blob: 4501fb28a5eaf0cd557098c2bbcda30b1b0a70fc [file] [log] [blame]
/*
* QEMU PowerPC 4xx embedded processors SDRAM controller emulation
*
* DDR SDRAM controller:
* Copyright (c) 2007 Jocelyn Mayer
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to deal
* in the Software without restriction, including without limitation the rights
* to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
* copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
* OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
* THE SOFTWARE.
*
* DDR2 SDRAM controller:
* Copyright (c) 2012 François Revol
* Copyright (c) 2016-2019 BALATON Zoltan
*
* This work is licensed under the GNU GPL license version 2 or later.
*/
#include "qemu/osdep.h"
#include "qemu/units.h"
#include "qapi/error.h"
#include "qemu/log.h"
#include "exec/address-spaces.h" /* get_system_memory() */
#include "hw/irq.h"
#include "hw/qdev-properties.h"
#include "hw/ppc/ppc4xx.h"
#include "trace.h"
/*****************************************************************************/
/* Shared functions */
/*
* Split RAM between SDRAM banks.
*
* sdram_bank_sizes[] must be in descending order, that is sizes[i] > sizes[i+1]
* and must be 0-terminated.
*
* The 4xx SDRAM controller supports a small number of banks, and each bank
* must be one of a small set of sizes. The number of banks and the supported
* sizes varies by SoC.
*/
static bool ppc4xx_sdram_banks(MemoryRegion *ram, int nr_banks,
Ppc4xxSdramBank ram_banks[],
const ram_addr_t sdram_bank_sizes[],
Error **errp)
{
ERRP_GUARD();
ram_addr_t size_left = memory_region_size(ram);
ram_addr_t base = 0;
ram_addr_t bank_size;
int i;
int j;
for (i = 0; i < nr_banks; i++) {
for (j = 0; sdram_bank_sizes[j] != 0; j++) {
bank_size = sdram_bank_sizes[j];
if (bank_size <= size_left) {
char name[32];
ram_banks[i].base = base;
ram_banks[i].size = bank_size;
base += bank_size;
size_left -= bank_size;
snprintf(name, sizeof(name), "ppc4xx.sdram%d", i);
memory_region_init_alias(&ram_banks[i].ram, NULL, name, ram,
ram_banks[i].base, ram_banks[i].size);
break;
}
}
if (!size_left) {
/* No need to use the remaining banks. */
break;
}
}
if (size_left) {
ram_addr_t used_size = memory_region_size(ram) - size_left;
GString *s = g_string_new(NULL);
for (i = 0; sdram_bank_sizes[i]; i++) {
g_string_append_printf(s, "%" PRIi64 "%s",
sdram_bank_sizes[i] / MiB,
sdram_bank_sizes[i + 1] ? ", " : "");
}
error_setg(errp, "Invalid SDRAM banks");
error_append_hint(errp, "at most %d bank%s of %s MiB each supported\n",
nr_banks, nr_banks == 1 ? "" : "s", s->str);
error_append_hint(errp, "Possible valid RAM size: %" PRIi64 " MiB\n",
used_size ? used_size / MiB : sdram_bank_sizes[i - 1] / MiB);
g_string_free(s, true);
return false;
