blob: 7a2817319504e600d6433f25d72ed3ee803f1477 [file] [log] [blame]
/*
* QTests for Nuvoton NPCM7xx EMC Modules.
*
* Copyright 2020 Google LLC
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the
* Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* for more details.
*/
#include "qemu/osdep.h"
#include "qemu-common.h"
#include "libqos/libqos.h"
#include "qapi/qmp/qdict.h"
#include "qapi/qmp/qnum.h"
#include "qemu/bitops.h"
#include "qemu/iov.h"
/* Name of the emc device. */
#define TYPE_NPCM7XX_EMC "npcm7xx-emc"
/* Timeout for various operations, in seconds. */
#define TIMEOUT_SECONDS 10
/* Address in memory of the descriptor. */
#define DESC_ADDR (1 << 20) /* 1 MiB */
/* Address in memory of the data packet. */
#define DATA_ADDR (DESC_ADDR + 4096)
#define CRC_LENGTH 4
#define NUM_TX_DESCRIPTORS 3
#define NUM_RX_DESCRIPTORS 2
/* Size of tx,rx test buffers. */
#define TX_DATA_LEN 64
#define RX_DATA_LEN 64
#define TX_STEP_COUNT 10000
#define RX_STEP_COUNT 10000
/* 32-bit register indices. */
typedef enum NPCM7xxPWMRegister {
/* Control registers. */
REG_CAMCMR,
REG_CAMEN,
/* There are 16 CAMn[ML] registers. */
REG_CAMM_BASE,
REG_CAML_BASE,
REG_TXDLSA = 0x22,
REG_RXDLSA,
REG_MCMDR,
REG_MIID,
REG_MIIDA,
REG_FFTCR,
REG_TSDR,
REG_RSDR,
REG_DMARFC,
REG_MIEN,
/* Status registers. */
REG_MISTA,
REG_MGSTA,
REG_MPCNT,
REG_MRPC,
REG_MRPCC,
REG_MREPC,
REG_DMARFS,
REG_CTXDSA,
REG_CTXBSA,
REG_CRXDSA,
REG_CRXBSA,
NPCM7XX_NUM_EMC_REGS,
} NPCM7xxPWMRegister;
enum { NUM_CAMML_REGS = 16 };
/* REG_CAMCMR fields */
/* Enable CAM Compare */
#define REG_CAMCMR_ECMP (1 << 4)
/* Accept Unicast Packet */
#define REG_CAMCMR_AUP (1 << 0)
/* REG_MCMDR fields */
/* Software Reset */
#define REG_MCMDR_SWR (1 << 24)
/* Frame Transmission On */
#define REG_MCMDR_TXON (1 << 8)
/* Accept Long Packet */
#define REG_MCMDR_ALP (1 << 1)
/* Frame Reception On */
#define REG_MCMDR_RXON (1 << 0)
/* REG_MIEN fields */
/* Enable Transmit Completion Interrupt */
#define REG_MIEN_ENTXCP (1 << 18)
/* Enable Transmit Interrupt */
#define REG_MIEN_ENTXINTR (1 << 16)
/* Enable Receive Good Interrupt */
#define REG_MIEN_ENRXGD (1 << 4)
/* ENable Receive Interrupt */
#define REG_MIEN_ENRXINTR (1 << 0)
/* REG_MISTA fields */
/* Transmit Bus Error Interrupt */
#define REG_MISTA_TXBERR (1 << 24)
/* Transmit Descriptor Unavailable Interrupt */
#define REG_MISTA_TDU (1 << 23)
/* Transmit Completion Interrupt */
#define REG_MISTA_TXCP (1 << 18)
/* Transmit Interrupt */
#define REG_MISTA_TXINTR (1 << 16)
/* Receive Bus Error Interrupt */
