address(CPUState *cs, vaddr addr, int len)
{
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
/* In BE32 system mode, target memory is stored byteswapped (on a
* little-endian host system), and by the time we reach here (via an
* opcode helper) the addresses of subword accesses have been adjusted
* to account for that, which means that watchpoints will not match.
* Undo the adjustment here.
*/
if (arm_sctlr_b(env)) {
if (len == 1) {
addr ^= 3;
} else if (len == 2) {
addr ^= 2;
}
}
return addr;
}
void arm_debug_excp_handler(CPUState *cs)
{
/* Called by core code when a watchpoint or breakpoint fires;
* need to check which one and raise the appropriate exception.
*/
ARMCPU *cpu = ARM_CPU(cs);
CPUARMState *env = &cpu->env;
CPUWatchpoint *wp_hit = cs->watchpoint_hit;
if (wp_hit) {
if (wp_hit->flags & BP_CPU) {
bool wnr = (wp_hit->flags & BP_WATCHPOINT_HIT_WRITE) != 0;
bool same_el = arm_debug_target_el(env) == arm_current_el(env);
cs->watchpoint_hit = NULL;
env->exception.fsr = arm_debug_exception_fsr(env);
env->exception.vaddress = wp_hit->hitaddr;
raise_exception(env, EXCP_DATA_ABORT,
syn_watchpoint(same_el, 0, wnr),
arm_debug_target_el(env));
}
} else {
uint64_t pc = is_a64(env) ? env->pc : env->regs[15];
bool same_el = (arm_debug_target_el(env) == arm_current_el(env));
/* (1) GDB breakpoints should be handled first.
* (2) Do not raise a CPU exception if no CPU breakpoint has fired,
* since singlestep is also done by generating a debug internal
* exception.
*/
if (cpu_breakpoint_test(cs, pc, BP_GDB)
|| !cpu_breakpoint_test(cs, pc, BP_CPU)) {
return;
}
env->exception.fsr = arm_debug_exception_fsr(env);
/* FAR is UNKNOWN: clear vaddress to avoid potentially exposing
* values to the guest that it shouldn't be able to see at its
* exception/security level.
*/
env->exception.vaddress = 0;
raise_exception(env, EXCP_PREFETCH_ABORT,
syn_breakpoint(same_el),
arm_debug_target_el(env));
}
}
/* ??? Flag setting arithmetic is awkward because we need to do comparisons.
The only way to do that in TCG is a conditional branch, which clobbers
all our temporaries. For now implement these as helper functions. */
/* Similarly for variable shift instructions. */
uint32_t HELPER(shl_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = x & 1;
else
env->CF = 0;
return 0;
} else if (shift != 0) {
env->CF = (x >> (32 - shift)) & 1;
return x << shift;
}
return x;
}
uint32_t HELPER(shr_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
if (shift == 32)
env->CF = (x >> 31) & 1;
else
env->CF = 0;
return 0;
} else if (shift != 0) {
env->CF = (x >> (shift - 1)) & 1;
return x >> shift;
}
return x;
}
uint32_t HELPER(sar_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift = i & 0xff;
if (shift >= 32) {
env->CF = (x >> 31) & 1;
return (int32_t)x >> 31;
} else if (shift != 0) {
env->CF = (x >> (shift - 1)) & 1;
return (int32_t)x >> shift;
}
return x;
}
uint32_t HELPER(ror_cc)(CPUARMState *env, uint32_t x, uint32_t i)
{
int shift1, shift;
shift1 = i & 0xff;
shift = shift1 & 0x1f;
if (shift == 0) {
if (shift1 != 0)
env->CF = (x >> 31) & 1;
return x;
} else {
env->CF = (x >> (shift - 1)) & 1;
return ((uint32_t)x >> shift) | (x << (32 - shift));
}
}