}
return true;
}
static void sdram_bank_map(Ppc4xxSdramBank *bank)
{
trace_ppc4xx_sdram_map(bank->base, bank->size);
memory_region_init(&bank->container, NULL, "sdram-container", bank->size);
memory_region_add_subregion(&bank->container, 0, &bank->ram);
memory_region_add_subregion(get_system_memory(), bank->base,
&bank->container);
}
static void sdram_bank_unmap(Ppc4xxSdramBank *bank)
{
trace_ppc4xx_sdram_unmap(bank->base, bank->size);
memory_region_del_subregion(get_system_memory(), &bank->container);
memory_region_del_subregion(&bank->container, &bank->ram);
object_unparent(OBJECT(&bank->container));
}
static void sdram_bank_set_bcr(Ppc4xxSdramBank *bank, uint32_t bcr,
hwaddr base, hwaddr size, int enabled)
{
if (memory_region_is_mapped(&bank->container)) {
sdram_bank_unmap(bank);
}
bank->bcr = bcr;
bank->base = base;
bank->size = size;
if (enabled && (bcr & 1)) {
sdram_bank_map(bank);
}
}
enum {
SDRAM0_CFGADDR = 0x010,
SDRAM0_CFGDATA = 0x011,
};
/*****************************************************************************/
/* DDR SDRAM controller */
#define SDRAM_DDR_BCR_MASK 0xFFDEE001
static uint32_t sdram_ddr_bcr(hwaddr ram_base, hwaddr ram_size)
{
uint32_t bcr;
switch (ram_size) {
case 4 * MiB:
bcr = 0;
break;
case 8 * MiB:
bcr = 0x20000;
break;
case 16 * MiB:
bcr = 0x40000;
break;
case 32 * MiB:
bcr = 0x60000;
break;
case 64 * MiB:
bcr = 0x80000;
break;
case 128 * MiB:
bcr = 0xA0000;
break;
case 256 * MiB:
bcr = 0xC0000;
break;
default:
qemu_log_mask(LOG_GUEST_ERROR,
"%s: invalid RAM size 0x%" HWADDR_PRIx "\n", __func__,
ram_size);
return 0;
}
bcr |= ram_base & 0xFF800000;
bcr |= 1;
return bcr;
}
static inline hwaddr sdram_ddr_base(uint32_t bcr)
{
return bcr & 0xFF800000;
}
static hwaddr sdram_ddr_size(uint32_t bcr)
{
int sh = (bcr >> 17) & 0x7;
if (sh == 7) {
return -1;
}
return (4 * MiB) << sh;
}
static uint32_t sdram_ddr_dcr_read(void *opaque, int dcrn)
{
Ppc4xxSdramDdrState *s = opaque;
uint32_t ret;
switch (dcrn) {
case SDRAM0_CFGADDR:
ret = s->addr;
break;
case SDRAM0_CFGDATA:
switch (s->addr) {
case 0x00: /* SDRAM_BESR0 */
ret = s->besr0;
break;
case 0x08: /* SDRAM_BESR1 */
ret = s->besr1;
break;
case 0x10: /* SDRAM_BEAR */
ret = s->bear;
break;
case 0x20: /* SDRAM_CFG */
ret = s->cfg;
break;
case 0x24: /* SDRAM_STATUS */
ret = s->status;
break;
case 0x30: /* SDRAM_RTR */
ret = s->rtr;
break;
case 0x34: /* SDRAM_PMIT */
ret = s->pmit;
break;
case 0x40: /* SDRAM_B0CR */
ret = s->bank[0].bcr;
break;
case 0x44: /* SDRAM_B1CR */
ret = s->bank[1].bcr;
break;
case 0x48: /* SDRAM_B2CR */
ret = s->bank[2].bcr;
break;
case 0x4C: /* SDRAM_B3CR */
ret = s->bank[3].bcr;
break;
case 0x80: /* SDRAM_TR */
ret = -1; /* ? */
break;
case 0x94: /* SDRAM_ECCCFG */