#define REG_MISTA_RXBERR (1 << 11)
/* Receive Descriptor Unavailable Interrupt */
#define REG_MISTA_RDU (1 << 10)
/* DMA Early Notification Interrupt */
#define REG_MISTA_DENI (1 << 9)
/* Maximum Frame Length Interrupt */
#define REG_MISTA_DFOI (1 << 8)
/* Receive Good Interrupt */
#define REG_MISTA_RXGD (1 << 4)
/* Packet Too Long Interrupt */
#define REG_MISTA_PTLE (1 << 3)
/* Receive Interrupt */
#define REG_MISTA_RXINTR (1 << 0)
typedef struct NPCM7xxEMCTxDesc NPCM7xxEMCTxDesc;
typedef struct NPCM7xxEMCRxDesc NPCM7xxEMCRxDesc;
struct NPCM7xxEMCTxDesc {
uint32_t flags;
uint32_t txbsa;
uint32_t status_and_length;
uint32_t ntxdsa;
};
struct NPCM7xxEMCRxDesc {
uint32_t status_and_length;
uint32_t rxbsa;
uint32_t reserved;
uint32_t nrxdsa;
};
/* NPCM7xxEMCTxDesc.flags values */
/* Owner: 0 = cpu, 1 = emc */
#define TX_DESC_FLAG_OWNER_MASK (1 << 31)
/* Transmit interrupt enable */
#define TX_DESC_FLAG_INTEN (1 << 2)
/* NPCM7xxEMCTxDesc.status_and_length values */
/* Transmission complete */
#define TX_DESC_STATUS_TXCP (1 << 19)
/* Transmit interrupt */
#define TX_DESC_STATUS_TXINTR (1 << 16)
/* NPCM7xxEMCRxDesc.status_and_length values */
/* Owner: 0b00 = cpu, 0b10 = emc */
#define RX_DESC_STATUS_OWNER_SHIFT 30
#define RX_DESC_STATUS_OWNER_MASK 0xc0000000
/* Frame Reception Complete */
#define RX_DESC_STATUS_RXGD (1 << 20)
/* Packet too long */
#define RX_DESC_STATUS_PTLE (1 << 19)
/* Receive Interrupt */
#define RX_DESC_STATUS_RXINTR (1 << 16)
#define RX_DESC_PKT_LEN(word) ((uint32_t) (word) & 0xffff)
typedef struct EMCModule {
int rx_irq;
int tx_irq;
uint64_t base_addr;
} EMCModule;
typedef struct TestData {
const EMCModule *module;
} TestData;
static const EMCModule emc_module_list[] = {
{
.rx_irq = 15,
.tx_irq = 16,
.base_addr = 0xf0825000
},
{
.rx_irq = 114,
.tx_irq = 115,
.base_addr = 0xf0826000
}
};
/* Returns the index of the EMC module. */
static int emc_module_index(const EMCModule *mod)
{
ptrdiff_t diff = mod - emc_module_list;
g_assert_true(diff >= 0 && diff < ARRAY_SIZE(emc_module_list));
return diff;
}
static void packet_test_clear(void *sockets)
{
int *test_sockets = sockets;
close(test_sockets[0]);
g_free(test_sockets);
}
static int *packet_test_init(int module_num, GString *cmd_line)
{
int *test_sockets = g_new(int, 2);
int ret = socketpair(PF_UNIX, SOCK_STREAM, 0, test_sockets);
g_assert_cmpint(ret, != , -1);
/*
* KISS and use -nic. We specify two nics (both emc{0,1}) because there's
* currently no way to specify only emc1: The driver implicitly relies on
* emc[i] == nd_table[i].