ret = s->ecccfg;
break;
case 0x98: /* SDRAM_ECCESR */
ret = s->eccesr;
break;
default: /* Error */
ret = -1;
break;
}
break;
default:
/* Avoid gcc warning */
ret = 0;
break;
}
return ret;
}
static void sdram_ddr_dcr_write(void *opaque, int dcrn, uint32_t val)
{
Ppc4xxSdramDdrState *s = opaque;
int i;
switch (dcrn) {
case SDRAM0_CFGADDR:
s->addr = val;
break;
case SDRAM0_CFGDATA:
switch (s->addr) {
case 0x00: /* SDRAM_BESR0 */
s->besr0 &= ~val;
break;
case 0x08: /* SDRAM_BESR1 */
s->besr1 &= ~val;
break;
case 0x10: /* SDRAM_BEAR */
s->bear = val;
break;
case 0x20: /* SDRAM_CFG */
val &= 0xFFE00000;
if (!(s->cfg & 0x80000000) && (val & 0x80000000)) {
trace_ppc4xx_sdram_enable("enable");
/* validate all RAM mappings */
for (i = 0; i < s->nbanks; i++) {
if (s->bank[i].size) {
sdram_bank_set_bcr(&s->bank[i], s->bank[i].bcr,
s->bank[i].base, s->bank[i].size,
1);
}
}
s->status &= ~0x80000000;
} else if ((s->cfg & 0x80000000) && !(val & 0x80000000)) {
trace_ppc4xx_sdram_enable("disable");
/* invalidate all RAM mappings */
for (i = 0; i < s->nbanks; i++) {
if (s->bank[i].size) {
sdram_bank_set_bcr(&s->bank[i], s->bank[i].bcr,
s->bank[i].base, s->bank[i].size,
0);
}
}
s->status |= 0x80000000;
}
if (!(s->cfg & 0x40000000) && (val & 0x40000000)) {
s->status |= 0x40000000;
} else if ((s->cfg & 0x40000000) && !(val & 0x40000000)) {
s->status &= ~0x40000000;
}
s->cfg = val;
break;
case 0x24: /* SDRAM_STATUS */
/* Read-only register */
break;
case 0x30: /* SDRAM_RTR */
s->rtr = val & 0x3FF80000;
break;
case 0x34: /* SDRAM_PMIT */
s->pmit = (val & 0xF8000000) | 0x07C00000;
break;
case 0x40: /* SDRAM_B0CR */
case 0x44: /* SDRAM_B1CR */
case 0x48: /* SDRAM_B2CR */
case 0x4C: /* SDRAM_B3CR */
i = (s->addr - 0x40) / 4;
val &= SDRAM_DDR_BCR_MASK;
if (s->bank[i].size) {
sdram_bank_set_bcr(&s->bank[i], val,
sdram_ddr_base(val), sdram_ddr_size(val),
s->cfg & 0x80000000);
}
break;
case 0x80: /* SDRAM_TR */
s->tr = val & 0x018FC01F;
break;
case 0x94: /* SDRAM_ECCCFG */
s->ecccfg = val & 0x00F00000;
break;
case 0x98: /* SDRAM_ECCESR */
val &= 0xFFF0F000;
if (s->eccesr == 0 && val != 0) {
qemu_irq_raise(s->irq);
} else if (s->eccesr != 0 && val == 0) {
qemu_irq_lower(s->irq);
}
s->eccesr = val;
break;
default: /* Error */
break;
}
break;
}
}
static void ppc4xx_sdram_ddr_reset(DeviceState *dev)
{
Ppc4xxSdramDdrState *s = PPC4xx_SDRAM_DDR(dev);
s->addr = 0;
s->bear = 0;
s->besr0 = 0; /* No error */
s->besr1 = 0; /* No error */
s->cfg = 0;
s->ecccfg = 0; /* No ECC */
s->eccesr = 0; /* No error */
s->pmit = 0x07C00000;
s->rtr = 0x05F00000;
s->tr = 0x00854009;
/* We pre-initialize RAM banks */
s->status = 0;
s->cfg = 0x00800000;
}
static void ppc4xx_sdram_ddr_realize(DeviceState *dev, Error **errp)
{