*/
if (module_num == 0) {
g_string_append_printf(cmd_line,
" -nic socket,fd=%d,model=" TYPE_NPCM7XX_EMC " "
" -nic user,model=" TYPE_NPCM7XX_EMC " ",
test_sockets[1]);
} else {
g_string_append_printf(cmd_line,
" -nic user,model=" TYPE_NPCM7XX_EMC " "
" -nic socket,fd=%d,model=" TYPE_NPCM7XX_EMC " ",
test_sockets[1]);
}
g_test_queue_destroy(packet_test_clear, test_sockets);
return test_sockets;
}
static uint32_t emc_read(QTestState *qts, const EMCModule *mod,
NPCM7xxPWMRegister regno)
{
return qtest_readl(qts, mod->base_addr + regno * sizeof(uint32_t));
}
static void emc_write(QTestState *qts, const EMCModule *mod,
NPCM7xxPWMRegister regno, uint32_t value)
{
qtest_writel(qts, mod->base_addr + regno * sizeof(uint32_t), value);
}
static void emc_read_tx_desc(QTestState *qts, uint32_t addr,
NPCM7xxEMCTxDesc *desc)
{
qtest_memread(qts, addr, desc, sizeof(*desc));
desc->flags = le32_to_cpu(desc->flags);
desc->txbsa = le32_to_cpu(desc->txbsa);
desc->status_and_length = le32_to_cpu(desc->status_and_length);
desc->ntxdsa = le32_to_cpu(desc->ntxdsa);
}
static void emc_write_tx_desc(QTestState *qts, const NPCM7xxEMCTxDesc *desc,
uint32_t addr)
{
NPCM7xxEMCTxDesc le_desc;
le_desc.flags = cpu_to_le32(desc->flags);
le_desc.txbsa = cpu_to_le32(desc->txbsa);
le_desc.status_and_length = cpu_to_le32(desc->status_and_length);
le_desc.ntxdsa = cpu_to_le32(desc->ntxdsa);
qtest_memwrite(qts, addr, &le_desc, sizeof(le_desc));
}
static void emc_read_rx_desc(QTestState *qts, uint32_t addr,
NPCM7xxEMCRxDesc *desc)
{
qtest_memread(qts, addr, desc, sizeof(*desc));
desc->status_and_length = le32_to_cpu(desc->status_and_length);
desc->rxbsa = le32_to_cpu(desc->rxbsa);
desc->reserved = le32_to_cpu(desc->reserved);
desc->nrxdsa = le32_to_cpu(desc->nrxdsa);
}
static void emc_write_rx_desc(QTestState *qts, const NPCM7xxEMCRxDesc *desc,
uint32_t addr)
{
NPCM7xxEMCRxDesc le_desc;
le_desc.status_and_length = cpu_to_le32(desc->status_and_length);
le_desc.rxbsa = cpu_to_le32(desc->rxbsa);
le_desc.reserved = cpu_to_le32(desc->reserved);
le_desc.nrxdsa = cpu_to_le32(desc->nrxdsa);
qtest_memwrite(qts, addr, &le_desc, sizeof(le_desc));
}
/*
* Reset the EMC module.
* The module must be reset before, e.g., TXDLSA,RXDLSA are changed.
*/
static bool emc_soft_reset(QTestState *qts, const EMCModule *mod)
{
uint32_t val;
uint64_t end_time;
emc_write(qts, mod, REG_MCMDR, REG_MCMDR_SWR);
/*
* Wait for device to reset as the linux driver does.
* During reset the AHB reads 0 for all registers. So first wait for
* something that resets to non-zero, and then wait for SWR becoming 0.
*/
end_time = g_get_monotonic_time() + TIMEOUT_SECONDS * G_TIME_SPAN_SECOND;
do {
qtest_clock_step(qts, 100);
val = emc_read(qts, mod, REG_FFTCR);
} while (val == 0 && g_get_monotonic_time() < end_time);
if (val != 0) {
do {
qtest_clock_step(qts, 100);
val = emc_read(qts, mod, REG_MCMDR);
if ((val & REG_MCMDR_SWR) == 0) {
/*
* N.B. The CAMs have been reset here, so macaddr matching of
* incoming packets will not work.