Ppc4xxSdramDdrState *s = PPC4xx_SDRAM_DDR(dev);
Ppc4xxDcrDeviceState *dcr = PPC4xx_DCR_DEVICE(dev);
const ram_addr_t valid_bank_sizes[] = {
256 * MiB, 128 * MiB, 64 * MiB, 32 * MiB, 16 * MiB, 8 * MiB, 4 * MiB, 0
};
int i;
if (s->nbanks < 1 || s->nbanks > 4) {
error_setg(errp, "Invalid number of RAM banks");
return;
}
if (!s->dram_mr) {
error_setg(errp, "Missing dram memory region");
return;
}
if (!ppc4xx_sdram_banks(s->dram_mr, s->nbanks, s->bank,
valid_bank_sizes, errp)) {
return;
}
for (i = 0; i < s->nbanks; i++) {
if (s->bank[i].size) {
s->bank[i].bcr = sdram_ddr_bcr(s->bank[i].base, s->bank[i].size);
sdram_bank_set_bcr(&s->bank[i], s->bank[i].bcr,
s->bank[i].base, s->bank[i].size, 0);
} else {
sdram_bank_set_bcr(&s->bank[i], 0, 0, 0, 0);
}
trace_ppc4xx_sdram_init(sdram_ddr_base(s->bank[i].bcr),
sdram_ddr_size(s->bank[i].bcr),
s->bank[i].bcr);
}
sysbus_init_irq(SYS_BUS_DEVICE(dev), &s->irq);
ppc4xx_dcr_register(dcr, SDRAM0_CFGADDR,
s, &sdram_ddr_dcr_read, &sdram_ddr_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM0_CFGDATA,
s, &sdram_ddr_dcr_read, &sdram_ddr_dcr_write);
}
static Property ppc4xx_sdram_ddr_props[] = {
DEFINE_PROP_LINK("dram", Ppc4xxSdramDdrState, dram_mr, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_UINT32("nbanks", Ppc4xxSdramDdrState, nbanks, 4),
DEFINE_PROP_END_OF_LIST(),
};
static void ppc4xx_sdram_ddr_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = ppc4xx_sdram_ddr_realize;
dc->reset = ppc4xx_sdram_ddr_reset;
/* Reason: only works as function of a ppc4xx SoC */
dc->user_creatable = false;
device_class_set_props(dc, ppc4xx_sdram_ddr_props);
}
void ppc4xx_sdram_ddr_enable(Ppc4xxSdramDdrState *s)
{
sdram_ddr_dcr_write(s, SDRAM0_CFGADDR, 0x20);
sdram_ddr_dcr_write(s, SDRAM0_CFGDATA, 0x80000000);
}
/*****************************************************************************/
/* DDR2 SDRAM controller */
#define SDRAM_DDR2_BCR_MASK 0xffe0ffc1
enum {
SDRAM_R0BAS = 0x40,
SDRAM_R1BAS,
SDRAM_R2BAS,
SDRAM_R3BAS,
SDRAM_CONF1HB = 0x45,
SDRAM_PLBADDULL = 0x4a,
SDRAM_CONF1LL = 0x4b,
SDRAM_CONFPATHB = 0x4f,
SDRAM_PLBADDUHB = 0x50,
};
static uint32_t sdram_ddr2_bcr(hwaddr ram_base, hwaddr ram_size)
{
uint32_t bcr;
switch (ram_size) {
case 8 * MiB:
bcr = 0xffc0;
break;
case 16 * MiB:
bcr = 0xff80;
break;
case 32 * MiB:
bcr = 0xff00;
break;
case 64 * MiB:
bcr = 0xfe00;
break;
case 128 * MiB:
bcr = 0xfc00;
break;
case 256 * MiB:
bcr = 0xf800;
break;
case 512 * MiB:
bcr = 0xf000;
break;
case 1 * GiB:
bcr = 0xe000;
break;
case 2 * GiB:
bcr = 0xc000;
break;
case 4 * GiB:
bcr = 0x8000;
break;
default:
error_report("invalid RAM size " HWADDR_FMT_plx, ram_size);
return 0;
}
bcr |= ram_base >> 2 & 0xffe00000;
bcr |= 1;
return bcr;
}
static inline hwaddr sdram_ddr2_base(uint32_t bcr)