*/
return true;
}
} while (g_get_monotonic_time() < end_time);
}
g_message("%s: Timeout expired", __func__);
return false;
}
/* Check emc registers are reset to default value. */
static void test_init(gconstpointer test_data)
{
const TestData *td = test_data;
const EMCModule *mod = td->module;
QTestState *qts = qtest_init("-machine quanta-gsj");
int i;
#define CHECK_REG(regno, value) \
do { \
g_assert_cmphex(emc_read(qts, mod, (regno)), ==, (value)); \
} while (0)
CHECK_REG(REG_CAMCMR, 0);
CHECK_REG(REG_CAMEN, 0);
CHECK_REG(REG_TXDLSA, 0xfffffffc);
CHECK_REG(REG_RXDLSA, 0xfffffffc);
CHECK_REG(REG_MCMDR, 0);
CHECK_REG(REG_MIID, 0);
CHECK_REG(REG_MIIDA, 0x00900000);
CHECK_REG(REG_FFTCR, 0x0101);
CHECK_REG(REG_DMARFC, 0x0800);
CHECK_REG(REG_MIEN, 0);
CHECK_REG(REG_MISTA, 0);
CHECK_REG(REG_MGSTA, 0);
CHECK_REG(REG_MPCNT, 0x7fff);
CHECK_REG(REG_MRPC, 0);
CHECK_REG(REG_MRPCC, 0);
CHECK_REG(REG_MREPC, 0);
CHECK_REG(REG_DMARFS, 0);
CHECK_REG(REG_CTXDSA, 0);
CHECK_REG(REG_CTXBSA, 0);
CHECK_REG(REG_CRXDSA, 0);
CHECK_REG(REG_CRXBSA, 0);
#undef CHECK_REG
for (i = 0; i < NUM_CAMML_REGS; ++i) {
g_assert_cmpuint(emc_read(qts, mod, REG_CAMM_BASE + i * 2), ==,
0);
g_assert_cmpuint(emc_read(qts, mod, REG_CAML_BASE + i * 2), ==,
0);
}
qtest_quit(qts);
}
static bool emc_wait_irq(QTestState *qts, const EMCModule *mod, int step,
bool is_tx)
{
uint64_t end_time =
g_get_monotonic_time() + TIMEOUT_SECONDS * G_TIME_SPAN_SECOND;
do {
if (qtest_get_irq(qts, is_tx ? mod->tx_irq : mod->rx_irq)) {
return true;
}
qtest_clock_step(qts, step);
} while (g_get_monotonic_time() < end_time);
g_message("%s: Timeout expired", __func__);
return false;
}
static bool emc_wait_mista(QTestState *qts, const EMCModule *mod, int step,
uint32_t flag)
{
uint64_t end_time =
g_get_monotonic_time() + TIMEOUT_SECONDS * G_TIME_SPAN_SECOND;
do {
uint32_t mista = emc_read(qts, mod, REG_MISTA);
if (mista & flag) {
return true;
}
qtest_clock_step(qts, step);
} while (g_get_monotonic_time() < end_time);
g_message("%s: Timeout expired", __func__);
return false;
}
static bool wait_socket_readable(int fd)
{
fd_set read_fds;
struct timeval tv;
int rv;
FD_ZERO(&read_fds);
FD_SET(fd, &read_fds);
tv.tv_sec = TIMEOUT_SECONDS;
tv.tv_usec = 0;
rv = select(fd + 1, &read_fds, NULL, NULL, &tv);
if (rv == -1) {
perror("select");
} else if (rv == 0) {
g_message("%s: Timeout expired", __func__);
}
return rv == 1;
}
/* Initialize *desc (in host endian format). */
static void init_tx_desc(NPCM7xxEMCTxDesc *desc, size_t count,
uint32_t desc_addr)
{
g_assert(count >= 2);
memset(&desc[0], 0, sizeof(*desc) * count);
/* Leave the last one alone, owned by the cpu -> stops transmission. */
for (size_t i = 0; i < count - 1; ++i) {
desc[i].flags =
(TX_DESC_FLAG_OWNER_MASK | /* owner = 1: emc */
TX_DESC_FLAG_INTEN |
0 | /* crc append = 0 */
0 /* padding enable = 0 */);
desc[i].status_and_length =
(0 | /* collision count = 0 */
0 | /* SQE = 0 */
0 | /* PAU = 0 */
0 | /* TXHA = 0 */
0 | /* LC = 0 */
0 | /* TXABT = 0 */
0 | /* NCS = 0 */
0 | /* EXDEF = 0 */
0 | /* TXCP = 0 */
0 | /* DEF = 0 */
0 | /* TXINTR = 0 */
0 /* length filled in later */);
desc[i].ntxdsa = desc_addr + (i + 1) * sizeof(*desc);
}
}
static void enable_tx(QTestState *qts, const EMCModule *mod,
const NPCM7xxEMCTxDesc *desc, size_t count,
uint32_t desc_addr, uint32_t mien_flags)
{
/* Write the descriptors to guest memory. */
for (size_t i = 0; i < count; ++i) {
emc_write_tx_desc(qts, desc + i, desc_addr + i * sizeof(*desc));
}
/* Trigger sending the packet. */
/* The module must be reset before changing TXDLSA. */
g_assert(emc_soft_reset(qts, mod));
emc_write(qts, mod, REG_TXDLSA, desc_addr);
emc_write(qts, mod, REG_CTXDSA, ~0);
emc_write(qts, mod, REG_MIEN, REG_MIEN_ENTXCP | mien_flags);
{
uint32_t mcmdr = emc_read(qts, mod, REG_MCMDR);
mcmdr |= REG_MCMDR_TXON;
emc_write(qts, mod, REG_MCMDR, mcmdr);
}
/* Prod the device to send the packet. */
emc_write(qts, mod, REG_TSDR, 1);
}
static void emc_send_verify1(QTestState *qts, const EMCModule *mod, int fd,
bool with_irq, uint32_t desc_addr,
uint32_t next_desc_addr,
const char *test_data, int test_size)
{
NPCM7xxEMCTxDesc result_desc;
uint32_t expected_mask, expected_value, recv_len;
int ret;
char buffer[TX_DATA_LEN];
g_assert(wait_socket_readable(fd));
/* Read the descriptor back. */
emc_read_tx_desc(qts, desc_addr, &result_desc);
/* Descriptor should be owned by cpu now. */
g_assert((result_desc.flags & TX_DESC_FLAG_OWNER_MASK) == 0);
/* Test the status bits, ignoring the length field. */
expected_mask = 0xffff << 16;
expected_value = TX_DESC_STATUS_TXCP;
if (with_irq) {
expected_value |= TX_DESC_STATUS_TXINTR;
}
g_assert_cmphex((result_desc.status_and_length & expected_mask), ==,
expected_value);
/* Check data sent to the backend. */
recv_len = ~0;
ret = qemu_recv(fd, &recv_len, sizeof(recv_len), MSG_DONTWAIT);
g_assert_cmpint(ret, == , sizeof(recv_len));
g_assert(wait_socket_readable(fd));
memset(buffer, 0xff, sizeof(buffer));
ret = qemu_recv(fd, buffer, test_size, MSG_DONTWAIT);
g_assert_cmpmem(buffer, ret, test_data, test_size);
}
static void emc_send_verify(QTestState *qts, const EMCModule *mod, int fd,
bool with_irq)
{
NPCM7xxEMCTxDesc desc[NUM_TX_DESCRIPTORS];
uint32_t desc_addr = DESC_ADDR;
static const char test1_data[] = "TEST1";
static const char test2_data[] = "Testing 1 2 3 ...";
uint32_t data1_addr = DATA_ADDR;
uint32_t data2_addr = data1_addr + sizeof(test1_data);
bool got_tdu;
uint32_t end_desc_addr;
/* Prepare test data buffer. */
qtest_memwrite(qts, data1_addr, test1_data, sizeof(test1_data));
qtest_memwrite(qts, data2_addr, test2_data, sizeof(test2_data));
init_tx_desc(&desc[0], NUM_TX_DESCRIPTORS, desc_addr);
desc[0].txbsa = data1_addr;
desc[0].status_and_length |= sizeof(test1_data);
desc[1].txbsa = data2_addr;
desc[1].status_and_length |= sizeof(test2_data);
enable_tx(qts, mod, &desc[0], NUM_TX_DESCRIPTORS, desc_addr,
with_irq ? REG_MIEN_ENTXINTR : 0);
/*
* It's problematic to observe the interrupt for each packet.