{
return (bcr & 0xffe00000) << 2;
}
static hwaddr sdram_ddr2_size(uint32_t bcr)
{
int sh;
sh = 1024 - ((bcr >> 6) & 0x3ff);
return 8 * MiB * sh;
}
static uint32_t sdram_ddr2_dcr_read(void *opaque, int dcrn)
{
Ppc4xxSdramDdr2State *s = opaque;
uint32_t ret = 0;
switch (dcrn) {
case SDRAM_R0BAS:
case SDRAM_R1BAS:
case SDRAM_R2BAS:
case SDRAM_R3BAS:
if (s->bank[dcrn - SDRAM_R0BAS].size) {
ret = sdram_ddr2_bcr(s->bank[dcrn - SDRAM_R0BAS].base,
s->bank[dcrn - SDRAM_R0BAS].size);
}
break;
case SDRAM_CONF1HB:
case SDRAM_CONF1LL:
case SDRAM_CONFPATHB:
case SDRAM_PLBADDULL:
case SDRAM_PLBADDUHB:
break;
case SDRAM0_CFGADDR:
ret = s->addr;
break;
case SDRAM0_CFGDATA:
switch (s->addr) {
case 0x14: /* SDRAM_MCSTAT (405EX) */
case 0x1F:
ret = 0x80000000;
break;
case 0x21: /* SDRAM_MCOPT2 */
ret = s->mcopt2;
break;
case 0x40: /* SDRAM_MB0CF */
ret = 0x00008001;
break;
case 0x7A: /* SDRAM_DLCR */
ret = 0x02000000;
break;
case 0xE1: /* SDR0_DDR0 */
ret = SDR0_DDR0_DDRM_ENCODE(1) | SDR0_DDR0_DDRM_DDR1;
break;
default:
break;
}
break;
default:
break;
}
return ret;
}
#define SDRAM_DDR2_MCOPT2_DCEN BIT(27)
static void sdram_ddr2_dcr_write(void *opaque, int dcrn, uint32_t val)
{
Ppc4xxSdramDdr2State *s = opaque;
int i;
switch (dcrn) {
case SDRAM_R0BAS:
case SDRAM_R1BAS:
case SDRAM_R2BAS:
case SDRAM_R3BAS:
case SDRAM_CONF1HB:
case SDRAM_CONF1LL:
case SDRAM_CONFPATHB:
case SDRAM_PLBADDULL:
case SDRAM_PLBADDUHB:
break;
case SDRAM0_CFGADDR:
s->addr = val;
break;
case SDRAM0_CFGDATA:
switch (s->addr) {
case 0x00: /* B0CR */
break;
case 0x21: /* SDRAM_MCOPT2 */
if (!(s->mcopt2 & SDRAM_DDR2_MCOPT2_DCEN) &&
(val & SDRAM_DDR2_MCOPT2_DCEN)) {
trace_ppc4xx_sdram_enable("enable");
/* validate all RAM mappings */
for (i = 0; i < s->nbanks; i++) {
if (s->bank[i].size) {
sdram_bank_set_bcr(&s->bank[i], s->bank[i].bcr,
s->bank[i].base, s->bank[i].size,
1);
}
}
s->mcopt2 |= SDRAM_DDR2_MCOPT2_DCEN;
} else if ((s->mcopt2 & SDRAM_DDR2_MCOPT2_DCEN) &&
!(val & SDRAM_DDR2_MCOPT2_DCEN)) {
trace_ppc4xx_sdram_enable("disable");
/* invalidate all RAM mappings */
for (i = 0; i < s->nbanks; i++) {
if (s->bank[i].size) {
sdram_bank_set_bcr(&s->bank[i], s->bank[i].bcr,
s->bank[i].base, s->bank[i].size,
0);
}
}
s->mcopt2 &= ~SDRAM_DDR2_MCOPT2_DCEN;
}
break;
default:
break;
}
break;
default:
break;
}
}
static void ppc4xx_sdram_ddr2_reset(DeviceState *dev)
{
Ppc4xxSdramDdr2State *s = PPC4xx_SDRAM_DDR2(dev);
s->addr = 0;
s->mcopt2 = 0;
}
static void ppc4xx_sdram_ddr2_realize(DeviceState *dev, Error **errp)
{
Ppc4xxSdramDdr2State *s = PPC4xx_SDRAM_DDR2(dev);
Ppc4xxDcrDeviceState *dcr = PPC4xx_DCR_DEVICE(dev);
/*
* SoC also has 4 GiB but that causes problem with 32 bit
* builds (4*GiB overflows the 32 bit ram_addr_t).
*/
const ram_addr_t valid_bank_sizes[] = {
2 * GiB, 1 * GiB, 512 * MiB, 256 * MiB, 128 * MiB,
64 * MiB, 32 * MiB, 16 * MiB, 8 * MiB, 0
};
int i;
if (s->nbanks < 1 || s->nbanks > 4) {
error_setg(errp, "Invalid number of RAM banks");
return;
}
if (!s->dram_mr) {
error_setg(errp, "Missing dram memory region");
return;
}
if (!ppc4xx_sdram_banks(s->dram_mr, s->nbanks, s->bank,
valid_bank_sizes, errp)) {
return;
}
for (i = 0; i < s->nbanks; i++) {
if (s->bank[i].size) {
s->bank[i].bcr = sdram_ddr2_bcr(s->bank[i].base, s->bank[i].size);
s->bank[i].bcr &= SDRAM_DDR2_BCR_MASK;
sdram_bank_set_bcr(&s->bank[i], s->bank[i].bcr,
s->bank[i].base, s->bank[i].size, 0);
} else {
sdram_bank_set_bcr(&s->bank[i], 0, 0, 0, 0);
}
trace_ppc4xx_sdram_init(sdram_ddr2_base(s->bank[i].bcr),
sdram_ddr2_size(s->bank[i].bcr),
s->bank[i].bcr);
}
ppc4xx_dcr_register(dcr, SDRAM0_CFGADDR,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM0_CFGDATA,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM_R0BAS,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM_R1BAS,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM_R2BAS,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM_R3BAS,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM_CONF1HB,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM_PLBADDULL,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM_CONF1LL,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM_CONFPATHB,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
ppc4xx_dcr_register(dcr, SDRAM_PLBADDUHB,
s, &sdram_ddr2_dcr_read, &sdram_ddr2_dcr_write);
}
static Property ppc4xx_sdram_ddr2_props[] = {
DEFINE_PROP_LINK("dram", Ppc4xxSdramDdr2State, dram_mr, TYPE_MEMORY_REGION,
MemoryRegion *),
DEFINE_PROP_UINT32("nbanks", Ppc4xxSdramDdr2State, nbanks, 4),
DEFINE_PROP_END_OF_LIST(),
};
static void ppc4xx_sdram_ddr2_class_init(ObjectClass *oc, void *data)
{
DeviceClass *dc = DEVICE_CLASS(oc);
dc->realize = ppc4xx_sdram_ddr2_realize;
dc->reset = ppc4xx_sdram_ddr2_reset;
/* Reason: only works as function of a ppc4xx SoC */
dc->user_creatable = false;
device_class_set_props(dc, ppc4xx_sdram_ddr2_props);
}
void ppc4xx_sdram_ddr2_enable(Ppc4xxSdramDdr2State *s)
{
sdram_ddr2_dcr_write(s, SDRAM0_CFGADDR, 0x21);
sdram_ddr2_dcr_write(s, SDRAM0_CFGDATA, 0x08000000);
}
static const TypeInfo ppc4xx_sdram_types[] = {
{
.name = TYPE_PPC4xx_SDRAM_DDR,
.parent = TYPE_PPC4xx_DCR_DEVICE,
.instance_size = sizeof(Ppc4xxSdramDdrState),
.class_init = ppc4xx_sdram_ddr_class_init,
}, {
.name = TYPE_PPC4xx_SDRAM_DDR2,
.parent = TYPE_PPC4xx_DCR_DEVICE,
.instance_size = sizeof(Ppc4xxSdramDdr2State),
.class_init = ppc4xx_sdram_ddr2_class_init,
}
};
DEFINE_TYPES(ppc4xx_sdram_types)