* Instead just wait until all the packets go out.
*/
got_tdu = false;
while (!got_tdu) {
if (with_irq) {
g_assert_true(emc_wait_irq(qts, mod, TX_STEP_COUNT,
/*is_tx=*/true));
} else {
g_assert_true(emc_wait_mista(qts, mod, TX_STEP_COUNT,
REG_MISTA_TXINTR));
}
got_tdu = !!(emc_read(qts, mod, REG_MISTA) & REG_MISTA_TDU);
/* If we don't have TDU yet, reset the interrupt. */
if (!got_tdu) {
emc_write(qts, mod, REG_MISTA,
emc_read(qts, mod, REG_MISTA) & 0xffff0000);
}
}
end_desc_addr = desc_addr + 2 * sizeof(desc[0]);
g_assert_cmphex(emc_read(qts, mod, REG_CTXDSA), ==, end_desc_addr);
g_assert_cmphex(emc_read(qts, mod, REG_MISTA), ==,
REG_MISTA_TXCP | REG_MISTA_TXINTR | REG_MISTA_TDU);
emc_send_verify1(qts, mod, fd, with_irq,
desc_addr, end_desc_addr,
test1_data, sizeof(test1_data));
emc_send_verify1(qts, mod, fd, with_irq,
desc_addr + sizeof(desc[0]), end_desc_addr,
test2_data, sizeof(test2_data));
}
/* Initialize *desc (in host endian format). */
static void init_rx_desc(NPCM7xxEMCRxDesc *desc, size_t count,
uint32_t desc_addr, uint32_t data_addr)
{
g_assert_true(count >= 2);
memset(desc, 0, sizeof(*desc) * count);
desc[0].rxbsa = data_addr;
desc[0].status_and_length =
(0b10 << RX_DESC_STATUS_OWNER_SHIFT | /* owner = 10: emc */
0 | /* RP = 0 */
0 | /* ALIE = 0 */
0 | /* RXGD = 0 */
0 | /* PTLE = 0 */
0 | /* CRCE = 0 */
0 | /* RXINTR = 0 */
0 /* length (filled in later) */);
/* Leave the last one alone, owned by the cpu -> stops transmission. */
desc[0].nrxdsa = desc_addr + sizeof(*desc);
}
static void enable_rx(QTestState *qts, const EMCModule *mod,
const NPCM7xxEMCRxDesc *desc, size_t count,
uint32_t desc_addr, uint32_t mien_flags,
uint32_t mcmdr_flags)
{
/*
* Write the descriptor to guest memory.
* FWIW, IWBN if the docs said the buffer needs to be at least DMARFC
* bytes.
*/
for (size_t i = 0; i < count; ++i) {
emc_write_rx_desc(qts, desc + i, desc_addr + i * sizeof(*desc));
}
/* Trigger receiving the packet. */
/* The module must be reset before changing RXDLSA. */
g_assert(emc_soft_reset(qts, mod));
emc_write(qts, mod, REG_RXDLSA, desc_addr);
emc_write(qts, mod, REG_MIEN, REG_MIEN_ENRXGD | mien_flags);
/*
* We don't know what the device's macaddr is, so just accept all
* unicast packets (AUP).
*/
emc_write(qts, mod, REG_CAMCMR, REG_CAMCMR_AUP);
emc_write(qts, mod, REG_CAMEN, 1 << 0);
{
uint32_t mcmdr = emc_read(qts, mod, REG_MCMDR);
mcmdr |= REG_MCMDR_RXON | mcmdr_flags;
emc_write(qts, mod, REG_MCMDR, mcmdr);
}
/* Prod the device to accept a packet. */
emc_write(qts, mod, REG_RSDR, 1);
}
static void emc_recv_verify(QTestState *qts, const EMCModule *mod, int fd,
bool with_irq)
{
NPCM7xxEMCRxDesc desc[NUM_RX_DESCRIPTORS];
uint32_t desc_addr = DESC_ADDR;
uint32_t data_addr = DATA_ADDR;
int ret;
uint32_t expected_mask, expected_value;
NPCM7xxEMCRxDesc result_desc;
/* Prepare test data buffer. */
const char test[RX_DATA_LEN] = "TEST";
int len = htonl(sizeof(test));
const struct iovec iov[] = {
{
.iov_base = &len,
.iov_len = sizeof(len),
},{
.iov_base = (char *) test,
.iov_len = sizeof(test),
},
};
/*
* Reset the device BEFORE sending a test packet, otherwise the packet
* may get swallowed by an active device of an earlier test.
*/
init_rx_desc(&desc[0], NUM_RX_DESCRIPTORS, desc_addr, data_addr);
enable_rx(qts, mod, &desc[0], NUM_RX_DESCRIPTORS, desc_addr,
with_irq ? REG_MIEN_ENRXINTR : 0, 0);
/* Send test packet to device's socket. */
ret = iov_send(fd, iov, 2, 0, sizeof(len) + sizeof(test));
g_assert_cmpint(ret, == , sizeof(test) + sizeof(len));
/* Wait for RX interrupt. */
if (with_irq) {
g_assert_true(emc_wait_irq(qts, mod, RX_STEP_COUNT, /*is_tx=*/false));
} else {
g_assert_true(emc_wait_mista(qts, mod, RX_STEP_COUNT, REG_MISTA_RXGD));
}
g_assert_cmphex(emc_read(qts, mod, REG_CRXDSA), ==,
desc_addr + sizeof(desc[0]));
expected_mask = 0xffff;
expected_value = (REG_MISTA_DENI |
REG_MISTA_RXGD |
REG_MISTA_RXINTR);
g_assert_cmphex((emc_read(qts, mod, REG_MISTA) & expected_mask),
==, expected_value);
/* Read the descriptor back. */
emc_read_rx_desc(qts, desc_addr, &result_desc);
/* Descriptor should be owned by cpu now. */
g_assert((result_desc.status_and_length & RX_DESC_STATUS_OWNER_MASK) == 0);
/* Test the status bits, ignoring the length field. */
expected_mask = 0xffff << 16;
expected_value = RX_DESC_STATUS_RXGD;
if (with_irq) {
expected_value |= RX_DESC_STATUS_RXINTR;
}
g_assert_cmphex((result_desc.status_and_length & expected_mask), ==,
expected_value);
g_assert_cmpint(RX_DESC_PKT_LEN(result_desc.status_and_length), ==,
RX_DATA_LEN + CRC_LENGTH);
{
char buffer[RX_DATA_LEN];
qtest_memread(qts, data_addr, buffer, sizeof(buffer));
g_assert_cmpstr(buffer, == , "TEST");
}
}
static void emc_test_ptle(QTestState *qts, const EMCModule *mod, int fd)
{
NPCM7xxEMCRxDesc desc[NUM_RX_DESCRIPTORS];
uint32_t desc_addr = DESC_ADDR;
uint32_t data_addr = DATA_ADDR;
int ret;
NPCM7xxEMCRxDesc result_desc;
uint32_t expected_mask, expected_value;
/* Prepare test data buffer. */
#define PTLE_DATA_LEN 1600
char test_data[PTLE_DATA_LEN];
int len = htonl(sizeof(test_data));
const struct iovec iov[] = {
{
.iov_base = &len,
.iov_len = sizeof(len),
},{
.iov_base = (char *) test_data,
.iov_len = sizeof(test_data),
},
};
memset(test_data, 42, sizeof(test_data));
/*
* Reset the device BEFORE sending a test packet, otherwise the packet
* may get swallowed by an active device of an earlier test.
*/
init_rx_desc(&desc[0], NUM_RX_DESCRIPTORS, desc_addr, data_addr);
enable_rx(qts, mod, &desc[0], NUM_RX_DESCRIPTORS, desc_addr,
REG_MIEN_ENRXINTR, REG_MCMDR_ALP);
/* Send test packet to device's socket. */
ret = iov_send(fd, iov, 2, 0, sizeof(len) + sizeof(test_data));
g_assert_cmpint(ret, == , sizeof(test_data) + sizeof(len));
/* Wait for RX interrupt. */
g_assert_true(emc_wait_irq(qts, mod, RX_STEP_COUNT, /*is_tx=*/false));
/* Read the descriptor back. */
emc_read_rx_desc(qts, desc_addr, &result_desc);
/* Descriptor should be owned by cpu now. */
g_assert((result_desc.status_and_length & RX_DESC_STATUS_OWNER_MASK) == 0);
/* Test the status bits, ignoring the length field. */
expected_mask = 0xffff << 16;
expected_value = (RX_DESC_STATUS_RXGD |
RX_DESC_STATUS_PTLE |
RX_DESC_STATUS_RXINTR);
g_assert_cmphex((result_desc.status_and_length & expected_mask), ==,
expected_value);
g_assert_cmpint(RX_DESC_PKT_LEN(result_desc.status_and_length), ==,
PTLE_DATA_LEN + CRC_LENGTH);
{
char buffer[PTLE_DATA_LEN];
qtest_memread(qts, data_addr, buffer, sizeof(buffer));
g_assert(memcmp(buffer, test_data, PTLE_DATA_LEN) == 0);
}
}
static void test_tx(gconstpointer test_data)
{
const TestData *td = test_data;
GString *cmd_line = g_string_new("-machine quanta-gsj");
int *test_sockets = packet_test_init(emc_module_index(td->module),
cmd_line);
QTestState *qts = qtest_init(cmd_line->str);
/*
* TODO: For pedantic correctness test_sockets[0] should be closed after
* the fork and before the exec, but that will require some harness
* improvements.
*/
close(test_sockets[1]);
/* Defensive programming */
test_sockets[1] = -1;
qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
emc_send_verify(qts, td->module, test_sockets[0], /*with_irq=*/false);
emc_send_verify(qts, td->module, test_sockets[0], /*with_irq=*/true);
qtest_quit(qts);
}
static void test_rx(gconstpointer test_data)
{
const TestData *td = test_data;
GString *cmd_line = g_string_new("-machine quanta-gsj");
int *test_sockets = packet_test_init(emc_module_index(td->module),
cmd_line);
QTestState *qts = qtest_init(cmd_line->str);
/*
* TODO: For pedantic correctness test_sockets[0] should be closed after
* the fork and before the exec, but that will require some harness
* improvements.
*/
close(test_sockets[1]);
/* Defensive programming */
test_sockets[1] = -1;
qtest_irq_intercept_in(qts, "/machine/soc/a9mpcore/gic");
emc_recv_verify(qts, td->module, test_sockets[0], /*with_irq=*/false);
emc_recv_verify(qts, td->module, test_sockets[0], /*with_irq=*/true);
emc_test_ptle(qts, td->module, test_sockets[0]);
qtest_quit(qts);
}
static void emc_add_test(const char *name, const TestData* td,
GTestDataFunc fn)
{
g_autofree char *full_name = g_strdup_printf(
"npcm7xx_emc/emc[%d]/%s", emc_module_index(td->module), name);
qtest_add_data_func(full_name, td, fn);
}
#define add_test(name, td) emc_add_test(#name, td, test_##name)
int main(int argc, char **argv)
{
TestData test_data_list[ARRAY_SIZE(emc_module_list)];
g_test_init(&argc, &argv, NULL);
for (int i = 0; i < ARRAY_SIZE(emc_module_list); ++i) {
TestData *td = &test_data_list[i];
td->module = &emc_module_list[i];
add_test(init, td);
add_test(tx, td);
add_test(rx, td);
}
return g_test_run();
}